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Preface 

The International Symposium on Vibrations of Continuous Systems (ISVCS) is 

a forum for leading researchers from across the globe to meet with their 

colleagues and to present both old and new ideas in the field.  Each participant 

has been encouraged either to present results of recent research or to reflect on 

some aspect of the vibration of continuous systems which is particularly 

interesting, unexpected or unusual.  This type of presentation is meant to 

encourage participants to draw on understanding obtained through many years 

of research in the field. 

The 10th ISVCS takes place on 26-31 July 2015 at the Stanley Hotel, Estes 

Park, Colorado USA, which was the venue for the 1st ISVCS in 1997.  It 

focuses on the vibrations of the vibrations of the fundamental structural 

elements: strings, rods, beams, membranes, plates, shells, bodies of revolution 

and other solid bodies of simple geometry. Structures composed of assemblies 

of structural elements are also of interest, especially if such structures display 

interesting or unusual response. 

Typical days at the Symposium will consist of morning hikes or excursions in 

the local area, afternoon technical presentations and, in the evening, further 

technical discussions and social gatherings. The various outings and social 

gatherings provide important opportunities for relaxed and informal discussion 

of technical and not-so-technical topics surrounded by the natural beauty of the 

Rocky Mountain National Park along the Big Thompson River. 

This volume of Proceedings contains 20 short summaries of the technical 

presentations to be made at the Symposium, as well as short biographical 

sketches of the participants. 
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Abstract 

For over half a century, the static and dynamic analyses of structures have continued to be 

routinely carried out by the finite element method (FEM) which is without doubt a universal 

tool in structural mechanics. Although the FEM originated as a break-through in solid 

mechanics in the late fifties and early sixties, it has subsequently infiltrated in other disciplines 

such as fluid mechanics, material science and electrical engineering with considerable success. 

In structural engineering applications, the choice of shape functions which characterise the 

deformed shape of a typical finite element is crucial and a fundamental consideration in FEM 

modelling. For free vibration analysis of structures, the stiffness and mass properties of 

individual elements derived from the assumed shape functions are assembled in FEM to form 

the overall stiffness ([K]) and mass ([M]) matrices of the final structure and then the traditional 

linear eigenvalue problem e.g., |[K] - [M]| = 0 is formulated where the square root of  gives 

the natural frequencies of the structure. Following this eigen-solution procedure, the mode 

shapes are recovered in the usual way.  Although the FEM is an approximate method based on 

chosen shape functions, the results are expected to be sufficiently accurate with increasing 

number of elements. The FEM is numerically intensive and the degrees of freedom typified by 

the order of [K] and [M] matrices dictate the number of eigenvalues that can be computed. The 

accuracy of results will obviously depend on the quality of the elements. The higher order 

natural frequencies from any FEM analysis will understandably be less accurate. There are 

numerous texts on FEM and Zienkiewicz [1] is one of the pioneers in this respect.  Structural 

analysis is dominated by the FEM and against this continuing dominance, there appears to be an 

elegant and powerful alternative to FEM, particularly when solving free vibration problems of 

structures. This alternative is the so-called dynamic stiffness method (DSM) which has much 

better modelling capability than the FEM. Unlike the FEM, the DSM relies on frequency 

dependent exact shape functions of structural elements derived from their governing differential 

equations of motion in free vibration. Due to the exactness of the shape functions, the results 

obtained from the DSM are often called exact. In the DSM, separate mass and stiffness matrices 

are not derived, but a single frequency dependent element stiffness matrix which contains both 

the mass and stiffness properties of the element is exploited as the main building block to obtain 

the overall dynamic stiffness matrix of the final structure. The assembly procedure in the DSM 

is essentially the same as the FEM, but the formulation leads to a nonlinear eigenvalue problem. 

The results obtained from the DSM are independent of the number of elements used in the 

analysis. For instance, one single structural element can be used in the DSM to compute any 

number of its natural frequencies and mode shapes to any desired accuracy which is of course, 

impossible in the FEM or in any other approximate methods. It is considered by many 

researchers that the DSM is the ultimate bench mark in free vibration analysis of structures. 

 

The DSM was pioneered by Kolousek in the early forties [2, 3] who provided the elements of 

the dynamic stiffness matrix of a Bernoulli-Euler beam for the first time. At this stage, there was 

no robust solution technique for the DSM which generally leads to a transcendental eigenvalue 

problem and researchers often had to rely on the cumbersome and tedious determinant plots 

involving highly irregular functions, causing formidable problems. Following Kolousek’s work 
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[2-3], Wittrick and Williams [4] developed a powerful algorithm in the early seventies which 

effectively secured the foundation of the DSM [5] and it made a huge impact on the DSM 

researchers. The Wittrick-Williams algorithm is now an established solution technique in DSM.  

Akesson [6] and Williams and Howson [7] published computer programs in Fortran using the 

DSM and the Wittrick-Williams algorithm for free vibration analysis of plane frame structures. 

Subsequently, the dynamic stiffness matrices of Timoshenko beam [8] and axially loaded 

Timoshenko beam [9] were developed. The advances made in the dynamic stiffness formulation 

of beams led to the development of the computer program BUNVIS-RG [10] to analyse space 

frames. During a sustained period of developments, the DSM has been successfully applied to 

investigate complex structural systems which include beams [11-21], plates [22-24] and shells 

[25]. The DSM based computer program VICONOPT [26] with its optimising features can deal 

with the free vibration and buckling problems of isotropic and anisotropic plate assemblies. 

Nevertheless, the DSM literature is not as broad or diverse as the FEM, but the DSM has 

without doubt, matured sufficiently since its foundation to justify writing a review paper on the 

state of the art. The purpose of this paper is to undertake this task and give an overview of the 

historical developments of the DSM and highlight its future prospects and challenges ahead.  
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Abstract 

Instability caused by tensile axial loads acting on beams, has been highlighted in a very few 

papers in the specific literature, precisely in the case of rubber bearing isolators [4], of highly 

shear deformable beams [6] and for beam-columns in presence of a single structural junction 

allowing transversal deflection discontinuities [5] or due to effects of the constraint’s curvature 

[1]. The authors provided contributions on the subject by assessing the influence of multiple 

cracks [2] and also of multiple internal sliders [3] occurring along shear deformable beams on 

the tensile buckling phenomenon without considering any dynamic effect.  

The main concept to be brought to light after the latter mentioned studies is that instability 

caused by tensile loads acting on beam-like structures can be disclosed if some sort of shear 

deformability is accounted for in beams.  

On this topic many aspects are to be clarified yet. In this work the influence of shear 

deformation singularities, under the form of transversal deflection discontinuities, on the 

dynamic instability of beams under tensile loads is explored.  

Precisely, a contribution to the knowledge of dynamic instability due to tensile dead load of a 

beam-column in presence of an arbitrary number of internal sliders endowed with translational 

elastic springs is offered. First, closed form expressions of the eigen-modes and the 

characteristic equation under the action of axial forces, for different boundary conditions, are 

originally derived and presented for the first time.  

Furthermore, besides the case of conservative tensile dead load, a non conservative axial load of 

the Beck type has been also considered and the following relevant question is asked: Can a 

beam-column undergo tensile flutter instability ?  

While tensile axial loads with conservative character induce divergence type instability, this 

paper shows that a cantilever beam-column, under a non conservative tensile load only, 

undergoes flutter instability, as well as under compressive loads, when transversal displacement 

discontinuities along the span are allowed. A comprehensive parametric analysis is conducted.   

Finally, the contemporary presence of conservative and non conservative loads is investigated to 

study the reciprocal influence. Ranges where the structure switches from divergence to flutter 

instability, both in tension and in compression, are predicted and discussed in detail. 

The dynamic behaviour of an Euler-Bernoulli beam subjected to an axial, either compressive 

( 0N  ) or tensile ( 0N  ) dead load, as in Figure 1, characterised by the presence of multiple 

internal sliders at , 1,i i n  , endowed with elastic springs, can formulated by means of the 

following governing equation with respect to the normalised abscissa 0 1   : 

         2 / / 4 / / / / / /

1

n
IV

i i i

i

             


      (1)  
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where   is the transversal displacement mode shape, 2 4,  are the axial load and frequency 

parameters, respectively, i  is the normalised translational spring compliance, ( )i    is the 

Dirac’s delta distribution and the apex indicates the derivative with respect to  .  

 



 

 

 n

 n





 

Figure 1. A beam with multiple internal elastic sliders. 

 

The closed form solution of Equation (1) is derived in this work by making use of the theory of 

distributions, but not reported here for brevity. The great advantage of the proposed closed form 

solution is that, regardless of the number of transversal displacent discontinuities, a costless 

extensive parametric analysis can be conducted without enforcement of any continuity 

condition. Furthermore, the obtained explicit closed form solution of the problem at hand is 

crucial for the formulation of the dynamic stiffness matrix of the beam in Figure 1 to analyse 

frame structures with multiple shear singularities.   

In Figure 2a the axial load-frequency parameter interaction diagram is depicted for a clamped-

clamped beam in presence of two internal sliders. In the latter figure a switch from a symmetric 

A to an anti-symmetric B mode under a tensile load, that is not encountered under compressive 

load, is shown. Furthermore, if an increasing number of sliders is accounted for in the solution, 

is has to be highlighted that the axial load-frequency parameter interaction diagram reproduces 

the case of Timoshenko beam as shown in Figure 2b. 

 

 

Figure 2. A clamped-clamped Euler-Bernoulli beam with internal elastic sliders: a) two sliders; 

b) an increasing number n of sliders compared with a Timoshenko beam model (dashed line). 

Besides providing the divergence critical tensile load together with the relevant instability mode 

shapes, the comparison reported in Figure 2b demostrates that the discountinuos Euler-Bernoulli 

beam-column can be considered as the discrete counterpart of the Timoshenko model. In other 

words the elastic internal sliders, which allow transversal deflection discontinuities, can be 

interpreted as concentrated shear deformations occurring along the span and can be addressed to 

as shear deformation singularities. 

Furthermore, the closed form solution of Equation (1) can also account for the presence of non 

conservative, follower type, tensile axial load as in the cantilever beam-column in Figure 3a.   

It is well known that the instability phenomenon of the flutter type characterised by oscillations 

of increasing amplitude can be reached in case of compressive load. Here, the question whether 
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the same type of instability can be caused by the application of follower tensile loads is 

addressed and answered affirmatively. Precisely, a coalescence of the first and second frequency 

in the axial load-frequency parameter interaction diagrams is recognised for the beam-column in 

Figure 3a as obtained and shown in Figure 3b for an increasing number of internal elastic 

sliders. 

 

 

Figure 3. a) A cantilever beam-column with multiple internal elastic sliders subjected to a 

follower force; b) Axial load-frequency parameter diagram for an increasing number of elastic 

sliders. 

Finally, a thourough analysis of the beam-column in Figure 3a is pursued by considering, 

together with the follower type load, the contemporary presence of a conservative load. In 

particular, the reciprocal influence is assessed by introducing the so called non conservative 

parameter defined as the ratio of the angle of the total external force and the inclination angle of 

the tangent to the deformed beam axis. Ranges where the structure switches from divergence to 

flutter instability, both in tension and in compression, can be predicted and discussed in detail. 
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Abstract

This work proposes an innovative approach that is based on higher-order beam models for the
damage analysis of metallic and composite structures. The present 1D formulation stems from the
Carrera Unified Formulation (CUF) and it leads to a Component-Wise (CW) modelling.

According to CUF, the accuracy of the analysis is a parameter of the formulation. The displace-
ment field is, in fact, expressed as an arbitrary expansion of the generalized unknowns via user-
defined cross-sectional functions, Fτ . Formally,

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ....,M (1)

where uτ is the vector of the generalized displacements and M stands for the number of terms used
in the expansion. Taylor-like polynomials, i.e. power series of the coordinates x and z of generic
order N, can be used as basis functions (Fτ ) to enrich the beam kinematics. Taylor Expansion (TE)
models are not described in this paper but they can be found in [1]. Here, the attention is focused on
CW CUF models, which make use of Lagrange polynomials as Fτ expanding functions. Lagrange
polynomials are reported in many reference books, see for example [2]. In this paper, nine-point
cubic (L9) Lagrange polynomials are employed. Nevertheless, thanks to the hierarchical capability
of CUF, the order and the number of the Lagrange elements used to discretize the beam cross-
section can be arbitrarily varied without changing the formal expression of the problem. In the
simple case of single-L9 beam model, the displacement field is

ux = F1 ux1 +F2 ux2 +F3 ux3 +F4 ux4 +F5 ux5 +F6 ux6 +F7 ux7 +F8 ux8 +F9 ux9

uy = F1 uy1 +F2 uy2 +F3 uy3 +F4 uy4 +F5 uy5 +F6 uy6 +F7 uy7 +F8 uy8 +F9 uy9

uz = F1 uz1 +F2 uz2 +F3 uz3 +F4 uz4 +F5 uz5 +F6 uz6 +F7 uz7 +F8 uz8 +F9 uz9

(2)

where ux1 , ...,uz9 are the displacement variables of the problem and represent the translational
displacement components of each of the nine points of the L9 element; F1, ...,F9 are the Lagrange
polynomials. Further details about CUF models based on Lagrange polynomials expansions can
be found in [3].

In this work, a finite element approximation is adopted; the generalized displacements are thus
expressed as a linear combinations of the nodal unknowns, qτi, through classical shape functions
Ni. The governing equations are derived by means of the principle of virtual displacements. A
compact form of the virtual variation of the strain energy can be obtained as shown in [1].

δLint = δqT
τiK

i jτsqs j (3)
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Figure 1: Locally damaged structure.

where Ki jτs is the stiffness matrix in the form of the fundamental nucleus. Superscripts indicate
the four indexes exploited to assemble the matrix: i and j are related to the shape functions, τ and
s are related to the theory expansion functions. The fundamental nucleus is a 3× 3 array whose
components can be found in [1, 3]. Matrix Ki jτs has to be expanded versus the four indexes to
obtain any desired class of refined beam finite elements. Similarly, the fundamental nucleus of
the mass matrix, Mi jτs, can be easily obtained from the virtual variation of the work of inertial
loadings, see [4].

A basic damage modelling approach is adopted in this work. Figure 1 shows an example of locally
damaged structure. In the damaged zone, the material characteristics were modified according to
the following formula:

Ed = d ×E with 0 ≤ d ≤ 1 (4)

i.e.;
E0 = E; E0.9 = 0.9×E; ...; E0.1 = 0.1×E (5)

A cantilever I shaped cross-section beam is discussed as a numerical example and it is shown
in Figure 2. The main dimensions of the structure were: height, h = 0.1 m; width, w = 0.1 m;
thickness of the flanges and the web, t = 2 mm; length, L = 1 m. The whole beam was made
of an aluminium alloy (E = 75 GPa, ν = 0.33, ρ = 2700 Kgm−3). Damage was introduced in
the whole top flange. Table 1 shows the first five natural frequencies of the structure subjected
to different damage intensities. A CUF CW model built with 8L9 elements on the cross-section
is compared to classical beam theories (Euler-Bernoulli, EBBM, and Timoshenko beam models,
TBM) and to a 2D finite element plate model obtained with the commercial code Abaqus. Figure
3 shows the mode shapes for the un-damaged structure by the proposed CW CUF model. Also,

x

z

h

w

t

t

t

Figure 2: Cross-section of the I shaped beam.
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Table 1: First natural frequencies (Hz) for different models and damage intensities, I-section beam.
Models EBBM (193)∗ TBM (305) 8L9 CUF (4743) 2D Abaqus (27972)
(1−d) 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9

f1 69.9 60.5 51.8 69.7 60.3 51.7 69.7 51.7 26.4 69.2 51.1 26.2
f2 127.0 109.2 84.1 125.6 108.1 83.5 73.8 71.6 70.9 72.8 70.7 70.0
f3 434.7 376.4 322.4 424.7 368.6 346.5 122.7 106.4 82.4 119.8 103.9 80.3
f4 776.3 666.2 510.6 723.9 626.0 488.5 239.1 234.2 136.9 232.3 226.3 134.4
f5 1202.2 1202.3 891.7 1142.0 993.8 855.8 252.8 243.3 199.7 246.3 236.0 183.4

∗The number of degrees of freedom are given in brackets

the same figure graphically shows the effects of damages in the top flange on the first five natural
frequencies. The analysis clearly demonstrates that refined beam models are mandatory to detect
the damage effects. Moreover, it is clear that the results from 1D CUF models perfectly match
those from a 2D FEM model with very low computational costs. The enhanced capabilities of
refined CW models in dealing with damaged complex structures [5] and composite materials [6]
will be further discussed during the 10th International Symposium on Vibrations of Continuous
Systems.

Figure 3: Mode shapes and damage effects on the natural frequencies by the 8L9 CUF model
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Abstract

The concept of distorted similitude can provide a powerful tool to predict the behavior of a given
system by using an appropriate scaled model and the related scaling laws. These can be investi-
gated, for linear systems, as a variation of the original sizes resulting in a modification of the distri-
bution of the natural frequencies. Thus, the possibility to define exact and distorted similitudes can
be pursued through theoretical and numerical models and further with dedicated experimental val-
idations. The theoretical and numerical findings show that these distorted similitudes are feasible
but the accuracy is not necessarily guaranteed when these laws are applied to real (experimental)
structures.

In the last edition of ISCVS at Courmayeur, Italy, the main topics of the similitude procedure for
vibroacoustic systems were presented and deeply discussed, [1]. The good feeling received there,
together with the right questions still to be answered formed a strong motivation to continue in
investigating this subtle but fascinating topic, [2]-[6] . This paper just presents a focus on what
has been done and the main steps to be performed. At the moment, some investigations can be
considered as concluded:

• the response of a generic acoustic volume, Fig. 1;

• the response of stiffened shells, Fig. 2;

• the experimental response of flat plates, Fig. 3.

In all the presented cases, the distorted similitudes, named avatars, are able to well represent the
original response.

A possible list of the main open issues are here reported:

F The experimental activities, which opened the collaboration between the Italian and Chilean
institutions, evidenced the central role played by the different damping conditions and modal
densities associated with the avatars.

F Theoretical and numerical investigations are necessary for fluid-filled systems, where the
ratio of the structural and acoustic natural frequencies should be kept too.

F The sensitivity analysis on the main parameters remains to be investigated.
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Figure 1: Local response of an acoustic volume (pressure [Pa] vs frequency [Hz]: Volume=2.1×
3.1×2.9 = 18.879m3; Modes, NM = 30600; scaling coefficients: rx = 0.3, ry = 0.4, rz = 0.5.

This last point is the most important since it is related to the possibility to transform SAMSARA,
Similitude and Asymptotic Models for Structural-Acoustic Research and Applications, in a real
engineering tool. In fact, having demonstrated that the avatars exist, the conditions for getting
bounded (and little interval) responses would be highly desired.
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Figure 2: Forced response of stiffened cylindrical shells : L = 10 m, R = 2 m, h = 1 mm; rL = rR =
0.5, rh = 1; variation with the number of stiffeners, [6].

Figure 3: Structural experimental responses of flat plates, [7].
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Abstract 

Belt-drive systems are common constituent elements in many rotational machine systems. In 
this work, the steady-state periodic response of a belt-drive system with two pulleys, an 
accessory pulley and a one-way clutch is presented. The belt-drive system is investigated under 
dual excitations for the first time. Specifically, the double excitations consist of harmonic 
vibration of the driving pulley and inertia excitation. The above and below belt spans are 
modeled as axially moving viscoelastic beams by considering belt flexural rigidity. Therefore, 
two nonlinear integro–partial–differential equations are established for governing the transverse 
vibrations of the above and below belt spans. Furthermore, the transverse vibrations of axially 
moving viscoelastic beams are coupled with the angular vibrations of the pulleys by nonlinear 
dynamic tension. Angular vibrations of the driven pulley and accessory are modeled as coupled 
piecewise ordinary differential equations for describing the unidirectional decoupling function 
of the one-way clutch. In order to eliminate the influence of the belt flexural rigidity on the 
boundaries, the non-trivial equilibriums of the belt-drive system are numerically studied. 
Furthermore, nonlinear piecewise discrete-continuous equations are derived by introducing a 
coordinate transform. Coupled vibrations of the belt-drive system are investigated via the 
Galerkin method. The resonance regions of the belt spans, the driven pulley and the accessory 
pulley are described. By comparing the numerical results with and without one-way clutch, 
significant damping effect of clutch on the stable steady-state response is discovered. Moreover, 
the influences of the amplitude of the motion of the driving pulley and the motion of the 
foundation are investigated. Furthermore, results illustrate that the two excitations interact on 
the amplitude-frequency curves, as well as the damping effect of the one-way clutch. 

1. Introduction 

Kong and Parker confirmed that the bending stiffness of the belt has important influences. 
Neglecting it may cause significant errors in vibration characteristics of the belt-drive system 
[1]. In another aspect, by considering the bending stiffness and the equilibrium, Wang and Mote 
found that significant error in the predicted vibration characteristics may occur if the coupling 
between vibration of the belt spans and pulleys is neglected [2]. One more thing should be noted, 
the viscoelasticity had been confirmed as an important characteristic of axially moving belt. 
Although the coupled vibration of belt-drive systems has been widely studied, researchers 
always focused the dynamics under a single excitation [3]. However, the damping effect of the 
one-way clutch on the dynamic system under multiple excitations has not been addressed. In 
this work, these elements, bending stiffness and the viscoelasticity of the belt, the equilibrium of 
the system, the coupling between the belt and pulleys, and the coupling between different 
excitation sources, are all involved. 
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2. Equations of Motion 

As shown in Figure 1, a two-pulley belt-drive model coupled with accessory pulley is 
established. The motion of the foundation of the pulley-belt system is expressed as Bcos(ft), 
where B and f are the amplitude and the frequency, t is time. The two pulleys are assumed with 
the same radius r and rotational inertia J. θ1(t) and θ2(t) are the angular displacements. M is the 
pre-load. θa(t) and Ja are the angular displacements and the rotational inertia of the accessory, 
respectively. The driven pulley and the accessory are elastically connected with a wrap spring, 
with stiffness Kd. c, ρ, E, and A, respectively, are speed, density, Young's modulus and cross-
sectional area of the moving belt, and all are assumed to be constant. x1 and x2, respectively, are 
the neutral axis coordinate of belt span 1 and 2. w1(x1,t) and w2(x2,t) are the transverse 
displacements as well. Pi (i=1,2) are the axial tension of the belt span 1 and 2, respectively. 

 

Figure 1. Belt-drive system consists of two pulleys, accessory pulley and a one-way clutch. 

The equations of the motion of the system are obtained from Newton’s second law as 
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where P0 is the initial axial tension, α is the dynamic viscosity, I is the moment of inertial and 
the comma preceding t or xi denotes partial differentiation with respect to t or xi. The dot 
denotes differentiation with respect to time and cb is the damping coefficient between the belt 
and the pulley and ca is the torsion damping coefficient of the accessory, 1 a     is the 

relative angular displacement, and  f   is defined by  

 
1 0

0 0
f







  
. (2) 

The boundary conditions are 
       0, , 0, , 0, , , 1 , ( 1,2)

i i i ii i i x x i x xw t w l t w t w l t r i     . (3) 

By using Galerkin’ method, one can obtain the stable steady-state responses. Numerical results 
in Figures 2 and 3 found that the two excitations, caused by the rotation of the driving pulley 
and the rectilinear motion of the foundation, may cancel each other out when the two excitation 
frequencies equal. Furthermore, the one-way device efficiently reduces the resonance responses 
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of the rotation vibration and transverse vibration of the pulley-belt dynamic system. Moreover, 
the damping effect of the one-way clutch impacts all resonance peaks of the angular vibrations 
and rectilinear vibrations. 
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Figure 2. The sweep frequency response of the system with and without one-way device: ω=ωf
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Figure 3. The effects of the amplitude of the inertia excitation on the response: ω=ωf 
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Abstract 

Several years ago, the present author and his colleague, D. Tang, addressed some of 

these issues in the context of a prototypical system where the primary system was an 

elastic plate with a discrete spring/mass attached. The plate is responding in the limit of 

a large number of modes in a chosen frequency bandwith [1]. In the present paper, 

generalizations and further verification of the results of [1] are considered. 

 

Asymptotic Modal Analysis (AMA) and its predecessor and inspiration, Statistical Energy 

Analysis (SEA), seek to provide a basis for modeling and understanding the response of 

dynamical systems which have many modes (degrees of freedom) in a frequency bandwidth of 

interest. There is a very substantial literature on SEA including the classic text [2] by one of the 

founders, Richard Lyon, and as subsequently revised and expanded upon by Lyon and Dejong 

[3]. SEA in turn was inspired by Statistical Mechanics and the treatment of large numbers of 

particles that has had such a profound impact on thermodynamics, fluid mechanics and 

continuum physics in general. One of the central pillars of SEA is the notion of equipartition of 

energy among the dynamical modes and the emphasis on modeling of a single global scalar of a 

system, i.e. its total energy, versus a detailed modeling of the spatial as well as temporal 

distribution of energy and displacement which is more typical of classical modal analysis.  

Indeed in SEA it is assumed that the energy in a system responding in many modes is uniformly 

distributed in space as a consequence of equipartition of energy among the modes.  

 

AMA was developed to see if one could in fact derive this result or hypothesis in SEA from 

classical modal analysis by considering the limit (asymptote) of classical modal analysis when 

many modes are responding in a certain frequency bandwidth. The term, asymptotic, is used to 

emphasize that while the number of modes responding must be large they also must share 

similar properties such as resonant frequencies and damping so that the individual modal 

values may be replaced with average values such as the center frequency and associated 

damping.  

 

One of the central findings of AMA is that there are certain points or lines in the spatial domain 

of the system where in the AMA/SEA limit the response is notably higher even though most of 

the system response is spatially uniform. To the present author's knowledge 

these special points and lines were first observed by the eminent scholar, Stephen Crandall and 

his students [4]. Subsequently the present author and his colleagues reproduced and expanded 

upon Crandall's discovery in the context of AMA.  
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In the present paper we build upon the prior AMA results in two ways. First the effect of 

nonlinearities will be considered. Most, if not all, of the prior literature on AMA and SEA deals 

with linear dynamical systems. Secondly one of the greatest challenges for both AMA and SEA 

is how to treat the interaction between two or more systems. The work in [1] was a first 

step using AMA to address this issue. The present paper is a next step. Treating the interaction 

of two or more systems in SEA has also proven to be a challenge, although some authors are 

optimistic that these issues have been largely resolved within the framework of SEA per se [5]. 

The present author will not comment on this assertion here other than to say that the present 

results are believed to reveal some of the complexities that must be addressed in AMA and 

possibly in SEA when the interaction of two or more dynamical systems is considered.  

 

Inter alia the opportunity also will be taken to provide some deeper insight into the accuracy and 

range of applicability of the AMA results previously obtained in [1]. 

 

For an overview of some of the key results of AMA the reader may wish to see [6]. 

 

Figure 1 shows the relevant configuration considered in [1] and the present paper. Figure 2 

shows another configuration that will also be considered in the present paper. Fig. 1 displays a 

continuum system (the elastic plate) connected to a discrete system, the spring/mass. Figure 2 

shows two continuum systems (elastic plates or beams) connected by a rigid member, the 

vertical rod. 

 

For the configuration shown in Fig. 1, in the present paper the spring will become 

nonlinear, rather than the linear spring of [1], and also some of the subtleties of what happens 

when the spring/mass resonance frequency occurs with the frequency bandwidth of response 

will be considered. For the configuration shown in Figure 2, the focus will be on how the force 

of excitation on one plate is transmitted to the second plate. 
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Introduction and contents. Passive treatments involving viscoelastic materials can be adopted as

an effective means of reducing vibrations and noise radiation from light and stiff plate-like struc-

tural components. Typical configurations involve surface bonded or embedded damping treatments

[1]. It is known that viscoelastic laminated structures are characterized by highly deformed pat-

terns inside the viscoelastic layers and high deformation discontinuities arising at the interfaces

between the soft viscoelastic and the stiff elastic layers. Therefore, accurate modal estimates for

optimal design of viscoelastic treatment configurations can be obtained only by an accurate rep-

resentation of the through-the-thickness variation of the strain and stress fields. Due to the above

needs, free vibration models of viscoelastic laminated plates relying on higher-order 2-D layer-

wise kinematic theories are developed in this work. In particular, since an optimal performance of

damping treatments is typically achieved by analyzing many alternative configurations comprising

arbitrary stacking sequences of a single or multiple kinds of viscoelastic materials, design-tailored

analytical and semi-analytical models are derived which can be efficiently used for preliminary

parametric and/or optimization studies. The formulation proposed by Carrera [2] is exploited to

derive invariant layer- and order-independent nuclei of the frequency-dependent complex stiffness

and mass matrices. The nuclei are then properly expanded and assembled to yield the final ma-

trices of the non-linear eigenvalue problem governing the damped vibrations of the multilayered

plate. The resulting plate models are hierarchical in nature and provide great flexibility to the de-

signer in the through-the-thickness approximations for arbitrary stacking sequences of both thin

and thick elastic and viscoelastic layers.

Model description. The present formulation refers to a freely vibrating rectangular plate of side

lengths a and b, and total thickness h. The plate consist of Nℓ layers, which can be made of

orthotropic elastic or frequency-dependent viscoelastic material in isothermal conditions. The kth

layer has thickness hk and is located between zk and zk+1 in the thickness direction. According

to the elastic-viscoelastic correspondence principle, the stress-strain relation in viscoelastic layers

is expressed in the frequency-domain through the complex modulus approach as σ k = Ck( jω)εk,

where Ck
i j( jω) =C

′k
i j(ω)+ jC

′′k
i j (ω). By introducing the loss factor ηk

i j(ω) as the ratio between the

frequency dependent loss modulus C
′′k
i j (ω) and the frequency-dependent storage modulus C

′k
i j(ω),

each complex modulus Ck
i j( jω) can be written as Ck

i j( jω) = C
′k
i j(ω)

[

1+ηk
i j(ω)

]

. Higher-order

2-D kinematic theories are employed by expressing the displacement vector for the k-th layer

as uk(x,y,ζk) = ∑τ Fτ(ζk)u
k
τ(x,y) = Fτ(ζk)u

k
τ(x,y), where uk

τ =
{

uk
τ vk

τ wk
τ

}

is the vector of

kinematic variables, τ = t,r,b, r = 2, . . . ,N − 1, ζk is the local dimensionless layer coordinate

(−1 ≤ ζk ≤ 1), N is the order of the theory, and Fτ(ζk) are assumed thickness functions, which are

taken as a combination of Legendre polynomials in order to satisfy the interlaminar continuity of

the displacements. In-plane (p) and out-of-plane (n) components of the strain vector are linearly

related to displacements by εk
p = Dpuk = FτDpuk

τ and εk
n = Dnuk + ∂uk/∂ z = FτDnuk

τ +Fτ,zu
k
τ ,

where Dp and Dn are matrices of in-plane differential operators and Fτ,z = dFτ/dz. According to
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the above framework, the principle of virtual displacement in the absence of any external load can

be written as

Nℓ

∑
k=1

∫

Ωk

∫ zk+1

zk

[

δ
(

DpFτuk
τ

)T

σ k
p +δ

(

DnFτ uk
τ

)T

σ k
n +δ

(

Fτ,zu
k
τ

)T

σ k
n

]

dΩdz =−

Nℓ

∑
k=1

∫

Ωk

∫ zk+1

zk

δ
(

Fτuk
τ

)T

ρkFsü
k
s dΩdz (1)

where δ denotes the virtual operator, σ k
p and σ k

n are the in-plane and normal components of the

stress vector, respectively, Ωk is the middle surface domain of the k-th layer and ρk is the mass

density. Integration by parts and arbitrariness of virtual variations yield the following boundary

value problem

Lk
τs(ω)uk

s +ρkJk
τsü

k
s = 0 over Ωk Bk

τs(ω)uk
s = 0 on plate boundary (2)

where Lk
τs(ω) and Bk

τs(ω) are 3×3 frequency-dependent nuclei of differential operators.

The Navier solution. Damped free vibration Navier solutions are obtained for fully simply-

supported plates with layers made of specially orthotropic material (Ck
16 =Ck

26 =Ck
36 =Ck

45 = 0).

The kinematic unknowns of the layerwise model are expressed as the following Fourier series

uk
τ =







uk
τmn cos(mπx/a)sin (nπy/b)

vk
τmn sin(mπx/a)cos (nπy/b)

wk
τmn sin(mπx/a)sin (nπy/b)







e jωt (m,n = 0,1,2, . . . ) (3)

which identically satisfies the boundary conditions in Eq. (2) for simply-supported edges. The

expansion in (3) is substituted into equations of motion (2) and, since the resulting equations must

hold for every point (x,y) over each Ωk, the following eigenvalue problem at layer-level is obtained
[

Kk
τsmn(ω)−ω2Mk

τsmn

]

uk
smn = 0, which is valid for any theory-related index-pair (τ ,s) and any

layer k. The above 3× 3 stiffness and mass nuclei Kk
τsmn, Mk

τsmn are then expanded by varying τ

and s. The resulting matrices are assembled through the layers by imposing the continuity at each

layer interface and the Navier solutions for the (m,n) mode of the multilayered plate are obtained

by solving the non-linear eigenvalue problem
[

Kmn(ω)−ω2Mmn

]

umn = 0.

The Ritz solution. For viscoelastic laminated plates with arbitrary lamination lay-up and various

boundary conditions (combination of free, clamped and simply-supported edges), a Ritz solution

at any layer k is sought in the following form

uk
τ =







Nuτ i(x,y)u
k
τ i

Nvτ i(x,y)v
k
τ i

Nwτ i(x,y)w
k
τ i







e jωt (i = 1,2, . . . ,M) (4)

where Nατ i (α = u,v,w) are admissible functions given by the product of geometrically-compliant

boundary functions and one-dimensional Chebyshev polynomials [3]. The approximation in Eq. (4)

is directly used into the PVD statement Eq. (1). The arbitrariness of the virtual variations yields

the eigenvalue problem
[

Kk
τsi j(ω)−ω2Mk

τsi j

]

uk
s j = 0, which is valid for any pair (τ ,s), any Ritz-

related index-pair (i, j) and any layer k. The above Ritz nuclei are first expanded according to the

order of the theory. Enforcing the interlaminar continuity conditions yields the multilayer matri-

ces, which are finally expanded again through the variation of the Ritz-related indices i and j. The

resulting non-linear eigenvalue problem takes the form
[

K(ω)−ω2M
]

u = 0.

Illustrative results. Two examples are here presented to validate the present formulation and

illustrate its capabilities. The first example in Table 1 shows that first-order layerwise models

(LD1) cannot be enough to provide accurate vibration and damping estimates, and higher-order

theories (LD2 in this case) can be required. From the example in Table 2 it is confirmed that
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equivalent single-layer theories, even those based on higher order deformations [5], are not suitable

to describe with adequate accuracy the dynamic behavior of multilayered plates with embedded

viscoelastic layers. More comparison and benchmark results will be presented at the symposium.

In particular, the effect of various parameters on the damped vibrations of viscoelastic laminated

plates will be discussed, including different boundary conditions, stacking sequences, and location

and numbers of damping layers.

Table 1: Modal frequencies and loss factors of a three-layer symmetric sandwich simply-supported

plate (a = 0.3048 m, b = 0.3480 m). Isotropic faces: h1 = h3 = 0.762 mm, E1 = E3 = 6.89×1010

Pa, ν1 = ν3 = 0.3, ρ1 = ρ3 = 2740 kg/m3. Isotropic core with frequency-independent viscoelastic

properties: h2 = 0.254 mm, ρ2 = 999 kg/m3, G2 = 0.896×106 Pa, η2 = 0.5.

(m,n) Ref. [4] Navier (LD1) Navier (LD2)

f (Hz) η f (Hz) η f (Hz) η

(1,1) 60.2 0.190 62.3 0.178 60.2 0.190

(1,2) 115.2 0.203 120.9 0.185 115.2 0.203

(2,1) 130.2 0.199 137.3 0.180 130.4 0.199

(2,2) 178.5 0.181 189.5 0.160 178.5 0.181

(1,3) 195.4 0.174 208.0 0.153 195.4 0.174

Table 2: Modal frequencies and loss factors of a square [0/90/0/core/0/90/0] simply-supported

plate with a/h = 10, hc/h = 0.94, carbon FRP faces and isotropic core with frequency-dependent

viscoelastic material (properties are taken from Ref. [5]).

Mode Ref. [5] Navier (LD3) Ritz (LD1)

f (Hz) η (%) f (Hz) η (%) f (Hz) η (%)

1 117.65 25.37 107.22 27.58 107.23 27.60

2 198.28 27.79 179.80 29.44 179.89 29.44

3 201.25 27.64 180.97 29.61 181.06 29.61

4 257.68 28.05 232.65 29.73 232.82 29.72

5 291.97 28.26 262.21 29.90 262.94 29.90
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Methods abound for structural damping estimation relevant to noise transmission in 

plates and shells.  Differences in methods are noted with regard to excitation type, typically 

mechanical with either random or sinusoidal waveforms, as well as the parameter extraction 

method used—the most popular of which are the Power Injection Method (PIM), the Impulse 

Response Decay Method (IRDM) [1] and the Random Decrement Technique (RDT) [5].  For 

these three methods, numerous process variables, including excitation location, response 

measurement location, averaging method and others have been studied by Ewing and Dande for 

free-hanging, mechanically-excited plates [2,3].  The current effort is focused on the 

comparison of acoustic and mechanical excitation strategies for panel damping loss 

measurements.  For this comparison, a carbon fiber-epoxy panel stiffened with 5 “hat” stiffeners 

of the same material is used.   

Experimental Setup 

 A 4-foot by 8-foot graphite-epoxy stiffened panel from Spirit Aerosystems was used for 

this research.  The drive signal for both types of excitation was a pseudo-random waveform 

which was filtered by an adjustable notch filter unit into 1/3 octave frequency bands.  Here only 

the 500Hz and 1000Hz center frequency bands will be discussed.  

     
Figure 1.  Stiffened panel used for mechanical (left) and acoustic (center and right) excitation. 

 

Mechanical excitation was provided by a small, 2-lb force electrodynamic shaker.  For 

mechanical excitation, the location of the excitation points is often problematic: one gets very 

poor estimates if mechanical excitation is applied along a node line of one or more modeshapes 

in a frequency band of interest.  
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Acoustic excitation was ultimately provided by a 4-inch diameter speaker located at a 

distance of approximately 8 inches from the panel.  Initially, a 12-speaker, duodecahedron 

assembly was used to provide diffuse acoustic excitation, as this excitation is readily-available 

in most acoustic transmission loss facilities, including the Great Plains Acoustic Test Facility at 

the University of Kansas.   This diffuse field, as expected, was ineffective at exciting panel 

modal response enough to allow damping estimation with available algorithms.  A more 

effective way to get sufficient amplitudes in response, is to apply acoustic energy from the 

speaker to an area the size of the characteristic feature size in the modal response of the 

structure.  In this context, the feature size is the size of an area of a structure which shows in-

phase response throughout during a cycle of vibration.  The speaker should be close enough to 

the structure that the pressure pulses from the speaker diaphragm are essentially in-phase as they 

impact a nearby structure.  This suggests a ratio of the speaker diameter to the distance to the 

structure to be in the range of 1:1 to 1:2.  In these tests, the ratio was approximately 1:2. 

For both excitation types, the response measurement points were identical.  Two were 

on stringers and two were on skin between stringers.  Accelerometers were used to represent the 

motion of the panels.   

Experimental Data 

 Using mechanical excitation, frequencies and mode shapes for one quadrant of the 

stiffened panel were determined using ME’scope software [4].  Figure 2 shows representative 

mode shape amplitudes for modes in the 500 and 1000 Hz full octave frequency bands.  This 

view, in which a quadrant of the panel has the dimensions, 2 feet by 4 feet, clearly shows the 

range of “feature sizes” in the responses, that is, less than a foot.  This indicates that the speaker 

size and distance from the test article were appropriate. 

  .      

Figure 2.  Mode shape amplitudes for modes in the 500 and 1000 full octave frequency ranges:  

from left to right, the modes appear at 460 Hz, 559 Hz, 983 Hz and 1080 Hz. 

 

Loss factor estimation 

 During data acquisition for the loss factor estimations, the acceleration at the 4 response 

measurement points were recorded for time periods dependent on the frequency band of interest, 

typically on the order of 10-20 seconds.  Loss factors were then estimated with the RDT 

algorithm.  In particular, the selectively triggered, time-domain response (acceleration) for 4 

“representative” points on the panel were averaged to obtain a decaying sinusoid.  The decay 

rate for each of these locations was determined using, based on earlier research, two types of 
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averaging:  directly averaging (DA); and, averaging the positive branch of the autocorrelation of 

the signal (AA).  Figure 3 shows the average loss factor for the 4 response locations as a 

function of excitation type and averaging type.  The loss factor estimates for mechanical 

excitation, however, showed a decidedly larger standard deviation in the estimates.   

 
Figure 3.  Loss factor estimates for the stiffened panel. 

The following observations can be made: 

 For averaging using the autocorrelation of the averaged response (AA), the acoustic and 

mechanical excitation give rather similar damping losses. 

 For direct averaging (DA) the loss factors are higher than using autocorrelation averaging 

(the opposite of what was found in a study of free-hanging uniform aluminum panels). 

 The acoustic excitation method resulted in damping loss estimates which had a significantly 

lower standard deviation, that is, less scatter than when mechanical excitation is used. 

The latter observation leads one to believe that acoustic excitation may allow one to be less 

concerned about the location of the speaker when using acoustic excitation, whereas there is 

significant concern when using mechanical excitation.   
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Abstract

Many systems in mechanical engineering exhibit self-excited vibrations, which have to be sup-
pressed or completely avoided by different design approaches. A common method to avoid self-
excited vibrations is to add damping to the system with the intent to stabilize it. This may however
also have the opposite effect, namely destabilization, as has been known for a long time [1, 2].
More recently it was shown in [3] that weakly stable discrete systems of theM-K-N type can
always be destabilized by adding an infinitesimal small damping matrix. It was also shown that
the common assumption of RAYLE IGH damping, i.e. writingD = αM +βK is highly problem-
atic, since the choice ofα andβ , however small, can be decisive for the stability. Furthermore,
in [4] the destabilizing effect of damping is shown for different practical mechanical engineering
systems subject to nonconservative forces, which can orginate in physical systems, for example,
from frictional contact forces, aerodynamic coupling or other energy sources. In the following,
the destabilizing effect of damping is analyzed for continuous mechanical systems without using
any discretization method. Instead of the symmetric matricesM andK and the skew-symmetric
matrixN, one now has self-adjoint and skew-adjoint operators, respectively.

In the following we consider the mechanical system shown in Fig. 1. The system consists of an
elastic ring which is in frictional contact with a rigid rotor. In addition, a particle with a spring is
attached to the elastic ring in order to disturb the symmetry. The equations of motion are derived
using HAMIL TON’s principle

∫ t2

t1
(δL −δW f −δWd)dt = 0 with δL = δT −δU , (1)

whereT andU are the kineticand potential energy of the elastic ring and the lumped element,
W f the externalwork done by the frictional layer andWd the workdone by damping forces. The
corresponding expressions1 are

δT =
∫ L

0
ρAẇδ ẇdx+mẇ(0,t)δ ẇ(0,t) , δU =

∫ L

0
EIw′′ δw′′dx+kw(0,t)δw(0,t) ,

δW f =
∫ L

0

(

(kf w+df ẇ)δw−μ
h
2
(kf w+df ẇ)δw′

)

dx,

δWd = α
(∫ L

0
ρAẇδwdx+mẇ(0,t)δw(0,t)

)

+β
(∫ L

0
EIẇ′′ δw′′dx+kẇ(0,t)δw(0,t)

)

,

(2)

wherew(x, t) is the displacement of the ring,E the YOUNG’s modulus,I the areamoment of
inertia,ρ the mass density, A, h andL the cross section, the height and the length of the ring,m

1The elastic ringis modeled by using EULER-BERNOULLI beam theory andthe expressions describing the frictional
contact are linearized.
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Figure 1: Mechanicalmodel of an
elastic ring in frictional contact with a
rigid rotor.

F

Ω
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k
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the mass andk thestiffness coefficient of the lumped element,df andkf the damping andstiffness
coefficient of the friction layer andμ the friction coefficient. Furthermore,α andβ are the mass-
proportionaland stiffness-proportional coefficients of the RAYLE IGH damping assumed forthe
system. Carrying out the variation with respect to the displacementw(x, t) one obtains the partial
differential equation

ρAẅ+EIw′′′′+αρAẇ+βEIẇ′′′′+df ẇ+kf w+μ
h
2

(
df ẇ

′+kf w
′)=0, (3)

with the boundaryconditions

w(0,t)=w(L, t) , w′(0,t)=w′(L, t) , w′′(0,t)=w′′(L, t) ,

EI
[
w′′′(0,t)−w′′′(L, t)

]
=mẅ(0,t)+ [αm+βk] ẇ(0,t)+kw(0, t) .

(4)

Inserting theansatz w(x, t) = ŵeκxeλ t into the partialdifferential equation (3) yields
[

ρAλ 2+EIκ4+αρAλ +βEIλκ4+df λ +kf +μ
h
2

(df λκ+kf κ)

]

ŵeκxeλ t = 0. (5)

The nontrivialsolutionsκ1, . . . ,κ4 of Eq. (5)are used to obtain the general solution

w(x, t) = (C1eκ1x +C2eκ2x +C3eκ3x +C4eκ4x)eλ t , (6)

which has tofulfill the boundary conditions (4), leading thereby to the characteristic equation

4

∑
i=1

(

(-1)i
[
mλ 2+(αm+βk)λ +k−EIκ3

i (e
κiL−1)

] 4

∏
j=1, j 6=i

(eκ j L −1)
3

∏
n=1,n6=i

4

∏
p=n+1,p6=i,n

(κn−κp)

)

=0. (7)

The solution ofthis characteristic equation gives the eigenvaluesλ . For theparameters

EI =5600Nm2, ρA=6.8kg/m, df =10-6Ns/m, kf =4∙107N/m, μ =0.3,

h = 0.02m, L = 0.2π m, m= 0.001kg,α = 0s, β = 0s-1, k = 755.48kN/m
(8)

the imaginary and real parts of the first two eigenvalue pairs, which are the roots of the corre-
sponding characteristic equation, are shown in Fig. 2 on the left-hand side for different values of
the friction coefficientμ . Up to thecritical value ofμcrit =0.3 the roots have negative real parts,
which are due to the parameterdf only marginallybelow zero. For larger values ofμ the system
becomes unstablein the sense of self-excited vibrations. The effect of the damping coefficientβ
on the rootsis highlighted in Fig. 2 on the right-hand side. Obviously increasingβ has a destabi-
lizing effect on one eigenvalue pair. For larger values thanβcrit =1.1∙10-71/s the system becomes
stableagain.
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Figure 2: Imaginaryand real parts of the first eigenvalue pair over the friction coefficientμ (left)
and over the damping coefficientβ (right).

Figure 3: Stability map for the first
eigenvalue pair over the damping coef-
ficientsα andβ .
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In Fig. 3 the stability map for the first eigenvalue pair is shown over the damping coefficientsα
andβ . It can beseen that for sufficiently large values of the damping coefficients the first eigen-
value pair always has negative real parts. The destabilizing effect of nonconservative continuous
systems, shown here, exists only for relatively small damping values.

The introduced examples show that continuous nonconservative mechanical systems, which are
asymptotically stable may be destabilized by adding damping to the system. It can be shown
that also for continuous systems, the RAYLE IGH assumption is highlyproblematic in stability
problems. It is of utmost importance that these effects be considered by designing damping for
mechanical systems, which are subject to nonconservative effects.
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Abstract 

Many types of flow-induced vibration phenomena have been investigated over the past decades. 
Energy harvesting from these vibrations has been a growing topic of interdisciplinary research 
since the early works of Klakken et al, and Schmidt et al, (1983) [1,2]. The most popular flow-
induced vibration energy harvesting techniques can be classified as either flutter or vortex-
induced vibration (VIV). Energy harvesting from turbulence-induced vibration has also been 
shown to be quite effective [3]. 
 
This research presents a novel type of flow-induced vibration called dual cantilever flutter 
(DCF) which occurs between two similar adjacent cantilevers exposed to cross-flow. DCF flow-
induced dynamics have similarities to both flutter and VIV; however, for the sake of simplicity, 
it has been categorized as a type of flutter. DCF was first witnessed while performing wind 
tunnel experiments on large arrays of lightly coupled flexible structures called piezoelectric 
grass – another novel flow-induced vibration energy harvesting method. It was observed that 
persistent resonant-like vibration occurred when two adjacent similar cantilevers were placed in 
cross-flow as illustrated in figure 1. These initial observational experiments showed that DCF 
vibration amplitude is highly dependent on both flow velocity U  and the separation distance q . 
 
At the onset of DCF both cantilevers become locked 180 degrees out of phase and their 
vibration amplitude increases steadily as flow velocity is increased. With a continued increase in 
flow velocity, the flutter amplitude approaches a maximum stable value and becomes less 
dependent on flow velocity. Frequency remains approximately constant over the entire velocity 
range. 
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Figure 1: Schematic illustrating the dual 
cantilever flutter energy harvester concept 
in a unimorph configuration. 

 Figure 2: Equivalent lumped parameter representation of 
the dual cantilever harvester illustrating both fluid and 
electromechanical coupling. 
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Rather than attempting to model the complex fluid-structure interaction occurring along the 
length of the beams, a lumped parameter model based on the fundamental mode of each beam is 
shown to predict DCF dynamics quite well. The proposed model represents each beam as a 
single degree of freedom oscillator. Fluid drag, damping, and excitation terms are included 
along with both electromechanical and fluid coupling terms. Because the piezoelectric material 
is allowed to be shorter than the substrate as shown in figure 1, each beam has non-uniform 
mass and stiffness properties. These non-uniformities are accounted for by using a Rayleigh-
Ritz model to estimate the equivalent mass m  and stiffness k  of the beams. 
 
The general form of the lumped parameter coupled electromechanical differential equations for 
each beam can be represented as, 

 ( )2 2 21
( (

2
c Dd Dvmx cx kx v A C U C x x x xd G r c q+ + + = + - + -      (1) 

 1
v v xj

t
+ =

  (2) 

where x  is the tip displacement, m  is the equivalent mass, c  is viscous damping, k  is the 
equivalent stiffness, c  and j  are electromechanical coupling terms, t  is the capacitive time 
constant, v  is the time varying voltage across load resistance LR , cG  is the fluid coupling 
between the beams, r  is the fluid density, A  is the beam area normal to flow, DdC  is the drag 
coefficient, DvC  is the viscous drag coefficient, U  is the cross-flow velocity, b  is the linearity 
parameter, and q  is the stability threshold parameter. Single and double over-dots on x  and v  
denote first and second time derivatives respectively. It is important to note that equations 1 and 
2 represent the general form of the governing equations for a single beam; therefore, two sets of 
these equations (four total) are needed for two beams. Each piezoelectric element is modeled 
(equation 2) as a simple resistor-capacitor circuit with a strain-induced current source. The time 
constant can be defined as, L pR Ct =  where LR  is the load resistance and pC  is the capacitance 
of the piezoelectric element. A schematic of this circuit model is shown in figure 2. Figure 2 
illustrates a lumped parameter electromechanical system equivalent to the distributed parameter 
system shown in figure 1. Fluid coupling in this system is modeled using a nonlinear expression 

cG  which is a function of separation distance q  and both the relative displacement 1 2( )x x-  and 
relative velocity 1 2( )x x-   of each lumped mass. The fluid coupling is estimated using the 
following nonlinear expression, 

 
( )

( )

2
1 2 1 2

(1,2(
22

1 2

c
q x x x x

q x x

a

a

g
G

-
=

é ù
, -ê ú

ê úë û

a   

 (3) 

where parameters g  and a  are the velocity and displacement coupling terms respectively, and  
subscripts 1 and 2 correspond to beam 1 and 2. The second term on the right-hand side of 
equation 1 determines the fluid drag and damping forces. Notice that if 0x =  and 0U >  then 

0v =  and the only surviving terms predict the static drag deflection as simply 2 / 2DdAC U kr . 
The fluid excitation force is estimated with the third and final expression on the right-hand side 
of equation 1. This excitation term is adapted from the well-known Van der Pol model and can 
be described as a position-dependent damping term that can cause an oscillator to have a stable 
yet periodic solution called a limit cycle oscillation. When this position-dependent damping 
becomes a large enough negative value to overcome all damping in equations 1 and 2, then both 
coupled systems undergo limit cycle oscillations i.e., the systems begin to flutter. For the results 
in figure 3, experimental data was used to update the fluid coupling and excitation parameters of 
the proposed model. 
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Figure 3: Model predictions and experimental measurements showing trends in a) total and mean tip 
deflection, b) peak tip deflection amplitude, c) RMS voltage, and d) power output as functions of flow velocity. 
 
A series of wind tunnel experiments were performed both to proove the concept and to validate 
the proposed model. All results are sumarized in figure 3. The solid and dotted lines in figure 3a 
show the average flutter amplitude and mean deflection (respectively) of both beams as a 
function of flow velocity. As one would expect given the definition of drag force, the mean 
deflection increases as a function of 2U . The flutter amplitude is approximately zero until ~7 
m/s where an exponential increase ocurs until ~9 m/s where it then apears to tend toward a 
steady value. The gray region in figure 3a represents the total tip displacement envelope of each 
cantilever and the peak flutter amplitude is shown in figure 3b. Figures 3c-d  show trends in 
voltage and power (respectively) corresponding to the flutter amplitude data given in figure 3b. 
Here, predictions of the updated model clearly agree very well with experimental data, thus 
validating the form of the proposed model given in equations 1 and 2. 
 
In conclusion, this research highlights the discovery and initial modeling efforts of a flow-
induced vibration phenomenon called dual cantilever flutter. A novel energy harvesting concept 
that takes advantage of DCF dynamics was also experimentally proven and successfully 
modeled using a lumped parameter approach. Results presented here have provided motivation 
to perform a more in-depth analysis of DCF and the proposed model. A primary goal of 
immediate future studies is to reveal the physical significance behind the fluid coupling and 
excitation terms and to determine the exact cause of this unique flow-induced vibration 
phenomenon. A deeper understanding of DCF dynamics will not only help maximize the 
efficiency of DCF energy harvesters, but may also help engineers avoid unwanted and 
potentially dangerous vibrations caused by DCF. 

 
The authors would like to extend sincere acknowledgments to The University of Michigan, 
College of Engineering for financially supporting this work. 
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Abstract 

The use of negative structures in modelling cavities was discussed in previous symposia [1-3]. 

A formal proof that the use of negative structures to remove corresponding positive structural 

components in calculating natural frequencies has been established for discrete systems. This 

approach introduces extra spurious modes and methods of identifying and eliminating these 

modes have also been studied for the same. However, a corresponding proof for continuous 

systems, and its application poses some challenges. The focus of this paper is on these 

challenges. 

To start with, let us consider a discrete n degree of freedom vibratory system A, which when 

connected to another m dof discrete system C
+
 subject to r constraints that connect A and C

+
 

results in an n+m-r dof system B. See Figure 1. 

Figure 1 

System B’ 

System A 

System C
+
 

System B 

+ 
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Here, the connection constraints are such that each of the corresponding pairs of r degrees of 

freedom of A and C
+
 vibrate together.  The constraint conditions may be written as 

 ,        

 (1) 

Where  are the common degrees of freedom in A and C+.  

There is an implication that . 

Let be the normalised modal matrices of A, B, C respectively.  

Then the ith modes of A, B, C are given by the ith columns of the corresponding matrices and 

are denoted by vectors  respectively. 

Let   etc, be the potential energy of A, B, C+ expressed in terms of 

assumed displacement vector forms ,  respectively. The displacement forms are 

obtained from a liner combination of sets of admissible vectors which have the 

same length as the corresponding number of dofs. 

i.e.     (2a,b,c) 

Similarly the kinetic energy functions of A, B, C
+
 are . 

The energy terms of a negative structure C
-
 are simply negative of their positive counterparts. 

i.e. ;       (3a,b) 

For discrete systems, the exact frequencies may be readily obtained by minimising the Rayleigh 

coefficients in terms of an assumed form. For example, for A, an assumed form of displacement 

 formed by the admissible functions  will give the natural frequencies and modes of A 

using the Rayleigh-Ritz Method (RRM), if the functions  are independent, and the number 

of admissible functions is equal to the number of degrees of freedom.  

In terms of the exact modes, the ith eigenvalue (the square of the natural frequency) of A is [4] 

           (4a) 

But from Rayleigh’s Principle, the ith eigenvalue of A is also given by  

 |       (4b) 

Now consider the combination of A and C
+
, without the connections (see Figure 1), which for 

convenience may be labelled . 

             

(5) 

In , it is possible for one of the constituting structures to vibrate in a natural mode while the 

other remains stationary. Therefore, the eigensolutions of  are combination of the 

eigensolutions of A and C
+
. 

|      (6) 

But | eq.(1)         

 (7) 

 |     (8) 

Here, denote the union of admissible forms for A and C
+
 and  denotes the jth mode from 

the union of the sets of modes of A and C
+
. 

Since all possible degrees of freedom have been included in the chosen set of admissible forms 

and the constraint conditions (1) are enforced, eq. (8) gives the exact natural frequencies of B. 

Thus the natural frequencies of B may be obtained by using the admissible displacement forms 

for A and C
+
 in the RRM.  

Now let us consider systems A, B and C as discretised models of continuous systems  

with numbers of dofs that are of interest (let us refer to these as “significant degrees of 

freedom”) being n, m and n+m-r respectively. It is noted here that in order to get accurate modal 

32



values for these displacements, additional degrees of freedom may have to be introduced in the 

models, such that the required natural frequencies and modes of all these systems are correct to 

the desired degree of accuracy. Therefore, for all practical purposes, the discretised models with 

the significant degrees of freedom can be used instead of the actual system. The significant dofs 

correspond to displacements (translations or rotations) at specified locations. The question then 

arises as to how to relate this to a typical Rayleigh-Ritz analysis of a continuous systems.  

Let the actual number of degrees of freedom needed to obtain results with any desired level of 

convergence be nB and nC for systems B and C, where nB>> n+m-r and nC>> m.   

Then a linear combination of admissible functions  for i=1,2.. nB and  for j=1,2.. nC will 

yield independent coordinate values for all of the required number of independent degrees of 

freedom. This proves that the application of the Rayleigh Ritz Method to an assembly of 

structures based on the admissible functions for the component structures with the application of 

relevant connection constraints will yield the natural frequencies and modes of the assembled 

structure. 

The proof above is applicable for any Rayleigh-Ritz model of continuous systems consisting of 

positive structures. If this argument is valid for combining positive and negative structures, we 

could then also infer that the natural frequencies of A could be obtained by combining the 

modes of B and C
-
 in a Rayleigh-Ritz procedure subject to continuity constraints at the 

interface/boundary. This would prove to be useful because the natural frequencies and modes of 

negative structures are identical to those of their positive counterparts because both kinetic 

energy function and potential energy for the negative structures are equal and opposite to their 

positive counterparts as given in eq. (3). However, it is not clear whether the Rayleigh’s 

theorem of separation is applicable for negative structures. Currently work is in progress to find 

a proof that is applicable for assembling negative and positive structures. 

. 
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Abstract 

The inverse problem of structural damage identification involves confirmation of damage 

occurrence, estimation of damage severity and identification of its location. When identifying 

damage through changes in the modal parameters of the structure, the first two stages are 

limited by the sensitivity of the equipment used, but having confirmed the existence of damage 

comes the natural question of where it is necessary to carry out inspections and remedial action. 

 

As is explained in [5], natural frequencies ratio of cracked frame structures  can be 

estimated accurately and efficiently using a dynamic stiffness approach. Comparison of these 

numerical results with natural frequency measurements enables predictions to be made of the 

most likely places where a detected damage is located. By separating the effects of damage 

severity,  and location  it is possible to determine a normalised vector of damage 

 at different positions through the frame following these basic equations: 

 

. 
(1)  

. 

(2)  

 

Each normalised vector has unit magnitude and is a function of damage location but is 

independent of the severity, having a specific number of elements related to the number of 

natural frequencies that can be measured. 

 

In order to improve the prediction when other effects additional to the damage occurs, it is 

paramount to identify and eliminate them. It is known and mentioned in [7] that temperature 

changes in restricted structures produce additional axial forces which provoke a decrease in the 

frequency of vibration. These changes give a high degree of uncertainty to the damage 

prediction because they are of the same order of magnitude as those expected due to the 

damage. Usually the temperature is treated as noise and is eliminated. However in this work the 

changes due to temperature are identified and used as known values to assist the localization of 

the crack in the structure. 

 

The procedure uses the dynamic stiffness matrix with the approximations to the dynamic 

stability functions proposed by Doyle [2]. The linear form is obtained from the exact 

transcendental expressions using MacClaurin series to maintain the low order terms. As a result 

the transcendental dynamic stiffness matrix is replaced by the linear sum of three matrices 
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which contain separately the terms involving rigidity, inertia and load making it possible to 

calculate approximate natural frequencies or axial load factors. 

 

The dynamic stiffness matrix has to include the additional force produced by the temperature 

rise in the restrained beam and there is a consequent diminution in the natural frequencies. 

When axially loaded beams are analysed, Galef [3] noted a proximity to linear behaviour 

whereby a straight line relationship is expressed between frequency squared and axial load. The 

accuracy of this is evaluated in this paper in intervals where the linear behaviour is lost, i.e. 

when the axial load is almost zero or approaches the critical buckling load in accordance with 

the results of Bokaian [1], in order to provide a simple prediction of the effect of axial load on 

the natural frequencies and thus concentrate only on the changes that may be caused by damage 

and identify the possible location of them. 

 

One of the advantages of using the transcendental dynamic stability functions is that they satisfy 

the partial differential equation governing the flexural motion of Euler–Bernoulli beams exactly. 

This form of the dynamic stiffness matrix makes it possible to add into each degree of freedom 

spring-mass systems that could represent the local flexibility generated by cracks, allowing 

treatment of problems of multi-cracked structures when one or all of the members carries axial 

loads. When using these functions in the dynamic stiffness matrix, for example to determine the 

natural frequencies of a complex beam system, exact results can be obtained with certainty by 

solving the resultant transcendental eigenproblem using an algorithm devised by [6]. 

 

Sample results for a clamped beam using Doyle’s approximation are given in Table 1 and the 

variation of the natural frequency with the location of the spring is shown in Figure 1.  

 

Table 1. Effect of single crack position on the first natural frequency of a clamped beam for 

various axial loads. 

0.05 0.1 0.15 0.8 0.85 0.9 0.95

0.01 4.57271 4.51444 4.45383 3.23339 3.05795 2.84575 2.57142

0.05 4.75926 4.69862 4.63554 3.36531 3.18271 2.96184 2.67633

0.10 4.96859 4.90528 4.83942 3.51332 3.32270 3.09212 2.79404

0.20 5.00160 4.93788 4.87158 3.53667 3.34477 3.11266 2.81261

0.25 4.76088 4.70022 4.63712 3.36645 3.18379 2.96285 2.67724

0.49 3.72440 3.67694 3.62758 2.63355 2.49065 2.31782 2.09438

0.50 3.72242 3.67499 3.62565 2.63215 2.48933 2.31658 2.09327

0.51 3.72440 3.67694 3.62758 2.63355 2.49065 2.31782 2.09438

0.75 4.76088 4.70022 4.63712 3.36645 3.18379 2.96285 2.67724

0.80 5.00160 4.93788 4.87158 3.53667 3.34477 3.11266 2.81261

0.90 4.96859 4.90528 4.83942 3.51332 3.32270 3.09212 2.79404

0.95 4.75926 4.69862 4.63554 3.36531 3.18271 2.96184 2.67633

0.99 4.57271 4.51444 4.45383 3.23339 3.05795 2.84575 2.57142

P/Pc
La (m)

Clamped Beam (k=325kN/rad)

 
 

When comparing data, the results indicate a similar pattern between axial load and damage 

severity comproved with the graph obtained using dynamic stiffness matrix and results 

presented in [4]. 
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Figure 1. Effect of single crack position on the first natural frequency of a clamped beam for 

various axial loads (0 to 90 percentage of critical load). 

The modified dynamic stiffness matrix is applied to structures composed of beam-column 

elements, specifically to multi-cracked beams where the cracks are modelled as rotational 

springs whose rigidity is determined by factors derived from fracture mechanics. A study of the 

differences in the modal parameters between the exact and the approximated matrices brings a 

useful perspective on the effectiveness of the latter and its future application to the identification 

of multiple damage in structures which are also exposed to temperature changes. 

 
The symposium presentation will include experimental results from a planar frame with elements 

restricted axially and imposed to temperature changes. 
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Abstract 

Recently, technology of micro electro-mechanical systems (MEMS) has been developed 
drastically. In such devices, lightweight thin elements such as plates and beams are widely 
utilized. In practical applications, the boundaries of the plates and beams are often constrained 
elastically by other elastic structures. Furthermore, concentrated masses might be added at an 
arbitrary position on the elements or the boundaries of which in-plane or axial inertia would 
cause drastic change in nonlinear responses. Therefore, in this paper, analytical results are 
presented on coupled vibrations in lateral and axial directions of a post-buckled beam with 
concentrated masses. In the analysis, the beam is divided into a few segments. The deflection of 
the beam is expanded with the mode shape function proposed by the senior author that is 
expressed with the product of truncated power series and trigonometric functions. Taking the 
axial displacements, the deflections, slopes, bending moments and shearing forces at the nodes 
of the segments as unknown variables, nonlinear coupled ordinary differential equations are 
derived with the Galerkin procedure, which enables the nonlinear analysis considering the axial 
inertia of concentrated masses and a mass at the end of the beam. 
 
Figure 1 shows the analytical model of the post-buckled clamped beam elastically constrained at 
an end. We introduce the x and z axes along the axial and lateral directions of the beam, 
respectively. The origin is taken at the fixed end of the beam.  The symbols L and K denote the 
length of the beam and the spring constant of the axial spring, respectively. The beam is divided 
into N segments as shown in the figure. The beam has concentrated masses M1, M2…, MN at the 
nodes of segments. The local coordinate in the n-th segment xn is introduced which spans from 
xn =-1/2 to xn =1/2. The length, mass density, Young’s modulus, area and moment of a cross  

         
 

Figure 1. Analytical model of the beam. 
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section of the n-th segment are expressed by ln, ρn, En, An and In, respectively. The beam is 
subjected to the static and periodic acceleration as+adcosΩt. The deflection and axial 
displacement of the beam is expressed as W(x,t) and U(x,t), respectively. The beam is buckled 
with the initial axial displacement of the axial spring U0. For sufficiently thin beams, the axial 
inertia of beam itself, rotational inertia and shearing deformation can be neglected. The non-
dimensional governing equation of the vibrations of the beam is expressed as follow, with the 
Hamilton’s principle. 
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In the above equation, dn is defined as dn =L/ ln, the symbols wn, un, u0, nxn, sxn, mxn and qxn are 
non-dimensional deflection, axial displacement, initial axial displacement, axial force, slope, 
bending moment and shearing force, respectively. Non-dimensional lateral acceleration is 
denoted by p=ps+pdcosωτ, ω and τ are non-dimensional excitation frequency and time, k, βn and 
Γ are the non-dimensional axial spring constant, the concentrated mass and the slender ratio of 
the beam. A vector {wen} that consists of nodal variables wn, sxn, mxn and qxn at the both nodes of 
the n-th segment is introduced, then the deflection wn in the n-th segment is expressed with the 
coordinate function {ζn}, following the similar manner of the finite element procedure. 
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In the above equations, {Zn}  is a vector composed of the mode shape function Zni that is the 
product of truncated power series and trigonometric functions, [Zn] is a 8×8 matrix consists of 
Zni and its first, second and third order derivatives, [Dn] is a 8×8 matrix consists of parameters of 
the n-th segment. Introducing the global nodal vector {b̂}  which includes the axial displacement 
u[n] at the all nodes as well as the nodal vector {wen} of the all segments, and applying the 
Galerkin procedure, Equation (1) is reduced to a set of ordinary differential equations as follows.  
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      (3) 

Neglecting the time variant terms, static deflection due to the static lateral acceleration and the 
axial initial displacements is obtained. Next, the ordinary differential equation is transformed to 
the equation in terms of the dynamic variable !bj  which is measured from the static equilibrium 

position. Furthermore, the ordinary differential equations are transformed to the standard form 
in terms of normal coordinates bi corresponding to the linear natural modes of vibration !! j at the 

static equilibrium position of the beam as follows. 
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In the above equation, modal damping ratio ηi is introduced. Dynamic responses can be 
calculated with the harmonic balance method and the numerical integration. 
 
Analysis is conducted for a uniform beam. The beam is divided into two segments. Parameters 
are selected following the previous experiment [1] by the authors as follows.  

 ! = 6.05"10#4, u0 = #6600, ps = 271, k = 7.95"10
#3

                                                                    (5) 
The deflection is measured at ξ=0.3. Damping ratios for the each mode are ηi=0.008 for the 
modes ωi<500 and ηi=0 for the modes ωi>500. First, the nonlinear frequency response curves 
are calculated for the sufficiently small concentrated mass β1= β2=1.0×10-3 to compare with the 
previous analytical results [2] by the authors which neglected the axial inertia force. Figure 2(a) 
shows the nonlinear response curves calculated by the proposed method (which is indicated by 
FSA (=finite segment analysis) in the figure) and by the previous results. Although the 
maximum amplitudes are different in the proposed and previous method, quite good agreement 
is obtained in the nonlinear characteristics of a softening-and-hardening spring in the response 
curves in the both results. Effects of a concentrated mass on the nonlinear response curves are 
investigated comparing the two results of different concentrated mass at the center of the beam, 
i.e., β1=0.1,  β2=2.46 and β1=0.5,  β2=2.46. Figure 2(b) shows the nonlinear response curves 
under the two conditions. By increasing the concentrated mass at the center, the amplitude of 
lateral periodic force increases and the natural frequency of the beam decreases, then the 
amplitude of the fundamental resonance of the lowest mode increases. Figure 2(c) shows the 
nonlinear response curves under two conditions β1=0.1,  β2=2.46 and β1=0.1,  β2=12.3 in which 
the mass at the end is changed. There is not significant difference in the relatively lower 
amplitudes. However, the large-amplitude response with the larger end-mass drastically shifts to 
the lower frequency. This is because the softening-type nonlinearity appears due to the axial 
inertia of the end-mass. Figure 2(d) compares the previous experimental result  [1] and the 
present analytical result under  β1=1.0×10-3,  β2=12.3 of the nonlinear response curves. The 
experimental result is shown with the thin line and the present analytical result is shown with 
the thick line. The previous analytical result [2] neglecting the axial inertia is also shown in the 
figure with the dashed line. It can be found that the analytical result agrees quite well with the 
experiment by considering the axial inertia of the end-mass in the analysis. 

 
Figure 2. Frequency response curves. 
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Abstract 

The existence of natural frequencies and modes of a solid structure on which a negative is 

attached was discussed in [1]. Another paper gave an example of such structures consisting of 

continuous systems, namely beams, to explain this using the Dynamic Stiffness Method [2]. The 

negative beam shares common nodes with the positive beams at its boundary and their internal 

nodes are connected using penalty springs (Figure 1a). It has been shown that the natural 

frequencies and modes of the actual structure can be obtained regardless of the internal spring 

stiffness when the displacements of the positive and negative beams are equal. In this paper, 

some results for the natural frequencies and modes of the above structure obtained without the 

internal connection between the positive and negative structures are given. We also present 

results for another case where the negative beam is connected to the positive beams using large 

stiffness springs at its boundary (Figure 1b). 

 

Figure 1. (a) Original structure [o] linked to positive [p] and negative [n] structures attached by 

springs [s] and sharing common nodes [c], (b) Original structure [o] linked to positive [p] and 

negative [n] structures attached by springs at boundary only [sc],  

 

The dynamic stiffness matrix and displacement vectors for the system shown in Figure 1a is 

given as [2],  

 

(

 

𝐊𝑜𝑜 𝟎 𝟎 𝐊𝑜𝑐
𝟎 𝐤11 + 𝐒 −𝐒 𝐤1𝑐
𝟎 −𝐒 −𝐤11 + 𝐒 −𝐤1𝑐
𝐊𝑜𝑐
T 𝐤1𝑐

T −𝐤1𝑐
T 𝐊𝑐𝑐 )

 (

𝐝𝑜
𝐝𝑝
𝐝𝑛
𝐝𝑐

) =   (

𝟎
𝟎
𝟎
𝟎

)                               (1) 

 

The subscripts o, p, n and c denotes that the internal nodes of original structure, positive and 

negative beams, and common nodes respectively. The submatrix S is a diagonal matrix of 

spring stiffnesses, however, it is possible to obtain the natural frequencies of the original 

o 

[o] 

o c c 

[sc] 

p 

[n] nc nc n
 

(b) 

[o] 

o o c c 

[s] 

p 

[n] c c n
 

(a) 
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structure without them. The dynamic stiffness equations for the system shown in Figure 1b can 

be written as follows. 

 

(

  
 

𝐊𝑜𝑜 𝟎 𝟎 𝐊𝑜𝑐 𝟎
𝟎 𝐤11 𝟎 𝐤1𝑐 𝟎
𝟎 𝟎 −𝐤11 𝟎 −𝐤1𝑐
𝐊𝑜𝑐
T 𝐤1𝑐

T 𝟎 𝐊𝑐𝑐+𝐤𝑐𝑐 + 𝐒𝒄 −𝐒𝒄
𝟎 𝟎 −𝐤1𝑐

T −𝐒𝒄 −𝐤𝑐𝑐 + 𝐒𝒄)

  
 

(

 
 

𝐝𝑜
𝐝𝑝
𝐝𝑛
𝐝𝑐
𝐝𝑛𝑐)

 
 
 =   

(

 
 

𝟎
𝟎
𝟎
𝟎
𝟎)

 
 
                   (2) 

 

where the subscript nc denotes for the boundary nodes of the negative beam and Sc is the matrix 

of connecting springs at the boundary. The matrix Sc is includes terms for the lateral and 

rotational springs, which means that the differences of the lateral and rotational displacements 

between the positive and negative beams will asymptotically vanish if the stiffness approaches 

infinity. 

 

The natural frequencies are obtained using the Wittrick-Williams (W-W) algorithm. Technically 

speaking, in order to apply the W-W algorithm the dynamic stiffness matrix with a very low 

trial frequency, e.g. nearly zero, should not have any negatives along its diagonal after the 

Gaussian elimination. However, in the present case it may include negative terms even with a 

very low trial frequency as the negative structure is attached. Therefore, only the change in the 

number of negative signs is focused. When a trial frequency changes the number of negative 

signs, the distance of the determinants from the zero line for the previous two trial frequencies 

are examined to delimit the natural frequencies [3].    

 

The natural frequency parameters of the original structure for the first three modes are presented 

in Table 1 for four cases where; (1) the positive and negative beams share common nodes and 

are connected with internal spring connection, (2) the two beams share common nodes only and 

no internal connection, and (3) the negative beam is connected using the positive penalty 

springs and (4) the negative penalty springs at boundary only. The each mode has coincident 

frequencies since the original system is structurally symmetric, i.e. two identical cantilever 

beams attached on the left and right walls. 

 

Table 1. The natural frequency parameter of the original structure, 

Ω = 𝑙√𝜔2𝑚/𝐸𝐼
4

, where l is the length of the resultant cantilever beam. 

Mode 
Ω 

(1) (2) (3) (4) 

1
st
 

1.8752 1.8752 1.8752 1.8752 

1.8752 1.8752 1.8752 1.8752 

2
nd

 
4.6943 4.6943 4.6943 4.6943 

4.6943 4.6943 4.6943 4.6943 

3
rd

 
7.8547 7.8547 7.8528 7.8547 

7.8547 7.8547 7.8547 7.8547 

 

As can been seen from Table 1, the natural frequency parameters for the cases (1) and (2) are 

identical. This proves that the natural frequencies of the original structure can be obtained 

without the internal connection between the positive and negative beams and the connection 

only at the boundary of the negative beam is sufficient. The values for first and second modes of 

the case (3) are the same as the cases (1) and (2), however, for the third mode, one of the 
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frequency parameters is slightly less than the others. This may be caused by a numerical round-

off error due to the large stiffness of the spring connecting at the boundary. The case (4) gives 

the same result as the cases (1) and (2). This implies that the negative penalty parameter gives 

more stable results for the natural frequencies than the positive penalty parameter does. 

 

In reference [2], it is suggested that the systems shown in Figure 1 may have additional spurious 

eigenvalues that are given by the Equation (3).  

 

|𝐤11| = 0                                                                        (3) 
 

They are the eigenvalues of the negative beam when its ends are fixed, as well as the counter-

part of positive beam, where the negative beam is attached, with fix ends. By examining the 

graph of the determinant of Equations (1) and (2), it appears that the determinant has coincident 

roots at the spurious frequencies, which are the frequencies of fixed beam with the same length 

as the negative beam for the present case. However, there is no change in the number of 

negative signs along the diagonal at the spurious frequencies. The reason of that may be 

considered in following way. Equation (3) is the eigenvalue equation of the fix-ends negative 

beam as well as the positive counter-part. They are identical in values but in sign. If the sign 

change occurs for the negative beam the opposite sign change should happen for the positive 

beam because they have the same natural frequencies. Equations (1) and (2) include both the 

positive and negative parts, and therefore, if the above sign changes happen at the spurious 

frequencies the total sign change is effectively zero. This is also observed during the numerical 

experiment. The second and third rows of Equations (1) and (2) change the sign at the spurious 

frequencies but the others. 

 

The natural frequencies of the system including the positive and negative structures are obtained 

using the Dynamic Stiffness Method. The negative structure needs to be connected at its 

boundary only. This has been shown using the example of connecting beams. The above 

argument may also be valid for thin plate problems.  
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Abstract 

The purpose of this paper is to present a procedure to solve for the natural frequencies and 

modes of vibration of submerged structures. The procedure uses the Rayleigh-Ritz method to 

get the in vacuo solution and then uses the modes of vibration to get the influence of the fluid, 

also known as added mass, in the vibration of submerged structures in an infinite and inviscid 

fluid. The added mass is calculated using the boundary element method using the procedure 

described by Antoniadis and Kanarachos [1]. A similar approached but using the finite element 

method to obtain the in vacuo solution was presented by Monterrubio and Krysl in [2]. 

The results presented here are for a cantilever thin plate of sides a  and b  along axes x ,  and 

y ; thickness h  in the direction of the z  axis; Young’s Modulus E ; Poisson’s ratio  and 

density  . The Rayleigh-Ritz method is an energy method, consisting in the minimization of 

the strain energy of bending and twisting maxV  and kinetic energy function 
maxT according to the 

Kirchhoff plate theory are defined as 

 
2 2

2 2 2 2 2

max 2 2 2 20 0

1
2 1

2

a b W W W W W
V D dxdy

y xx x x y


                  
           

  , (1) 

2

max
0 02

a bh
T W dxdy


   ,        (2) 

where D  is the flexural rigidity of the plates 3 2/ 12(1 )D Eh   ,  ,W x y  is the deflection 

shape of the plate defined as  

     
1 1

,
n n

ij i j

i j

W x y a x y 
 

 ,       (3) 

where ija  are unknown coefficients while  i x  and  j y  are the sets of admissible 

functions in the x  and 
y

 directions defined as  

  i

i x x     if   1,2 and 3i 
 
   (4a) 

   cos 3i x i x      if   4,5,6, ,i n    (4b) 

  j

j y y     if   1,2 and 3j 
  
   (4c) 

   cos 3j y j y    if   4,5,6, ,j n ,     (4d) 

where n  is the number of admissible functions in each direction. 
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This set of admissible function models an unconstrained plate and artificial translational and 

rotational springs are used to model constraints. Thus the strain energy of the springs has to be 

added to the strain energy of plate. The main characteristics of the set of admissible functions 

presented in Equation [4] are a) a large number of functions can be used in the analysis, which 

allows to model many constraints to through the use of artificial springs and b) results converge 

fast with respect to the number of terms even when artificial springs are used to model 

constraints. The introduction of each constraint using artificial springs leads to the loss of a 

degree of freedom and an eigenvalue converges towards infinity as the value of the artificial 

spring increases towards infinity. Thus the last eigenvector and natural frequency can be 

disregarded from the results. 

 

The minimization of the strain an energy terms give the stiffness matrix K  and mass matrix M  

of the plate gives a generalized eigenproblem from which it is possible to solve for the natural 

frequencies and modes of vibration 
2 Ka Ma 0         (5) 

Once the in vacuo solution is obtained the modes can be used to calculate the pressure modes, 

solving the set of potential (Laplacian) problems as defined in [1]. The potential (Laplace) 

equation for the inviscid fluid domain is 

0P ,         (6) 

where P  is the modal amplitude of the fluid pressure. The structure coupling effect at the 

common fluid-structure surface is 

nU  F

2np / ,        (7) 

where np  /  is the normal derivative of the pressure, F  is the density of the fluid, U  is the 

modal amplitude of the structural displacements and n  is the unit normal.  

 

The solution of the Laplace equations is obtained using the boundary element method with N  

flat boundary elements iE  to discretize the surface of the structure D , together with the point 

collocation technique as described in the work by Pozrikidis [3]. To compute the pressure 

modes f  the following discretized integral equation is applied at the mid-point of each 

boundary element, denoted by 
M

jx , where Nj ,1 : 

              
















N

i

PV

E

M

ji

N

i E

M

j

i

M

j

ii

dSGfdSG
n

f
f

11

22 xxxxnxxxx ,, ,   (8) 

where x  is a vector defining the location of the variable “field point”, 0x is the fixed location of 

the singular “point” and G  is the free-space Green´s function in three dimension’s for the 

Laplace equation 

 
r

G
4

1
0 xx, ,        (9) 

 where 0xx r .  

Once the pressure modes are calculated it is possible to compute the terms of the added mass 

matrix *
M   as follows: 

*

Fij i j

D

dD M Ψ f n ,        (10) 

Where iΨ  are the modes of vibration obtained from the eigenvectors of the dry solution and the 

set of admissible functions. The natural frequencies of the wet structure are obtained solving the 

generalized eigenproblem 
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 2 2 *  Ω c I M c 0 ,                (11) 

where Ω  is a diagonal matrix containing the dry eigenvalues and I  is an identity matrix. It is 

worth noting that the solution of the eigenvalue problem (11) yields the multipliers of the 

expansion of the solution for the solid 
i i iu c Ψ . 

Results given below with the present approach were obtained using 30 terms in each of the sets 

of admissible functions in the x  and y   directions. Table 1 shows the natural frequencies of a 

square clamped plate of length and width equal to 10m; height 0.238 m; density 7830 m
3
; 

Young’s modulus 206.8 GPa and Poisson’s ratio 0.3. The density of the fluid (water) was 

considered to be 1000 kg/m
3
. In general results are close to previous publications by Ergin and 

Ugurlu [4] and by Fu and Price [5]. 

 

Table 1. Natural Frequencies of a cantilever square plate in vacuo 

Mode Present COMSOL [4] [5] 

 Hz Hz Hz Hz 

1 2.0410 2.0435 2.04 2.06 

2 5.0015 4.9768 4.98 5.05 

3 12.515 12.498 12.48 12.70 

4 15.992 15.909 15.82 16.10 

5 18.201 18.088 18.04 18.40 

 
Table 2. Natural Frequencies of a cantilever square plate submerged in water 

Mode Present COMSOL [4] [5] 

 Hz Hz Hz Hz 

1 1.1359  1.1682 1.17 1.17 

2 3.3499     3.3009 3.28 3.22 

3 8.1616     7.8416 8.00 8.03 

4 11.3996    11.0883 11.07 11.21 

5 12.8706    12.5669 12.58 12.55 
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Introduction 

A layerwise optimization (LO) approach was previously proposed by the author for the lay-up 
optimization problem of laminated composites [1], and has been applied to many applications 
[2,3]. This optimization process is independent of the analytical process, where various 
structural analysis methods, including semi-analytical Ritz method, self-made FEM and 
commercial FEM, are accommodated. Generally speaking in the lay-up design problems, it is 
typically seen that they cause rapid increase in computation time due to searching optimum 
solutions in the multi-dimensional space, when design variables are taken to be the fiber 
orientation angles directly in all layers. The LO makes it possible, however, that this multi-
dimensional optimization problem can be reduced into only a finite times repetition of one-
dimensional search. But at the same time, it has disadvantages that LO algorithm is occasionally 
trapped in local solutions, and the improvement of the object functions is quite slow when the 
fiber orientation angles are searched in inner layers.  

Layerwise optimization for vibration of laminated composite plates 

Free vibration of symmetrically laminated plates is governed in the classical theory by  

( )
4 4 4

11 12 66 224 2 2 42 2w w wD D D D
x x y y

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

4 4 2
2

16 263 3 24 4 0w w wD D
x y x y t

ρω∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂ ∂
         (1) 

where Dij (i,j=1,2,6) are the bending stiffnesses of the symmetric laminate defined by 

( ) ( )3 3
1

1

2 3
N

( k )
ij k kij

k

D / Q z z −
=

= −∑ . The ( k )
ijQ  are elastic constants in the k-th layer obtained from the 

orthotropic material constants and fiber orientation angles in the layers. Solving Eq.(1) is 
reduced to an eigenvalue problem, where the natural frequency ω is written as a parameter 
Ω=ωa2(ρh/D0)1/2 with a reference stiffness D0=Eth3/12(1－ν12ν21). It is easily recognizable from 
Eq.(1) that the values of natural frequency ω are significantly dependent on the bending 
stiffness Dij that are proportional to the cube of thickness coordinate  z. 
 
In the present optimization, the frequency parameter Ω1 for the fundamental mode is used (but 
not limited to) as the object function and is maximized. The design variables are taken to be a 
set of fiber orientation angles in the layers of the upper (lower) half of the cross-section [θ1/ 
θ2/…/ θN]S, where θk is the fiber orientation angle in the k-th layer (k=1:outermost, k=N: 
innermost). The LO attempts to avoid the computational problem by making use of physical 
observation, and the next assumption in optimization is proposed in the algorithm:  
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The optimum stacking sequence [θ1/ θ2/…/ θN]S,opt for the maximum natural frequency of 
laminated plates can be determined sequentially in the order from the outermost to the 
innermost layer. 
 

Table 1  Layerwise optimization for symmetric 8-layer square plate (CSFF, Δθ=5°) 
 

[θ1 /θ2 /θ3 /θ4 ]s Ω1 [θ1 /θ2 /θ3 /θ4 ]s Ω1 

 
1st  iteration  cycle solutions 

  
2 nd iteration  cycle solutions  

Step 0 [*/*/*/*]s - Step 0 [10/- 40/30/25 ]s 16.04  

Step 1 [10/*/*/*]s 11.98  Step 1 [20/- 40/30/25 ]s 16.36  

Step 2 [10/- 40/*/*]s 14.75  Step 2 [20/- 45/30/25 ]s 16.38  

Step 3 [10/-40/30/*]s 15.89  Step 3 [20/- 45/20/25 ]s 16.40  

Step 4 [10/-40/30/25]s 16.04  Step 4 [20/- 45/20/25 ]s 16.40  

3 rd iteration cycle  (same as 2 nd) 
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(a) Variation of sensitivity, ∂(Dij/D0)/∂θ1, versus θ1 (outermost layer) 
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(b) Variation of sensitivity, ∂(Dij/D0)/∂θ4, versus θ4 (innermost) 

 
Fig.1 Sensitivity variations versus fiber orientation angles in the 1st iteration cycle (Table 1). 
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Drawback of Simple LO (SLO) 

Here a traditionally used LO is named as Simple LO (SLO). It has been successfully used in 
many papers. One example is shown in Table.1, where the fundamental frequency is maximized 
with [θ1/θ2/θ3/θ4]S for an eight-layer square plate with Clamp-Simple support-Free-Free edges. 
Figure1 presents variations of sensitivity (first derivative) of Dij with respect to (a) outermost 
layer θ1 and (b) innermost layer θ4. It is clearly seen that the innermost layer does not affect the 
stiffnesses in the optimization process. 

Introduction of Layer Dominance Ratio (LDR) 

As seen in previous example, inner layers (most significantly, innermost layer) contribute little 
to improvement of the objective function, and therefore small angle increment (e.g., Δθ=5°) in 
inner layers is meaningless in the optimization. Since the bending stiffness Dij is proportional to 
the cube of thickness, and the effect of the angle can be considered to be proportional to the 
value of L(i)=(2/h)3(zi

3-zi-1
3) (i: layer number), which may be called Layer Dominance Ratio 

(LDR). In the case of symmetric 8 layer plate, these values are  L(1)=0.578, L(2)=0.297, 
L(3)=0.109 and L(4)=0.016. The sum of all L(i) is one. For example, the outermost layer of a 
symmetric 8-layer plate is more influential than the innermost layer by L(1)/ 
L(4)=0.578/0.016=37 times in the bending stiffness. In an extension of the LO process, LDR is 
used to reduce the number of frequency calculations. When Δθ1=5° is assumed, Δθ2=5°×L(1)/ 
L(2)=9.73° or approximately 10°, and likewise for Δθ3 and Δθ4, may be used to give results with 
almost equivalent accuracy, but with significantly less number of calculations than SLO.    

Use of LDR in random search 

The concept of LDR can be used in other methods of lay-up design problems, and one example 
is to use LDR to decide which layer should be chosen in the random optimization. In the 
numerical experiment for a CSFF square plate, Layerwise Random Search (LRS), that is a 
random search with consideration of LDR, gave almost the same optimum value shown in Table 
1 after only 25 iterations, while purely random search took much longer time. 
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Abstract 
In this paper, the energy localization phenomena in low-frequency nonlinear oscillations 
of single-walled carbon nanotubes (SWNTs) are analysed. The SWNTs dynamics is 
studied in the framework of the Sanders-Koiter shell theory. Simply supported and free 
boundary conditions are considered. The effect of the aspect ratio on the analytical and 
numerical values of the localization threshold is investigated in the nonlinear 
formulation. 
 
1. Introduction 
Carbon nanotubes (CNTs) are used as ultrahigh frequency nano-mechanical resonators 
in a large number of nano-electro-mechanical devices such as sensors, oscillators, 
charge detectors and field emission devices. The reduction of the size and the increment 
of the stiffness of a resonator increase its resonant frequencies and reduce its energy 
consumption, improving therefore its sensitivity. 
The stationary or nonstationary dynamics of CNTs can be treated in terms of linear or 
nonlinear normal modes; in the presence of non-stationary resonance, one assists to 
energy transfer phenomena and formation of wave packets, having a time evolution 
strongly related to the spectral properties. In the nonlinear systems, the wave dispersive 
spreading can be compensated by the nonlinearity. As a result, a soliton mechanism of 
energy transfer in the quasi-one-dimensional nonlinear lattices arises. 
In the present paper, the energy exchange and transition to energy capture in some part 
of the CNT is analysed and explained within the Limiting Phase Trajectory theory [1]. 
Two different approaches are used: 1) a numerical model based on the Sanders-Koiter 
shell theory, solved semi-analytically through a double mixed series expansion for the 
displacement fields; 2) an analytical model based on a reduced form of the shell theory 
assuming small circumferential and tangential shear deformations. 
 
Theory 
The numerical approach is based on the Sanders-Koiter shell theory, the strain and 
kinetic energies are written as [2]: 
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The displacement fields are expanded as follows: 
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where the approximate eigenfunctions are obtained through the Rayleigh-Ritz procedure 
explained in Ref. [2]. The resulting dynamical system is obtained by means of the 
Lagrange equations which are solved numerically. 
It is to note that the present model does not include additional terms in partial 
differential equations (e.g., non-local moment, Eringen’s relation) which allow to 
consider the “size effects”. The reason is that, for the present analysis, focused on low-
frequency and long SWNTs, these effects are marginal. Comparisons with Molecular 
Dynamics simulations confirm that our assumptions are acceptable [3]. 
An alternative approach is based on a reduced form of the Sanders-Koiter linear elastic 
shell theory developed in [2] and extended to the nonlinear field. Since low-frequency 
vibrations of SWNTs are considered in this work, then the elastic strain energy is 
predominantly due to bending, torsion and longitudinal tensions, and therefore we can 
neglect the circumferential and tangential 
shear strains of the middle surface. Due to 
these assumptions, the longitudinal and 
circumferential displacements can be 
expressed via the radial one. Details are 
omitted for the sake of brevity. 
 
Numerical Results 
In Figure 1, the total energy distribution over 
the CNT surface is represented (simply 
supported edges). When the total energy of 
vibration is sufficiently high, then the 
combination of the two modes (1,2) and (2,2) 
results in a strong localization of the total 
energy distribution. This is a nonlinear 
phenomenon as the localization disappears 
when the vibration energy is low enough (or 
the system is linearized). 
The same phenomenon appears in the case of a 
free-free SWNT (modes (0,2) and (1,2)), 
Figure 2. Also in this case the localization 
takes place when the vibration energy is sufficiently high. 
Figure 3 clarifies that an energy threshold exists for the onset of localization. Different 
energy levels are needed for simply supported or free-free SWNTs, the behaviour is 

Figure 1. Energy localization: simply supported 

Figure 2. Energy localization: free-free 
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similar when the aspect ratio is varied, i.e., an asymptotic energy level is found for long 
SWNTs. 
 
a) 

 

b) 
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Figure 3. Localization threshold: a) simply support; b) free-free boundary conditions 

 
 
 
Conclusions 
In this paper, the low-frequency oscillations and energy localization of SWNTs are 
analysed within the framework of the Sanders-Koiter shell theory. The circumferential 
flexure modes are considered. Simply supported and free boundary conditions are 
studied. Two different approaches are compared, based on numerical and analytical 
models. For the free boundary conditions, the energy localization threshold value at the 
horizontal asymptote is lower than the corresponding value for the simply supported 
boundary conditions, since in this particular case the uniform vibrational mode with 
zero longitudinal half-waves loses its stability at a relatively low energy level. 
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Introduction.  The present study is concerned with a general variational method around the 

non-uniform rational B-spline (NURBS) function for modeling arbitrarily shaped piezoelectric 

sandwich plates. The formulation is based on the first order shear deformable plate theory 

according to which the in-plane displacement components vary linearly over the thickness.  The 

nonlinear variation of the electric potential through the piezoelectric medium is accommodated 

by a layer-wise scheme. The non-uniform rational B-spline (NURBS) functions are used to 

define the geometry as well as the unknown field functions. The coupled matrix equations of 

motion are obtained for piezoelectric plates used as sensors and actuators.  Subsequently, these 

are: applied to study the free vibration of circular and elliptic plates and extended further with 

the help of the normal mode summation method to investigate piezoelectric energy harvesters.  

Results for the energy harvesting are not reported in this paper, but will be presented in the 

symposium. 

 

Geometrical representation in NURBS.  The NURBS curve using n control points is written 

as iki pRC )()( ,   , where ikiikiki wNwNR )(/)()( ,,,   and the summation is on 

ni ,....,3,2,1   (Piegel and Tiller, 1997).   The remaining parameters are: ip a vector of the 

control points; iw  the weights; k  the order; and kiN , the components of B-Spline basis 

function of ξ and can be evaluated recursively.  Similarly, a surface patch can be generated 

through the tensor product of the univariate NURBS curves in ξ and η directions and written 

by ijij pRS ),(),(   , where ijp  defines the control net points.  Summations here are 

from 1 to n for i and 1 to m for j respectively. The very basic unit of the plate structure is taken 

to be a sizeable quadrilateral patch bounded by four curved edges as shown in the figure below.  

The edges are defined by either  or of the natural coordinates.  After obtaining the control 

points of the four outer edges, the control net of the patch is developed by interpolating the 

intermediate points between a pair of edges.   

 

Equations for the first order shear deformable piezoelectric plate.  The response field 

functions for the plate vibration are defined by NURBS patch as well.  Thickness h of the plate 

is assumed to be constant and displacement components at an arbitrary point varying 

as 1zuu  , 2zvv  and ww  . Here, u, v and w are displacement components along 

the x, y, and z axes on the mid-plane of the plate. Similarly, 1 and 2 are the components of the 

rotation of the normal to the plate in the x and y directions respectively.  The NURBS surface 

patches are used also to represent individually the mechanical displacement components of the 

vector }{}{ 21 wvuT  .  The number of unknowns for a patch depends on the 

control coefficients chosen along ξ and η directions.  For piezoelectric plate, there is a potential 

function ϕ which varies nonlinearly in the thickness direction. This nonlinear characteristic is 

efficiently dealt with by a layer-wise approach in which the material along the thickness 

direction is discretized into sub-layers and the potential function is assumed to vary linearly in 
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each sub-layer. The Hamilton’s variational principle is used to obtain the following equation 

(Allik and Hughes, 1970).  

 

        )}({)}(]{[)}(]{[)}(]{[)}({][ tFtKtKtCtM mem     and 

          )({)}(]{[)}(]{[ tQtKtK eem    

 
The right hand side contains both mechanical and electrical excitations and can be set to zero for 

the free vibration analysis.  It is performed on the elliptic sandwich plates under clamped and 

simply supported boundary conditions given by 021  wvu and 0 wvu for the 

clamped simply supported boundary conditions. In both cases, the potential function   on the 

exposed piezoelectric layers is assumed to be grounded.   

 

Free vibration of circular and elliptic sandwich plates.  The plate is composed of a steel 

layer sandwiched by two piezoelectric PZT4 layers. Thicknesses of the top and bottom layers 

are denoted by 1h and 3h respectively and that of the host steel layer in the middle by 2h . The 

geometry of the piezoelectric sandwich plate is varied from a circle to an ellipse by changing 

the ba / ratio.  A 3×3 NURBS patch, each containing 36 control points, is used in the plate 

models.  Values of the first six natural frequencies for the clamped circular plate, with 

2.0/)( 231  hhhh , are presented in Table 1, which also contains results from a study 

reported in the literature by Wang et al. (2001).  Results from the two studies are in very good 

agreement, showing the maximum percentage difference of 0.75 at the sixth mode.  Some new 

results are also reported in Table 1for the elliptic plate with a/b = 1.5, 2 and 3.  The simply 

supported circular (a/b = 1) and elliptic (a/b = 2) plates are also analyzed for the thickness ratios 

1/10, 1/8, and 1/5.  In this case also, the present results are in close agreement with those by 

Wang et al. (2001).  

 

Closing remarks.   The main advantage of the present technique is that it enables one to model 

complex geometric shapes accurately with less number of degrees of freedom. The numerical 

simulation results are successfully corroborated by comparing with the exact closed form 

solution for the free vibration analysis of clamped and simply supported circular plates (Wang et 

al., 2001).  Some new results on the natural frequencies of piezoelectric elliptic sandwich plates 

are generated and reported.  The authors of this paper also applied the NURBS based 

formulation to investigate the piezoelectric power harvesting devices, (Erturk and Inman, 2011).  

They considered cantilevered rectangular and curved edged piezoelectric sandwich plates in 

power harvesting.  The influence of load resistance on the power output and free end 

displacements will be presented. 
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Figure. Quadrilateral middle surface of plate 
 

 

Table 1.  Natural Frequencies of Clamped Sandwich Plate,  2.0h  

 

 

Mode 
1/ ba   

5.1/ ba  

 

2/ ba  

 

3/ ba  Present Wang 

(2001) 

Difference 

(%) 

1  902.51 902.47 0.004 680.06 613.40 567.26 

2 1872.38 1878.17 0.309 1121.53 877.60 710.07 

3 1873.55 - - 1645.34 1240.35 891.83 

4 3063.13 3081.08 0.586 1747.05 1562.46 1113.42 

5 3066.32 - - 2238.11 1704.31 1378.70 

6 3487.05 3513.43 0.757 2550.14 1951.76 1495.37 

 

 

Table 2.  Natural Frequencies of Simply Supported  Sandwich Plate, 

   

 

Mode 
2.0h ,  1/ ba  2/ ba  

Present Wang 

(2001) 

Difference 

(%) 
1.0h  125.0h  2.0h  

1 449.67 462.33 2.185 290.02 292.20 299.47 

2 1241.66 - - 511.86 515.63 528.22 

3 1246.26 1303.26 4.574 827.41 833.44 853.57 

4 2281.06 - - 1006.27 1013.50 1037.67 

5 2292.82 2402.29 4.774 1240.26 1249.21 1279.13 

6 2643.55 2787.56 5.448 1353.29 1362.90 1395.08 
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Introduction

Consideration is given to determining the eigensolution of a class of structures comprising n suit-
ably related parallel columns that are connected to each other, and possibly also to foundations,
by uniformly distributed Winkler interfaces of unequal stiffness. For conciseness, the body of the
work is written in the context of elastic critical buckling. However, since the duality of the eigen-
problem posed by buckling and vibration is well known, the extension to vibration is straightfor-
ward.

Initially the coupled fourth order differential equations that define the system are developed from
first principles and arranged in the form of a generalized symmetric linear eigenvalue problem.
Exact solution of these equations leads to n, uncoupled substitute systems, each of which yields
an infinite number of critical buckling loads that, when arranged in ascending order, comprise the
complete spectrum of critical buckling loads of the original problem. Thus, if only the fundamental
critical buckling load is required, then only one substitute system needs to be solved.

Each substitute system is relatively simple and describes the buckling of a single unified mem-
ber, but supported on a Winkler foundation of different magnitude in each case. However, the
exact solutions required from each substitute system necessitate the closed form solution of a tran-
scendental eigenvalue problem. This is achieved in the present case by utilizing an exact elastic
stiffness matrix in conjunction with the Wittrick-Williams algorithm, which guarantees that any
desired critical buckling load can be calculated to any desired accuracy with the certain knowledge
that none have been missed. The corresponding modes of vibration are then recovered by back
substitution for each substitute system and subsequently related back to the individual members
of the original structure. This approach also enables some of the powerful features of the stiffness
method to be utilized to model more complex structures. A simple example is given to clarify the
approach.

Theory

Figure 1 defines the structural configuration and the positive directions of the member forces and
displacements, from which the equations of vertical and moment equilibrium for typical member
i can be deduced straightforwardly. These are presented with the appropriate constitutive relation-
ship in Equations (1)-(2)

−Qi +(Qi +
dQi

dx
dx)+ kidxVi−1 − (ki + ki−1)dxVi + ki+1dxVi+1 = 0 (1)

Qidx+Mi − (Mi +
dMi

dx
dx)+Pi

dVi

dx
dx = 0 Mi =−EiIi

d2Vi

dx2 (2)
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Figure 1: (a) General structure orientation. ki is a typical Winkler stiffness per unit length.
(b) Positive member forces and displacements relating to an elemental length of typical member i.

Eliminating Qi and Mi and introducing the non-dimensional length parameter ξ = x/L yields

−κi[D4 + pi
2D2]Vi + kiVi−1 − (ki + ki+1)Vi + ki+1Vi+1 = 0 (3)

where

D =
d

dξ
, κi =

EiIi

L4 , pi
2 =

PiL2

EiIi
(4)

The current approach now requires that pi
2 is a constant for each member. i.e. that

pi
2 = p2 (5)

Equation (3) can then be written for a general member as

−kiVi−1 +(ki + ki+1)Vi − ki+1Vi+1 −κiλVi = 0 (6)

where
λ =−[D4 + p2D2] (7)

Hence the corresponding equations for the first (i = 1) and last (i = n) members are, respectively

(k1 + k2)V1 − k2V2 −κ1λV1 = 0 (8)

and
−knVn−1 +(kn + kn+1)Vn −κnλVn = 0 (9)
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A complete set of equations for an n level system can now be assembled from Equations (6), (8)
and (9)




k1 + k2 −k2

. . .
−ki ki + ki+1 −ki+1

. . .
−kn kn + kn+1

−λ


κ1

. . .
κi

. . .
κn






V1
...

Vi
...

Vn

=


0
...
0
...
0

 (10)

where zeros have been omitted for clarity. Equation (10) can therefore be written for any appro-
priate formulation as

(k−λκ)V = 0 (11)

The form of Equation (11) is that of a generalized symmetric linear eigenvalue problem, for which
a number of standard routines are available for calculating the eigenvalues, λ , and corresponding
eigenvectors, V.

Substitute systems

The n values of λ that satisfy the linear eigenvalue problem define a family of second order differ-
ential operators that satisfy the original problem and which are given by Equation (7) as

D4 + p2D2 =−λi i = 1,2, . . . ,n (12)

Equation (12) can be assigned a physical context by noting that it is a property of such differential
operators that they can be written as

[D4 + p2D2]V =−λiV i = 1,2, . . . ,n (13)

and hence that
[D4 + p2D2 +λi]V = 0 i = 1,2, . . . ,n (14)

and V is a typical lateral displacement.

Each of these equations now describe the elastic critical buckling of a single unified member, but
supported on a Winkler foundation of different magnitude in each case. Equation (14) therefore
represent n substitute systems, each of which yields an infinite number of critical buckling loads
that, when arranged in ascending order, comprise the complete spectrum of critical buckling loads
of the original problem. It therefore follows that when only the lowest critical buckling load is re-
quired, it is only necessary to solve the substitute system that contains the lowest linear eigenvalue
obtained from Equations (10) and (11).

In the current context, each substitute system is solved by transforming to a stiffness formulation
in conjunction with the Wittrick-Williams algorithm, the boundary conditions being the single,
identical set imposed on each of the original members.

Example

The simple illustrative problem selected can be envisaged by considering Figure 1(a) as comprising
five simply supported members (n = 5) with ki = κi = k (i = 1,2, . . . ,5) and k6 = 0. The five linear
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eigenvalues and their corresponding eigenvectors that then stem from Equations (10) and (11) are
given in Table 1.

Table 1: Linear eigenvalues and their corresponding eigenvectors.

Vi, j

i λi j = 1 j = 2 j = 3 j = 4 j = 5

1 0.0810 0.2817 0.5406 0.7557 0.9096 0.9898
2 0.6903 0.7557 0.9898 0.5406 −0.2817 −0.9096
3 1.715 0.9898 0.2817 −0.9096 −0.5406 0.7557
4 2.831 0.9096 −0.7557 −0.2817 0.9898 −0.5406
5 3.683 0.5406 −0.9096 0.9898 −0.7557 0.2817

The first three of a possible infinite number of critical buckling load parameters, p2, is then given
in Table 2. Hence, the critical buckling loads in each member can be deduced from Equations (4)
- (5).

Table 2: The first three critical buckling load parameters for each linear eigenvalue. The modal
numbers are given in brackets.

p2 for each λi

m i = 1 i = 2 i = 3 i = 4 i = 5

1 9.8778 (1) 9.9395 (2) 10.043 (3) 10.156 (4) 10.243 (5)
2 39.481 (6) 39.496 (7) 39.522 (8) 39.550 (9) 39.572 (10)
3 88.827 (11) 88.834 (12) 88.846 (13) 88.858 (14) 88.868 (15)

Mode shape recovery

The buckling mode shape of the original members can be recovered by multiplying the substitute
system mode shape by the appropriate element of the appropriate linear eigenvector. Now it is
clear that the substitute system mode shapes for a simply supported member are defined by

V = Asin(mπξ ) m = 1,2, . . . ,∞ (15)

where A is an arbitrary constant.

As an example, consider the eigenvector corresponding to the fourteenth critical load of the orig-
inal structure. It can be seen from Table 2 that this corresponds to p2 = 88.858, with i = 4 and
m = 3. Thus the eigenvector defining the mode shapes of the five original members, top to bottom,
is

Ṽ = AV4, j sin(3πξ ) j = 1,2, . . . ,5 or Ṽ = A


0.9096
−0.7557
−0.2817
0.9898
−0.5406

sin(3πξ ) (16)
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Abstract 

The static equilibrium, stability and dynamics of elastic curved rods subjected to external loads 

are a classical problem in the mechanics. A history of the problem and survey of development 

up to 1993 was given in [1]. Later an important monograph is [2]. It is worthy to indicate that 

lots of papers on the Kichhoff theory of rods have been published since 1900’s because of the 

biological applications of the theory. Moreover, a monograph [3] was published in 2005. 

However in a voluminous literature on rods, no any equation of rods is deduced from the three-

dimensional theory of elasticity. On the contrary, it is indicated by Sanders [4] that Synge and 

Chien [5] developed a theory of shells, which is deduced from the 3D theory of elasticity. 

In fact, the rod theory can not be regarded as the one-dimensional case of the classical theory of 

elasticity. The reason is that there are no rotations as the independent variables in the classical 

theory of elasticity. Erickson and Truesdell [6] and Antman [7,2] indicated that the rod theory 

has to be constructed on the theoretical framework of Cosserat elasticity. 

In the present paper, the Cosserat elasticity is reduced to the one-dimensional form in the 

curvilinear coordinates. Two approximations are assumed. The first is that all the differential 

elements on a cross section have the same curvatures with those of the central line of rods at the 

center of the cross section. The second approximation is the absence of the interaction between 

the longitudinal fibers in rods. In this manner a set of new equations of rods is developed, which 

is formally same to the Kirchhoff equations. 

At an arbitrary point P  on the axis of curved rods, a system of coordinates  1 2 3P x x x  is 

fixed, in which 3x -axis is identified with the axis of rods and 1x , 2x -axes coincide with two 

principal axes of the cross-section of rods, respectively. The 3x -axis is also seen as an arc-

coordinate denoted by s . 

In the Cosserat elasticity, equations of equilibrium of stresses and couple stresses are 

 0j ji it p    (1) 

and  

 0j ji ijk jk im e t q     (2) 

where i  is the covariant derivative with respective to ix -axis. ijt and ijm denote stresses and 

couple stresses, respectively. ip and iq are body forces and body couples, respectively. ijke  is a 

permutation symbol. 
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Consider a deferential element with edges parallel to 1 2 3, ,x x x -axes, respectively, in curved rods. 

It is assumed that there exist only stresses 
3it  and couple stresses 3im  on the element surface 

normal to
3x -axis, and the stresses and couple stresses on the other elements surface vanish: 

 11 12 13 21 22 23 11 12 13 21 22 230 0t t t t t t , m m m m m m             (3) 

A substitution from (3) will simplify (1) and (2). Integrating the simplified equations over the 

cross section of rods leads to  
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 (4) 

where 3i i  , i  is micro rotations, 
3i iF t dA  is the resultant forces acting on the cross 

section of rods with area A ,  3i i iM m dA   is the resultant moments, 1 33 2t x  , 

2 33 1t x    and 3 31 2 32 1t x t x    . 

It is found that the whole set of equations (4) is same to the Kirchhoff equations if the body 

force per unit length of rods iP  and body couple per unit length of rods iQ  are neglected. 

By using (3) the resultant moments can be denoted in terms of curvatures in the form: 

 1 1 1 2 2 2 3 3 3M A , M A , M A      (5) 

A substitution from them into the second row of (4) gives 
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 the(6) 

Now consider inertial forces and inertial moments. Define first the angular velocity of the cross 

section as follows: 

 31 2
1 2 3

DD D
, ,

Dt Dt Dt

 
       (7) 

where D Dt  indicates that 
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 (8) 

in which 
 

3

t

m i  is Christoffel symbol. 

By using    1 2 3s,t = v ,v ,vv = v  to represent the velocity of the point on the axis of rods, the 

inertial force is written as A t  v  and the inertial torque as  J t   , where   is 

density and  1 2 3J diag J ,J ,J  is moments of inertial. 
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By adding A t  v  and  J t    on the right side of (4) and (6), respectively, and then 

expanding them according to (8), the final equations are obtained as 
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and 

 

   

   

   

1 1
1 3 2 2 3 2 1 1 2 3 2 3

2 2
2 1 3 3 1 1 2 2 3 1 3 1

3 3
3 2 1 1 2 3 3 1 2 1 2

A A A F Q J J J
s t

A A A F Q J J J
s t

A A A Q J J J
s t


 


 




 
        

 

 
        

 

 
       

 

 (10) 

Two sets of equations (9) and (10) together are 6 equations for the 12 unkowns 
iF , 

i , iv  and 

i  1 2 3i , , . This demands 6 additional kinematic relations. Fortunately, the kinematic 

relations can be found in literatures. These equations are nonlinear. By using them the finite 

deformation of curved rods can be conveniently described. 
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Professor Ranjan Banerjee 

After receiving his Bachelor's and Master's Degree in Mechanical Engineering from the 

University of Calcutta and the Indian Institute of Technology, Kharagpur, respectively, 

Ranjan Banerjee joined the Structural Engineering Division of the Indian Space Research 

Organisation, Trivandrum in 1971 and worked there for four years, first as a Structural 

Engineer and then as a Senior Structural Engineer. He was involved in the dynamic analysis 

of multistage solid propellant rocket structures using the finite element method. He also 

carried out research on the response of rocket structures to acoustic loads.  Later in the year 

1975 he was awarded a Commonwealth Scholarship to study for a PhD degree at Cranfield 

University where he conducted research within the technical areas of structural dynamics and 

aeroelasticity. He received his PhD in 1978. An important spin-off from his PhD was the 

development of an aeroelastic package in Fortran, called CALFUN (CALculation of Flutter 

speed Using Normal modes) which was originally written for metallic aircraft, but later 

extended to composite aircraft. CALFUN has been extensively used as a teaching and 

research tool in aeroelastic studies. After completing his PhD, he joined the Structural 

Engineering Division of the University of Cardiff in 1979 and worked there for six years first 

as a Research Associate and then as a Senior Research Associate to investigate the free 

vibration and buckling characteristics of space structures using the dynamic stiffness method. 

During this period he worked in close collaboration with NASA, Langley Research Center, 

and he was principally involved in the development of the well-established computer 

program BUNVIS (BUckling or Natural VIbration of Space Frames) which was later used by 

NASA and other organizations to analyse spacecraft structures. He joined City University 

London in 1985 as a Lecturer in Aircraft Structures and he was promoted to Senior Lecturer 

and Reader in 1994 and 1998 respectively. In March 2003 he was promoted to a Personal 

Chair in Structural Dynamics. His main research interests include dynamic stiffness 

formulation, aeroelasticity, unsteady aerodynamics, composite structures, functionally graded 

materials, aircraft design, symbolic computation, free vibration and buckling analysis of 

structures and associated problems in elastodynamics. He has been responsible for 

supervising various research contracts as Principal Investigator, involving EPSRC, American 

Air Force Base, Embraer Aircraft Company, amongst others. To date he has published 102 

journal papers and 90 conference papers from his research. He serves in the Editorial Boards 

of a number of international journals and established conferences and he has been a member 

of the EPSRC Peer Review College since its inception.  He is a Fellow of both the Royal 

Aeronautical Society and the Institution of Structural Engineers in the UK and an Associate 

Fellow of the American Institute of Aeronautics and Astronautics. He teaches the subjects of 

mechanics, strength of materials, aircraft structures, composite materials, computational 

structural mechanics and aeroelasticity, and he has acted as external examiner in five  British 

universities for their undergraduate and postgraduate programmes in aeronautical and 

aerospace engineering.  He is a recipient of the Hind Rattan Award 2015. 
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Università degli Studi di Catania, Italy 

 
 
 
Salvatore 
Caddemi, Ph.D.  

Prof. Salvatore Caddemi is native of Noto (Siracusa), Italy, on 29th of 
November 1960. He received his master degree in Civil Engineering in 1984, 
served as Officer in the Italian Navy until  1986 and obtained his Ph.D. in 
Structural Engineering in 1990, from the University of Palermo.  

His research activity in the period 1988-1991 has been developed at the 
’ ’FRD/UCT Centre for Research in Computational and Applied Mechanics’ ’  
of the University of Cape Town, South Africa, as “Visiting Researcher” and 
“Postdoctoral Research Fellow” contributing to theoretical advances in the 
integration of nonliner plastic constitutive laws and formulating iterative 
procedures for the relevant incremental analysis.  

Prof. Caddemi was appointed Researcher of Mechanics of Materials in July 
1991 at the Department of Structural and Geotechnical Engineering of the 
University of Palermo and was “Visiting Researcher” within the program 
HCM network of the European Community at the Department of Structural 
Engineering and Materials of the Technical University of Denmark in 1996.  

In November 1998 he became associate professor of “Strenght of Materials” 
at the Institute of Structural Engineering of the Engineering Faculty of the 
University of Catania and since 1 october 2001 he is full  professor at the 
Department of Civil  and Architectural Engineering of the University of 
Catania  where he is currently conducting his teaching and research activity.  

His research interest has been oriented to deterministic analysis of elastic-
plastic and no-tension material structures, stochastic dynamic structural 
analysis, structural and damage identification, static and dynamic analysis of 
structures with singularities, seismic vulnerability assessment of masonry 
structures.  

Prof.Caddemi is currently involved in the use of generalised functions for the 
solution of direct and inverse problems of beam-like and frame structure in 
presence of strong discontinuites and singularities. 

 

                         Dipartimento Ingegneria Civile e Architettura, 
Università  degli  Studi  di  Catania,  Viale  Andrea Doria  6,  95128,  Catania,  Italy  

64



Biosketch of Erasmo Carrera. 

 

Erasmo Carrera graduated in Aeronautics in 1986 and in Space Engineering in 1988 at the 
Politecnico di Torino. He obtained a PhD in Aerospace Engineering in 1991. He became Assistant 
professor in 1992, Associate Professor (2000) and Full Professor (2010) at the Politecnico di Torino. 
 
He has been visiting Professor at the Institute of Static and Dynamics of the University 
of Stuttgart , he spent 3 months at the department of Engineering Science and Mechanics of Virginia 
Tech in 1996; 3 months at Supmeca, Paris, in 2006; and 3 months at the Centre of Research Public H 
Tudor (Luxembourg) in the summer of 2009. In 2013 as HiCi Scientist Carrera has been member of 
Distinguished Professors Board at King Abdulaziz University, Jeddah, Saudi Arabia. During 2014 he 
had a joint appointment at School of Aerospace, Mechanical and Manufacturing Engineering at Royal 
Melbourne Institute of Technology of University of Melbourne, Australia. 
 
Carrera has introduced the Reissner Mixed Variational Theorem, RMVT, as a natural extension 
of the Principle of Virtual Displacement to layered structure analysis. Moreover,  he has introduced the 
Unified Formulation, or CUF (Carrera Unified Formulation), as a tool to establish a new framework in 
which to develop theories of beams, plates and shells for metallic and composite multilayered 
structures loaded by mechanical, thermal electrical and magnetic loadings. CUF is of a way to 
enhance to axiomatic and asymptotic approaches in the theory of structures. 
Carrera has been author and coauthor of about 500 papers on the above topics, most of 
which have been published in first rate international journals, including three recent books published 
by J Wiley & Sons.  
 
Dr Carrera has been responsible for various research contracts granted by public and private 
national (including regional ones) and international institutions, such as IVECO, the Italian 
Ministry of Education, the European Community, European Space Agency, Alenia Spazio Thales 

Alenia Space, Regione Piemonte, Embraer (Brasil). Among others he has been responsible for the 

structural design and analysis of full composite aircraft, named Sky-Y, by Alenia Aeronautica Torino, 

the first full-composite UAV made in Europe.  He acts as Coordinator of the H2020 MSCA project 

‘FULLCOMP’. 

Professor Carrera is founder and leader of the MUL2 group at the Politecnico di Torino. 
The MUL2 group is considered one of the most active research team at Politecnico; it has acquired 
a significant international reputation in the field of multilayered structures subjected to 
multifield loadings, see also www.mul2.com.   
Professor Carrera is Highly Cited Researchers (Top 100 Scientist) by Thompson Reuters in 
the two Sections: Engineering and Materials. 
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Sergio De Rosa 
Professor 
Department of Industrial Engineering – Aerospace Section 
University of Naples “Federico II”, Italy 
 

 
Short Bio 
From the beginning of my research activity, I was involved in the engineering fields concerning the structural 
dynamics, the vibroacoustics and the fluid-structure interaction in large sense. 

The thesis work concluded the five-year Italian degree in aerospace engineering in 1998. It was centred on 
the assembling of a predictive vibroacoustic model for the ATR42 fuselage. Large part of that time was 
usefully spent on the pages of vibration of plates and shells. In the same year, I became researcher at the 
Italian Aerospace Research Center, CIRA, where continued my studies in the vibroacoustic fields. 

In 1992, I arrived as researcher at University of Naples “Federico II” at the Department now named Industrial 
Engineering - Aerospace Section: my entire academic career was spent in the Aerospace Structures sector 
under the guide - often controversial - of my friends Leonardo (Lecce) and Francesco (Marulo). In parallel 
with the research activity, I was also guided to the teaching stuff, having from 2001 the full responsibility of 
courses. Since 1990 I was involved in the main research programmes funded by the European Union in the 
aerospace sector.  

The targets of the applied and base research activities were to study numerical and experimental procedures 
and/or tools to be used as predictive methods, all inside the paradigm of increasing complexity. My actual 
research topics are: 

 Models for the structural dynamics and interior acoustics  

o definition of ASMA, Asymptotical Scaled Modal Analysis; 

o definition of SAMSARA, Similitudes and Asymptotical Modelling for Structural Acoustics 

Researches and Applications. 

 Stochastic response of structural and fluid-structural systems under random and convective 

excitations. 

 Convective effect on the acoustic radiated power by structural components. 

 Influence of the uncertainties on the dynamic system response. 

 
I am still convinced that only a full interaction among human beings can promote the knowledge at high 
levels. The research and teaching mechanics can’t be a passive process but requires that all the involved 
persons play something, hopefully with a smile .  

This is the second time for me to be at ISCVS, and I will be very glad to meet agaib some of the persons 
who guided my adventure. Nevertheless, I am (very) lazy researcher but I know to be a loquacious friend, 
being passionate of photography, blogging and micro-blogging, music, modern literature, comics. 

I may say to know many things: all equally bad, obviously. 
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4. H Ding, LQ Chen, SP Yang. Convergence of Galerkin truncation for dynamic response of finite 
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6623–6636. 

RESEARCH FUNDS: 
1. National Natural Science Foundation of China (Project No. 11422214), “Nonlinear vibration of 

continua”, January 1, 2015 to December 31, 2017, Principal Investigator; 

2. National Natural Science Foundation of China (Project No. 11372171), “Nonlinear vibration of 
pulley-belt drive systems coupled with a one-way clutch”, January 1, 2014 to December 31, 2017, 
Principal Investigator; 

3. National Natural Science Foundation of China (Project No. 10902064), “Transverse Vibrations of 
Axially Moving Viscoelastic Beams in the supercritical regime: Modeling, Analysis, and Simulation”, 
January 1, 2010 to December 31, 2012, Principal Investigator. 

HONORS 

1. Nomination Award of National Excellent Doctorate Dissertation of China, 2010; 

2. Scholar of Shanghai Rising-Star Program, 2011; 

3. Excellent young scientist of NSFC, 2014. 

Hu Ding, Professor, Ph.D 
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Earl H. Dowell 

William Holland Hall Professor 

Pratt School of Engineering 

Duke University 

 

 

Dr. Dowell is an elected member of the National Academy of Engineering, an Honorary 

Fellow the American Institute of Aeronautics and Astronautics (AIAA) and a Fellow of the 

American Academy of Mechanics and the American Society of Mechanical Engineers.  He has 

also served as Vice President for Publications and member of the Executive Committee of the 

Board of Directors of the AIAA; as a member of the United States Air Force Scientific Advisory 

Board; the Air Force Studies Board, the Aerospace Science and Engineering Board and the 

Board on Army Science and Technology of the National Academies; the AGARD (NATO) 

advisory panel for aerospace engineering, as President of the American Academy of Mechanics, 

as Chair of the US National Committee on Theoretical and Applied Mechanics and as Chairman 

of the National Council of Deans of Engineering.  From the AIAA he has received the Structure, 

Structural Dynamics and Materials Award, the Von Karman Lectureship and the Crichlow Trust 

Prize; from the ASME he has received the Spirit of St. Louis Medal, the Den Hartog Award and 

Lyapunov Medal; and he has also received the Guggenheim Medal which is awarded jointly by 

the AIAA, ASME, AHS and SAE. 

 

Currently he serves on boards of visitors of Carnegie Mellon University, Princeton 

University, the University of Illinois and the University of Rochester. He is a consultant to 

government, industry and universities in science and technology policy and engineering 

education as well as on the topics of his research. 

 

            Dr. Dowell research ranges over the topics of aeroelasticity, nonsteady aerodynamics, 

nonlinear dynamics and structures. In addition to being author of over three hundred research 

articles, Dr. Dowell is the author or co-author of four books, "Aeroelasticity of Plates and 

Shells", "A Modern Course in Aeroelasticity", "Studies in Nonlinear Aeroelasticity" and 

“Dynamics of Very High Dimensional Systems”.  His teaching spans the disciplines of acoustics, 

aerodynamics, dynamics and structures. 

 

 Dr. Dowell received his B.S. degree from the University of Illinois and his S.M. and 

Sc.D. degrees from the Massachusetts Institute of Technology.  Before coming to Duke as Dean 

of the School of Engineering, serving from 1983-1999, he taught at M.I.T. and Princeton.  He 

has also worked with the Boeing Company. 
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Lorenzo Dozio

Department of Aerospace Science and Technology, Politecnico di Milano, Italy

Lorenzo Dozio was born near Milan, Italy, on 1972. He received a M.S. degree
in Aerospace Engineering in 1998 and a Ph.D. in Aerospace Engineering in
2002, both at the Politecnico di Milano. After two years as a post-doc, he won
a position as Assistant Professor at the same University in 2004. Last year,
he got the Italian National Scientific Qualification as Associate Professor in
Aeronautics, Aerospace and Naval Engineering.

Since 2002 he has been involved in teaching activities concerning servosystems
for aerospace applications, introduction to engineering experimentation and
dynamics and control of aerospace structures.

His main research interests are vibration of structures, composite and smart
materials, active and shunt piezoelectric control, coupled structural-acoustic
and real-time control systems. He has been involved in many research projects
in collaboration with industries on active noise reduction inside helicopter
cabins, active control of instabilities in combustion chambers and design and
implementation of real-time operating systems. He is currently working on re-
fined computational and analytical models for bending, vibration and buckling
analysis of multilayered plates and shells.

He has authored more than 20 papers in international journals and over 50
conference papers. He has advised about 30 graduate students at Politec-
nico of Milano. He served as a reviewer for, among others, Journal of Sound
and Vibration, Journal of Vibration and Acoustics, Composite Structures and
International Journal of Mechanical Sciences.

He is married to Letizia, and they have four children, two sons Paolo (13) and
Tommaso (11), and two twin daughters Anna and Matilde (7). In his spare
time, he loves playing acoustic and electric guitar.
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Mark S. Ewing 
University of Kansas 

 
 I grew up interested in science and mathematics, largely due to my fascination 
with the U.S. spacecraft I used to watch launch from Cape Canaveral—when I lived in 
nearby Orlando, Florida.  I received my BS in Engineering Mechanics from the U.S. 
Air Force Academy, then began a 20-year career in the Air Force.  I served for four 
years in turbine engine stress and durability analysis where I was an “early” user of 
finite element analysis for hot, rotating turbomachinery.  I then served a two-year 
assignment in turbine engine maintenance and support, which was less technical, 
but eye-opening.  During these early years—in my spare time—I earned an MS in 
Mechanical Engineering from Ohio State University.    
 

With an MS in hand, I returned to the Air Force Academy to serve on the 
faculty as an Assistant Professor.  After two years, I returned to Ohio State to 
complete a PhD.  As a student of Art Leissa’s, I focused on the combined bending, 
torsion and axial vibrations of “stubby” beams, thereby establishing my interest in 
the vibrations of continuous systems.   

 
After returning to and teaching at the Academy for six years, I was assigned to 

the Air Force Flight Dynamics Lab, where I worked on two interesting projects.  The 
first was the development of a structural design algorithm capable of, among other 
things, “maximizing” the separation of two natural frequencies.  The utility of this 
endeavor was to allow the design of aircraft wings for which the bending and 
torsional natural frequencies are sufficiently separated (in frequency) to avoid flutter.  
The other interesting project was the analysis of the effect of convected 
aerodynamic loads on a missile.   

 
I am now on the Aerospace Engineering faculty at the University of Kansas.  

My current research interests are in structural acoustics, which is a topic of 
increasing interest to aircraft manufacturers.   In recent years, I have focused on the 
best way to characterize and estimate structural damping for built-up structures.  All 
the test articles I’ve used to validate my work through experimentation are simple 
structural elements, namely beams and plates. 

 
I have a great love of the outdoors, and of the mountains in particular.  When 

Art Leissa asked me to help organize the first International Symposium on Vibrations 
of Continuous Systems—held in 1997—and he toId me he wanted to meet in the 
mountains, I really got excited.   I look forward to the 10th Symposium back where we 
started in Colorado as a time to visit with long-time friends and colleagues.  I may 
not be as quick up the mountains as before, so I look forward to the physical 
challenges as well. 
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Peter Hagedorn 

 
 

Peter Hagedorn was born in Berlin, Germany. He grew up in Brazil, where he graduated (Engineer’s 

degree) in mechanical engineering in 1964 at EPUSP and in 1966 earned his doctoral degree at the 

same University. He then worked as a research assistant and later as ‘dozent’ (similar to lecturer) at 

the University of Karlsruhe, Germany. In 1971 he got his ‘habilitation’ (similar to Dr. Sc.) at 

Karlsruhe. From 1973 to 1974 he was a visiting Research Fellow at the Department of Aeronautics 

and Astronautics, Stanford University. Since October 1974 he is full professor of mechanics at the 

Technische Universität Darmstadt and head of the Dynamics and Vibrations group. He also has 

served as visiting professor at Rio de Janeiro (Brazil), Berkeley, Paris, Irbid (Jordan) and 

Christchurch (New Zealand), where he also holds an Adjunct Professorship at UCC. He has served 

as Head of Department and Vice-President to his home University in Darmstadt and he is serving in 

a number of professional and editorial committees. He is author of over 200 papers and several 

books on a variety of topics in the general field of dynamics and vibrations and analytical 

mechanics. He is officially retired since 2009 but still quite active and heads the Dynamics and 

Vibrations Group, presently affiliated to the chair of professor Michael Schäfer, at the graduate 

school of computational engineering of TU Darmstadt. 
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BIOGRAPHY 

 
 
Jared D. Hobeck received a B.S. degree in general engineering from Montana Tech at the 
University of Montana in 2008, an M. Eng. degree in mechanical engineering from Virginia 
Polytechnic Institute and State University in 2012, and a Ph.D. degree in aerospace 
engineering from the University of Michigan in 2014 where he is currently a Postdoctoral 
Research Fellow. 
 From 2009 to 2011 he was a Graduate Research Assistant in the Center for 
Intelligent Materials Systems and Structures and in the Center for Energy Harvesting 
Systems. Since 2007 he has performed research in multiple academic, private, and 
government labs.  His research interests include linear and nonlinear structural dynamics, 
energy harvesting technologies, smart materials, flow-induced vibration, and composite 
structures. 
 Dr. Hobeck’s honors and awards include a being an invited speaker at the United 
States Naval Research Laboratory in 2014, he received the Best Paper Award and was Best 
Hardware finalist at the ASME SMASIS Conference in 2011, he is a member of Tau Beta Pi 
Engineering Honor Society, and received the Outstanding Student of the Year Award for 
the general engineering department at Montana Tech in 2008. 
 
 
 

72



Sinniah Ilanko 

The University of Waikato 

Te Whare Wananga o Waikato 
 

e-mail:   < Ilanko@Waikato.ac.nz> 

www URLs: < http://sci.waikato.ac.nz/staff/engg/ilanko> 

<http://www.ilanko.org/vibration.htm >  

 

Ilanko was born in the north of Sri Lanka (Jaffna), and according to the common Tamil 

practice, he does not have/use a family name. Ilanko is his given name and Sinniah is his 

late father’s given name. He is a Professor and currently the Head of School of 

Engineering at the University of Waikato (NZ). Since January 2009 he is serving as the 

Subject Editor for Journal of Sound and Vibration, for analytical methods for linear 

vibration. 

 

Ilanko graduated from the University of Manchester (U.K) with a BSc in civil 

engineering and also obtained an MSc from the same university under the supervision of 

late Dr S.C. Tillman. His move to England at an early age was due to the support and 

encouragement from his late brother Senthinathan. He completed his doctoral studies at 

the University of Western Ontario under the supervision of Professor S.M. Dickinson and 

then joined the University of Canterbury where he worked in various positions as a 

Lecturer, Senior Lecturer and then Associate Professor between 1986 and 2006. He 

joined the University of Waikato in 2006 and in 2012 he became a full professor.  

 

Ilanko’s research areas include vibration and stability of continuous systems, numerical 

modelling and adaptive mechanisms and he has published articles in these areas in the 

following journals: Journal of Sound and Vibration, Proceedings of the Royal Society A, 

International Journal for Numerical Methods in Engineering, Communications in 

Numerical Methods in Engineering, Journal of Applied Mechanics, Journal of Fluids and 

Structures and Computers and Structures. A book he jointly authored with Dr Luis 

Monterrubio with assistance from Dr Yusuke Mochida entitled “The Rayleigh-Ritz 

Method for Structural Analysis” was published by ISTE Wiley in 2014.   

 

Ilanko is also interested in computer-aided learning and has developed and used several 

interactive lectures and tutorials for teaching Mechanics of Materials and Vibration, as 

well as computer tutorials and games for learning/teaching Tamil language. He maintains 

a “vibration resources homepage” (see the second URL above), which at present contains 

some interactive simulation programs for calculating natural frequencies and modes of 

some structural elements.  

 

Ilanko is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka. 

Ilanko’s birth family is scattered across the globe (Australia, Canada, New Zealand, the 

U.K. and the U.S.A.) because of the civil war in Sri Lanka. 
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David Kennedy 

Professor of Structural Engineering 

Cardiff School of Engineering, Cardiff University, United Kingdom 

 

David Kennedy obtained a First Class Honours degree at the University of Cambridge in 1978 and a 

PhD in the area of efficient transcendental eigenvalue computation from the University of Wales, 

Cardiff in 1994. 

 

From 1978 to 1983 he was employed as an Analyst/Programmer for the computer services company 

Scicon Ltd, where he worked on the development of the Mathematical Programming software 

SCICONIC/VM.  In 1981 he was awarded a 2-year BP Venture Research Fellowship in Non-linear 

Optimization, supervised by the late Professor Martin Beale. 

 

In 1983 he was appointed as a Research Associate in the University of Wales Institute of Science 

and Technology, which was merged into Cardiff University in 1988.  Working under the supervision 

of Professor Fred Williams and funded under a collaborative agreement with NASA, he co-

ordinated the development of the space frame analysis software BUNVIS-RG which was released 

by NASA to US users in 1986/87.  Further collaboration with NASA and British Aerospace (now 

BAE Systems) led to the development and successive releases, starting in 1990/91, of VICONOPT, 

a buckling and vibration analysis and optimum design program for prismatic plate assemblies.  Both 

of these programs use analysis methods based on the Wittrick-Williams algorithm. 

 

He was appointed to a Lectureship in the Cardiff School of Engineering in 1991, promoted to Senior 

Lecturer in 2000, Reader in 2005 and Professor in 2009.  He has continued to manage the 

collaborative development of VICONOPT, successfully co-supervising 16 PhD students and holding 

Research Council grants on parallel computing, aerospace panel optimization, local postbuckling 

and mode finding.  He has visited NASA Langley Research Center several times, and in 2007 he 

undertook a 6-month secondment to Airbus UK, funded by a Royal Society Industry Fellowship.  In 

2010 he was appointed as a Deputy Director of the Cardiff School of Engineering with 

responsibility for staff matters. 

 

Through the Cardiff Advanced Chinese Engineering Centre, Professor Kennedy has participated for 

over 20 years in collaborative research projects with leading Chinese universities, including 

Tsinghua University, Dalian University of Technology and Shanghai Jiao Tong University.   

 

Professor Kennedy is the author of 169 publications of which approximately 50% are in refereed 

journals of international standing. 

 

He lives with his wife Helen and enjoys choral singing, hill walking and running (though at a slower 

pace than he once did).  
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Arthur W. Leissa 

Professor Emeritus, Ohio State University 

 

 After earning two degrees in mechanical engineering, with a strong interest in machine 

design, I decided to seek better understanding of stress and deformation of bodies, so I got my 

Ph.D. in engineering mechanics (from Ohio State University in 1958). My dissertation research 

was in the theory of elasticity. I then stayed on as a faculty member. 

 

 Working part-time for two major aircraft companies (Boeing and North American 

Aviation) made me very interested in vibrations. In 1965 I approached NASA to support me with 

research funds to collect the literature of the world in plate and shell vibrations, and summarize it 

in two monographs. They did, and the two books were published in 1969 and 1973. They were 

out of print for a long time. But in 1993 they were reprinted by The Acoustical Society of 

America and are currently available from them.  

 

 After gaining considerable knowledge in writing the two books, I continued to do 

extensive research on vibrations of continuous systems, including laminated composites 

turbomachinery blades, and three-dimensional problems. Approximately 150 published papers, 

and most of the 40 doctoral dissertations I supervised, were in this field 

 

 I always intended to update the “Vibration of Plates” monograph. Indeed, more than 

20 years ago I had a graduate student collect the more recent literature. This consisted of 1500 

additional references dealing with free vibrations of plates. But I never could find the time 

needed to undertake the writing.  

 

  In June of 2001 I formally retired from Ohio State University after having been on 

its faculty for 45 years. During that time I taught a graduate-level course “Vibrations of 

Continuous Systems “ each year.  In July, 2002 Trudi and I moved to Fort Collins, Colorado, 

approximately 60 miles north of Denver, and close to the mountains. In 2011 I did manage to 

complete the textbook “Vibrations of Continuous Systems”, published by McGraw-Hill.    

 

 My serious interest in the mountains began as a boy, reading books about Mallory and 

Irvine on Everest, and others. In 1961 when I could first afford it (with a family) I began 

climbing mountains, which I pursued strongly for decades. Among my climbs were all the 

highest mountains in Colorado, one-half of the highest Swiss Alps, and Mount McKinley 

(20,000 ft) in Alaska. Now being 83, I can no longer climb them, but I still enjoy greatly being in 

the mountains---hiking, skiing and snowshoeing.. They restore one’s vitality and one’s peace.   

 

 In 1995 Mark Ewing, who was in Colorado then, agreed to help me organize the first 

International Symposium on Vibrations of Continuous Systems, held in 1997 in Estes Park, 

Colorado.  It was well received, and so it has continued every two years in marvelous mountain 

locales worldwide.  I look forward to taking part again, this time in a return to Estes Park, 

Colorado.  My mind is definitely slipping, and my body and legs can no longer endure 

significant hikes, but I shall enjoy participating in what ways I can. 
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Shinichi Maruyama 
Gunma University 

 
    Shinichi Maruyama is an associate professor of the Department of Mechanical 
System Engineering in Graduate School of Engineering, Gunma University, Japan.  
 
    He was born in Takamatsu and had been lived in Chiba, suburb area of Tokyo, until 
he graduated university. He obtained Master of Engineering and Doctor of Engineering 
in 1999 and 2002, both from Keio University. Since 2002, he has been taking an 
academic position in Gunma University and working with Professor Ken-ichi Nagai. 
 
    His research interests include nonlinear and chaotic vibrations of mechanical systems, 
and analyses and experiments on dynamics of thin elastic structures.  
 
    He is a member of the Japan Society of Mechanical Engineers. Since 2010, He has 
been the chair of the Technical Section on Basic Theory of Vibration in the Division of 
Dynamics, Measurement and Control in JSME.  
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YUSUKE MOCHIDA 

 

Research and Teaching Fellow 

University of Waikato 

Te Whare Wananga o Waikato 

Hamilton, New Zealand 

yusuke@waikato.ac.nz 

 

I currently hold a Postdoctoral Research/Teaching Fellowship at the University of 

Waikato in New Zealand. The overall aim of my current research is to develop a general 

analytical procedure for vibration analysis of complex structures. The method under 

consideration includes the use of the concept of negative structures to represent voids.  

 

I was born and grew up in Japan. After I graduated with a B.E. in Mechanical 

Engineering from the Tokyo Metropolitan University (Japan) I worked for a while in 

Japan and went to New Zealand as a working holiday maker to travel around and work. 

Actually I was away from the engineering field for several years. This made me miss 

engineering and so after learning English, I enrolled in a Postgraduate Diploma programme 

at the University of Canterbury (New Zealand). During my postgraduate study I became 

interested in vibration and decided to continue towards an M.E. under the supervision of 

Professor Ilanko, who had at this time relocated to the University of Waikato. I completed my 

M.E. and then continued working towards a Ph.D at the same university. Since 

commencing my M.E. studies I have developed several codes based on the 

Superposition Method, the Rayleigh-Ritz Method and the Finite Difference Method to 

solve free vibration problems of plates and shells using MATLAB. In addition to my 

research experience, I lectured in Dynamics and Mechanisms and tutored in Vibration, 

Mechanics and Finite Element Analysis classes.  

 

Through my career, I hope I can contribute to the development of research relationships 

between New Zealand and other countries, especially Japan, and the advancement of 

research in New Zealand.  

 

Personally, I am also interested in snowboarding, golf, playing drums, Shorinji Kempo 

(Japanese martial arts), foreign exchange, personal development and cooking. 
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Luis Monterrubio, Ph.D. Mechanical Engineering 

 

Assistant Professor of Mechanical Engineering 

 

Luis Monterrubio joined the Robert Morris University Engineering Department as an Assistant 

Professor in the Fall of 2013. He earned B.Eng. from the Universidad Nacional Autónoma de 

México, a M.A.Sc. from the University of Victoria, Canada and his Ph.D. from the University of 

Waikato, New Zealand. All degrees are in Mechanical Engineering and both M.A.Sc. and Ph.D. 

studies are related with vibrations. After his Ph.D. he worked at the University of California, San 

Diego as postdoctoral fellow in the area of bioacoustics. 

 

He teaches dynamics, machine design, numerical methods and finite element method. His 

research interests are in vibration, numerical methods, finite element methods, continuum 

mechanics, acoustics and engineering education 

 

He has work for the automotive industry in drafting, manufacturing, testing (internal combustion 

engines –vibration, fatigue, thermo-shock, tensile tests, power, torque and exhaust emissions, 

etc.), simulations (finite element method) and as a project manager (planning and installation of 

new testing facilities). 

 

He is a member of the American Society of Mechanical Engineers and the American Society for 

Engineering Education. 
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Ken-ichi Nagai 
Gunma University, Japan 

 
    Ken is a professor emeritus in Gunma University since 2012. 
    He graduated from the national college of technology in Fukushima in 1967. In the 
student life, he received academic interest from the book "Mechanics" written by Den 
Hartog. He wanted to devote himself in areas of research and education. He received his 
B. Eng. in 1970 from Ibaraki University. He obtained Mr. Eng. and Dr. Eng. in 1972 
and 1976 from Tohoku University, respectively. Main research subject was nonlinear 
vibrations of plates and dynamic stability of plates and cylindrical shells, under his 
supervisor Professor Noboru Yamaki.  
    Since 1976, he got an academic position in Gunma University. From 1990 to 1991, 
he visited to the Cornell University in U.S.A. as a research fellow. During the stay in 
U.S.A., Professor Leissa in the Ohio State University gave him nice advises in research 
area. Then, he also visited to Professor Hagedorn in the Technische Hochshule 
Darmstadt in Germany.  Furthermore, he visited Polish Academy of Sciences in Poland. 
    He is a Fellow of the Japan Society of Mechanical Engineers. He has been a 
academic consultant to the local government. 
    He has an interest in the filed of nonlinear dynamics and chaotic vibrations of thin 
elastic structures such as beam, arch, plate and shell. Recently, he published the books 
of "Dynamical system Measurements", "Dynamic system Analysis -Energy Approaches 
from Structural Vibration to Chaos-" and “Dynamics of Nonlinear Systems 
–Introduction to Analysis of Nonlinear Phenomena-”. 
   His is now interesting in a two hour trecking up to the mountain near his home. He 
feels spiritual happiness by walking in fields of nature and by facing to chaotic 
phenomena generated from dynamical system. 
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Yoshi (Yoshihiro Narita) 

Hokkaido University, Sapporo, Japan 

 

   I am a professor of Mechanical Engineering at Hokkaido University, Sapporo. Hokkaido 

is the name of island northern most among four large islands in Japan. Eleven years ago, I 

moved to Hokkaido University (HU), and I like teaching young students and working with 

graduate students. I enjoy freedom of doing research and visiting international conferences 

and foreign universities. Associate professors, Dr.Honda (solid mechanics, optimization) and 

Assistant Professor Dr.Lee (ergonomics, affective engineering), are working hard to support 

our laboratory with fifteen Japanese and foreign graduate students.  

 

I started my research on vibration of continuous systems when I was a PhD student under 

adviser Prof.Irie of HU in 1976, and had a chance to study one year in 1978-1979 under 

Prof.Leissa at the Ohio State University. The research outcomes under both advisers were 

summarized into my PhD dissertation in 1980 with the title “Free Vibration of Elastic Plates 

with Various Shapes and Boundary Conditions”. Even after 35 years, it is downloaded more 

than 17000 internationally (ex. 7300 in China, 930 times in USA, 400 times in India and so 

on) from HUSCAP website: http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/32630. 

 

I used to play tennis and ski. Now, traveling abroad may be my hobby, which is 

inseparable from my profession. Last April and May, my wife and I travelled to Buenos Aires, 

Falls of Iguasu both in Argentine and Brazil, and also Machu Picchu in Peru. Furthermore, 

from April, I became the director of Helsinki Europe Office of Hokkaido University, and 

almost every month I commute to the office in downtown Helsinki! 

 

   I am very delighted with visiting Estes Park again after eighteen years. I could join in all 

the ISVCS’s, and these symposiums are full of good memories. In the present ISVCS-10, I 

look forward to meeting old and new friends in the research community of vibration 

mechanics. 

 

Let’s enjoy!                    
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Biography 

of Francesco Pellicano 

 

Francesco Pellicano was born in Rome, Italy on 1966. He received a M.S. degree in Aeronautical Engineering in 

1992 and Ph.D. in Theoretical and Applied Mechanics in 1996, both at the University of Rome “La Sapienza”, Dept. of 

Mechanics and Aeronautics. 

He was Researcher at the University of Modena and Reggio Emilia, Faculty of Engineering, Dept. of Mechanical and 

Civil Engineering, 1996-2003.  

He is currently Associate Professor at the same University since January 2004 and vice-Head of the Centre 

Intermech MoRe. 

He was involved in investigations concerning: nonlinear vibrations of structures; vibration control; axially moving 

systems; nonlinear vibration of shells with fluid structure interaction, vibration of carbon nanotubes; gears modeling; non-

smooth dynamics; Chaos; Nonlinear Time Series Analysis; Forecasting Methods in Oceanography. 

He cooperated with Prof. Vestroni, Prof. Sestieri and Prof. Mastroddi of the University of Rome “La Sapienza” and 

with: Prof. Païdoussis (Mc Gill Univ. Canada); Prof. Vakakis (Univ. of Illinois at Urbana Champaign); Prof. Amabili (Univ. 

of Parma, Italy), Prof. L. Manevitch (Semenov Inst. Moscow, Russia); Prof. Ilanko (Waikato Univ. New Zealand). 

The teaching activity regards: Vibrations of Discrete and Continuous Systems; Signal Processing; Machine Theory 

and Machinery. 

He is coordinator of two FP7 EU projects: INDGEAR (condition monitoring) and HPGA Fortissimo (applications of 

high performance computing); he was coordinator of several international and national projects. 

His research activity regards also industrial problems, he cooperated for research and consultancies with several 

companies about: vibration control; experimental vibrations; simulation of mechanical systems. 

He is Associate Editor of the journals: Mathematical Problems in Engineering, Hindawi; Chaos, Solitons and Fractals, 

Elsevier; moreover, he takes part to the international advisory editorial board of the journal: Communications in Nonlinear 

Science and Numerical Simulation, Elsevier. 

He published 2 Books, about 50 Journal papers and more than 100 conference papers 
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Bio – data 

 

I was born on July 05, 1948 in the village Rahimpur of the Munger district, Bihar, India.  I grew 

up in Munger and completed elementary and secondary educations from the Munger Zila School.  

I was directly admitted to the Bihar Institute of Technology in Sindri from where graduated in 

1968 with B.Sc. Eng. (first class with distinction in Mechanical Engineering). Then I came to 

Canada and joined the school of graduate studies at the University of Ottawa in September 1969. 

I began my research work with the derivation of the constitutive equations from the first 

principles to study the free axisymmetric vibration of sandwich spherical shell structures under 

the noble supervision of Professor S. Mirza and subsequently received M. A. Sc. and Ph. D. 

degrees.  These equations were developed in the spherical coordinate system and had solutions in 

Legendre functions of complex order for which I had to develop many new programs.  During 

this study I also used energy methods to deduce the equations of motion for the free vibration of 

isotropic and sandwich plates and shells.  

 

After graduation, I worked as a defence scientist at the Defence Research Establishment Suffield 

(DRES) near Medicine Hat Alberta from January 1978 to April 1981.  Then, I accepted a design-

engineer position in the Civil Design Department of Ontario Hydro in Toronto and worked there 

until December 1984, when I came to the Western University to teach machine component 

design and the finite element methods.  Professor Stuart Dickinson was the chair of the 

Mechanical Engineering at that time and he is the one who hired me.  This year I shall be 

completing 31 years of service to the university.  During these years I taught other courses such 

as graphics and engineering drawings, dynamics, kinematics and dynamics of machines, the 

modern control systems, theory of plates and shells, continuum mechanics, computational 

methods in engineering to name a few.  I worked with some remarkable students in the field of 

computational solid mechanics dealing with the linear and nonlinear vibrations of plates and 

shells.  

 

About the family: I am married to Bimla since the March of 1968.  We have two grown up 

children, the son Bidhi and daughter Shikha who are graduates of the Western University.  Bidhi 

is married to Swati and they have a son named Akshaj.  Bimla and I attended seven of the last 

nine ISVCS symposia.  This is the eighth one. We like to travel, camp, enjoy walking in parks 

and on the beaches (whenever possible), etc.  I have given notice of retirement to the Western 

University effective July 01, 2016 after which wish to live to the fullest as long as there is 

wellness.    

 

 

Anand V. Singh, Ph.D., P. Eng.  

Professor 

Department of Mechanical and Materials Engineering 

The Western University, London, Ontario, Canada, N6A 5B9 
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Andrew Watson 

Lecturer of Aerospace Structures 

Department of Aeronautical and Automotive Engineering 

Loughborough University, United Kingdom 

 

Andrew obtained his undergraduate and higher degrees from Cardiff University.  His 
PhD looked at the stability analysis and optimisation of light weight structures.  After 
two post-doctoral appointments at Cardiff Andrew joined Loughborough University as 
a member of academic staff in 2004. 

His research includes buckling and postbuckling of aerospace panels; vibration of 
beams and quantum graphs.  Buckling, vibration and quantum graph problems can 
be approached by using the Wittrick-Williams algorithm.  Andrew is currently 
developing a set of tools to provide the user with eigenvalue and eigenvector 
solutions to any shaped graph with a differential operator.   

Other research includes experimental and numerical testing of damage in composite 
panels and numerical simulation of geometric nonlinear beams subject to bending 
and compression.  More recently Andrew has been looking at fossil fuels and other 
finite resources.  He has taken a very keen interest in energy demand reduction and 
has delivered talks on the subject at various academic institutions and schools. 

In his spare time he likes to keep up with current affairs and enjoys walking, cycling 
and open water swimming.   
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CURRICULUM VITAE 

 

Ruojing ZHANG 

Professor (retired in 2011) 

Institute of Applied Mechanics 

Tongji University 

Shanghai 200092, CHINA 

 

Education 

1964 - 1970       PEKING university, Beijing, CHINA 

                 B.S. in math-mechanics  

1979 - 1982       TSINGHUA university, Beijing, CHINA 

                 M.S. in solid mechanics 

1984 - 1988       TSINGHUA university, Beijing, CHINA 

                 PH.D in solid mechanics 

 

Career -Related Activities: 

1. Engineer, Commissariat a l’Energie Atomique, Center d’Etudes Nucleaires, FRANCE, 

1994-1995 

2. Visiting professor, Nagoya University, JAPAN, 1996-1997 (3 months) 

3. Research Fellow, the Hong Kong Polytechnic University, 1998 (3 months), 1999 (2 months) 

4. Visitor, University of Science and Technology of Hong Kong 2001 (2 months) 

5. Visiting professor, University of Sydney, AUSTRALIA, 2002 (3 months) 

 

Email: zhangrj@mail.tongji.edu.cn 
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