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Preface 

 
The International Symposium on Vibrations of Continuous Systems (ISVCS) is a forum 

for leading researchers from across the globe to meet with their colleagues and to present 

both old and new ideas in the field. Each participant has been encouraged either to present 

results of recent research or to reflect on some aspect of the vibration of continuous 

systems, which is particularly interesting, unexpected or unusual. This type of 

presentation is meant to encourage participants to draw on understanding obtained through 

many years of research in the field.  

ISVCS focuses on the vibrations of the vibrations of the fundamental structural elements: 

strings, rods, beams, membranes, plates, shells, bodies of revolution and other solid bodies 

of simple geometry. Structures composed of assemblies of structural elements are also of 

interest, especially if such structures display interesting or unusual response.  

 

The ISVCS started 22 years ago, at Stanley Hotel, Estes Park, Colorado, USA August 11-

15, 1997. It comes every two years, the present 12th Symposium takes place on 28 July – 

2 Auguts 2019 the SportHotel Panorama, Corvara in Badia, Italy. Typical days at the 

Symposium will consist of morning technical presentations, afternoon hikes or excursions 

in the local area and, in the evening, further technical discussions and social gatherings. 

The various outings and social gatherings provide important opportunities for relaxed and 

informal discussion of technical and not-so-technical topics surrounded by the natural 

beauty of the Italian Dolomites. 

 

This volume of Proceedings contains 28 short summaries of the technical presentations to 

be made at the Symposium, as well as short biographical sketches of the participants. 

 

The present edition is the second one without the presence of Art Leissa, founder and 

Honorary Chairman of ISVCS. We all miss Art. Many others senior board members are 

absent (J. Wauer, S. Dickinson); we hope that some of them will join again in the next 

Symposia. 

 

Last but not least we remember with pain that Fred Ward Williams, a frequent attendee of 

past Symposia, left us unexpectedly on April 23 at the age of 89. An obituary by Prof 

David Kennedy and Ranjan Banerjee is made in these proceedings.   

 

General Chairman  Erasmo Carrera 

Editorial Chairman   Ilanko Ilanko 

Local Arrangements Chairman  Francesco Pellicano  

Publicity Chairman Yoshihiro Narita 

Honorary Chairman Art Leissa 
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Obituary 

Professor Frederic Ward Williams 1940-2019 

 

Fred Williams was the son of Sir Frederic Calland Williams, creator of the first electronic stored-program 

digital computer. After obtaining a First Class degree at Cambridge Fred studied for a PhD at Bristol supervised 

by Sir Alfred Pugsley, whose old school, hands-off approach aided Fred’s development as an independent 

researcher. 

Fred then spent 3 years teaching at a university in Nigeria, where he and his new wife Anne were terrifyingly 

caught up in some civil unrest. Safely back in the UK he joined Professor Bill Wittrick at Birmingham, 

applying his civil engineering expertise to the buckling and vibration of aircraft structures. In Fred’s words, he 

“quickly experienced a sense of privilege, respect and even awe… Bill’s courtesy and consideration were 
unfailing. An abiding memory is the way he would identify and remove one’s areas of ignorance … in a way 
which was direct but never crushing. .. Bill, like the best of master craftsmen, passed on by example and 

training the very highest standards of scholarly integrity, enthusiasm and thoroughness.” Words that perfectly 

describe Fred himself.  

Fred recalls an occasion when “Wittrick and I worked intensively together all day, including lunch, to meet 

the need of one of his research students. An algorithm grew out of the discussion, to the surprise of both of us, 

as the result of numerous thoughts (some of which were helpful and some of which proved to be misleading). 

A key thought occurred over lunch but almost faded before it could be fully developed in the afternoon. 

Without doubt, this algorithm was the most comprehensive joint discovery of which I have first hand 

experience and memories of that day are still clear about twenty years later.” 

In 1975 Fred became the youngest professor in Cardiff, where he remained for the rest of his career. But not 

before he had written a computer program VIPASA with the Wittrick-Williams algorithm at its heart. 

At a conference he met Dr Mel Anderson from NASA Langley Research Center, who went on to incorporate 

VIPASA into a design program which became widely used in the US aerospace industry. Mel came to the UK 

with his family for a year to work with Fred on a new analysis code VICON. They also developed 3D frame 

software which was used in the design of the space shuttle. With funding from British Aerospace and NASA, 

Fred’s team at Cardiff further consolidated the software into a design code VICONOPT which is still used in 

the aerospace industry. 
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In 1988 Fred met Professor Zhong Wanxie from Dalian University of Technology. So began a passion that 

continued throughout his career. He visited China every year, sometimes for several months, and also 

established the Cardiff Advanced Chinese Engineering Centre, hosting scores of visitors including senior 

professors with whom we have collaborated ever since. Fred was intrigued by the Chinese version of a well-

known proverb, and posted a notice on his office door saying “Failure is killing only two birds with one stone”. 
Sadly he was asked to remove it on the occasion of a royal visit. 

As head of Cardiff’s Division of Structural Engineering, Fred’s recipe for success was “Quality, Income, 
Papers”. He led by example, publishing over 400 papers and carrying his research into his teaching, particularly 

his final year module on plate theory. 

Fred is remembered with respect and affection by generations of research students, many of whom have 

advanced to successful careers in academia or industry. Always firm but fair, explaining and encouraging. One 

student recalls enthusiastically trying to explain something but making a fundamental mistake, upon which 

Fred called out “STOP!” If your meeting with Fred was in the late afternoon you knew it would have to 

continue until the problem was solved. I would often return home late having been “Fredded”. 

But Fred could never be just a colleague. To all of us and our families he became a friend, generous in his 

hospitality, keen to share his love of travelling and the great outdoors. He contributed enthusiastically to the 

success of ISVCS and organised the 2003 event at his beloved Keswick. 

In 2000 Fred took up a prestigious 3 year appointment at City University of Hong Kong, also continuing our 

collaboration with universities in mainland China. I remember arriving in Beijing on an overnight flight and 

finding Fred waiting for me in the hotel lobby with equations to solve. The Wittrick-Williams algorithm 

featured in a textbook by Tsinghua’s Professor Yuan Si and became widely known in China. 

Returning to Cardiff Fred worked part-time, then was appointed Emeritus Professor, winding down to enjoy a 

well earned retirement. His last visit to China was in 2013 when Dalian appointed him a Guest Professor. 

Fred leaves a legacy of expertise in structural mechanics, and his work will surely continue through those of 

us who have had the privilege of learning from him. I have received condolences from over 70 of his colleagues 

and students in some 20 different countries. 

In January Fred wrote to some of his closest friends, “I thank you from the bottom of my heart for all your 
friendship has meant to me and wish you well for the future.” We thank Fred for teaching and inspiring us and 

for letting us share in his wonderful life. 

David Kennedy 

Fred Williams: A friend, mentor and an indomitable spirit in my life 

In November 1978 I had just finished my PhD Viva at Cranfield. The same evening, I had a phone call from 

Professor Fred Williams which was a turning point in my career and life. I was thinking of packing my luggage 

and leaving the United Kingdom for good. I remember the telephone conversation vividly even to this day. 

Fred asked me on the phone very directly, “Will you be interested in a post-doctoral research in Cardiff?” I 
knew very little about Fred at that time, but I was told that he was one of the youngest and brightest professors 

in the country. My telephone conversation with Fred was amazing. I thought that this professor, whom I had 

never met, could really be my mentor and guru to fulfil my ambitions in life. How can a person be so precise 

when he talks? He was open, honest, clear and importantly very straightforward and exactly to the point. He 

said that if I was interested, he would invite me to come to Cardiff for an interview for the post-doc job. 
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That interview was an unforgettable experience. The most transformative period of my life began to emerge. 

It took me only a few seconds to realise that Fred was an incredibly intelligent man. His towering and 

charismatic personality impressed me enormously. He structured my interview in an extremely clever and 

well-thought-out manner. During the conversation, prior to the formal interview, he was in fact X-raying me. 

The formal interview took only fifteen minutes. I was offered the job of Research Associate and I was Fred’s 

very first post-doc. My instinct told me that my future would be totally secure in his hands. I had an 

overwhelming feeling within me that I had to respect this man. 

I joined Fred in Cardiff on 1 February 1979 and worked with him for six years on large (1km size) space 

structures, in close collaboration with NASA Langley Research Center. The Ranjan Banerjee that you see 

today was in the making. The magic of Fred worked wonders. His planning and thinking were immaculate. He 

knew how to inspire a person and how to get the best out of a person. He planned, he thought, and he always 

had a contingency plan in case something went wrong. He was such a structured person, always analytical in 

his approach, always precise. According to Fred, a researcher should be as objective as possible. In his presence 

I was determined to succeed. 

I have many special memories of Fred which I have no space to include here. Fred was a highly principled 

person and he always stuck to his principles. From a personal perspective, the screw of my academic life turned 

because of Fred. He had so much influence on me and on my thinking. There is no drama, no poetry, no 

melodrama in this statement. He rekindled my hopes and aspiration even after I left him to join City University 

in 1985. He had the right ideas and a true sense of values. When I met him first, he weighed me up in just five 

minutes. He was a real and genuine visionary and certainly a meticulous man. He monitored and observed my 

progress all along and my success was uninterrupted because of him. I am still consolidating the knowledge 

that I acquired from him. I achieved more than I could have ever imagined. This has been possible because of 

Fred and I am very proud to have worked with him. 

When I met Fred a couple of months before his death, he was in a sparkling mood, as sharp as ever. I treasure 

those moments. He has given me everything I asked for, more than I bargained for. I am very sad to see him 

depart and it truly breaks my heart. We will carry forward his ideas. 

In summary, Fred has been to me a memory of the past, running into the present and flowing on into the ocean 

of the future.  

Ranjan Banerjee 
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Dynamic Buckling of Thin Walled Structures Revisited 
 

H. Abramovich 
              Faculty of Aerospace Engineering,Technion, I.I.T.,32000 Haifa, Israel 

          haim@technion.ac.il 

 

Abstract 

The topic of applying an axially time dependent load onto a column, thus inducing lateral 
vibrations and eventually causing the buckling of the column was studied for many years. 
Sometimes this is called vibration buckling, as proposed by Lindberg [1]. As it is described in 
his fundamental report [1], the axial oscillating load might lead to unacceptable large vibrations 
amplitudes at a critical combination of the frequency and amplitude of the axial load and the 
inherent damping of the column. This behavior is presented in Fig. 1a, where an oscillating axial 
load induces bending moments that cause lateral vibrations of the column. As described in [1] 
the column will laterally vibrate at large amplitude when the loading frequency will be twice the 
natural lateral bending frequency of the column. The term used by Lindberg, vibration buckling 
presents some kind of similarity to vibration resonance. However, in the case of vibration 
resonance the applied load is in the same direction as the motion, namely in our case lateral to 
the column, and the resonance will occur when the loading frequency equals the natural 
frequency of the column. This type of vibration buckling was called by Lindberg as: dynamic 
stability of vibrations induced by oscillating parametric loading. This type of resonance is also 
called in the literature as parametric resonance (see [2] and [3]).  
 

 
Fig. 1 (a) Buckling under parametric resonance, (b) Pulse type buckling  

 
Another type of vibration type is sometimes also called pulse buckling, where the structure will 
be deformed to unacceptably large amplitudes as a result of a transient response of the structure 
to the dynamic axially applied load [1]. One should note that the sudden applied load might 
cause a permanent deformation due to plastic response of the column, a snap to a larger 
postbuckling   deformation or simply a return to its undeform state. This is pictured in Fig. 1b 
where the response of the column to a sudden short time axial load is shown. 
One should note that buckling will occur when an unacceptably large deformation or stress is 
encountered by the column. The column can withstand a large axial load before reaching the 
buckling condition provided the load duration is short enough. Under an intense, short duration 
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axial load, the column would buckle into a very high-order mode as shown in Fig 1b. Lindberg 
[1] claims that pulse buckling falls under the following mathematical definition: dynamic 
response of structural systems induced by time-varying parametric loading. Throughout the 
present abstract, the pulse buckling will be equivalent to dynamic buckling. 
The dynamic buckling of structures has been widely addressed in the literature. It started with 
the famous paper by Budiansky and Roth [4], thru Hegglin’s report on dynamic buckling of 
columns [5] and continued with Budiansky & Hutchinson [6] and Hutchinson & Budiansky [7]  
in the mid-sixties.  
One of the most intriguing and challenging thing is to define a criterion to clearly define the 
critical load causing the structure to buckle under the subjected pulse loading. As presented by 
Kubiak [8] and also by Ari Gur [9], [10],[11] a new quantity is introduced called DLF (Dynamic 
Load Factor) to enable the use of the dynamic buckling criteria. It is defined as  

 
 
 

.cr dyn

cr static

PPulse Buckling AmplitudeDLF
Static Buckling Amplitude P

                                  (1) 

According to Kubiak [8] the most popular criterion had been proposed by Volmir [12] for plates 
subjected to in-plane pulse loading. As quoted in [8], Volmir proposed the following criterion: 
“Dynamic critical load corresponds to the amplitude of pulse load (of constant duration) at 
which the maximum plate deflection is equal to some constant value k (k - half or one plate 
thickness”). 
Another, very widely used criterion, has been formulated and proposed by Budiansky 
&Hutchinson [4],[6],[7] . Originally, the criterion was formulated for shell type structures but 
was used also for columns and plates. The criterion claims that:” Dynamic stability loss occurs 
when the maximum deflection grows rapidly with the small variation of the load amplitude”. 
This criterion is schematically presented in Fig. 2b, where R (λ, t) is the response of the simply 
non-linear model assumed in [6] and presented also in Fig. 2a, and λ is the nondimensional 
applied dynamic pulse type compressive load. Figure 2c, presents the application of the criterion 
for the axisymmetric dynamic buckling of clamped shallow spherical shells as presented in [4]. 
 

 
Fig. 2 (a) The non-linear model ( [6]), (b) The Budiansky & Hutchinson (B&H) schematic criterion (from 

[6]), (c) The application of the B&H criterion to axisymmetric dynamic buckling of clamped shallow 
spherical shells ([4]) 

 
The dynamic buckling of columns, plates and shells is revisited, reviewing the main issues of 
the method, and presenting experimental and numerical calculations performed at the Technion 
(see Fig. 3) and results of other studies available in the literature. 
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Fig. 3 Dynamic buckling investigation of a curved laminated composite stringer stiffened panel [13] : (a) 
The stringered panel model, (b) Geometric dimensions of the stringer, (c)The FE model, (d) The lowest 
mode shape of the stringered panel @ f=424 [Hz] (e) Variation of DLF with the nondimensional load 

duration –experimental results 
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Summary 

The classical theory of free longitudinal vibration of a bar is essentially based on its axial deformation 

when describing its free vibratory motion. Thus, the theory does not account for the lateral contraction 

of the bar arising from the Poisson’s ratio effects. It was Lord Rayleigh [1] who first recognised the 
significance of lateral deformation on the free longitudinal vibration of a bar and advanced the classical 

theory. Many years later, Love [2] shed further lights on Rayleigh’s theory and the bar model which 

includes the effects of lateral strain in the formulation of the free longitudinal vibration is now known 

as Rayleigh-Love bar [3-4]. The research on the free longitudinal vibration of Rayleigh-Love bars is 

mostly confined to uniform (prismatic) bars although there have been a few attempts to study non-

uniform Rayleigh-Love bars [5-6] which have applications in the design of foundation because conical 

bars are often used as idealised structures [7-8]. This paper provides considerable insights into the free 

longitudinal vibration behaviour of conical Rayleigh-Love bars by recasting the governing differential 

equation in the form of Legendre’s equation [9] for which the solution exists in series form. 

 

In a rectangular Cartesian coordinate system, Figure 1 shows a linearly tapered bar of solid circular 

cross-section with the X-axis coinciding with the axis of the bar. The bar tapers downwards and the 

diameter d(x), area A(x) and the polar second moment of area I(x) of the cross-section at a distance x 

from the left hand end g (which is considered to be the origin) varies linearly so that  𝑑(𝑥) = 𝑑𝑔 (1 − 𝑐 𝑥𝐿),  𝐴(𝑥) = 𝐴𝑔 (1 − 𝑐 𝑥𝐿)2
    𝐼(𝑥) = 𝐼𝑔 (1 − 𝑐 𝑥𝐿)4

   (1) 

where c is the taper ratio, L is the length, dg, Ag and Ig are respectively, the diameter, area and the polar 

second moment of area at the left hand end g of the bar. 
 

Clearly, the diameter at the right hand end h is given by 𝑑ℎ = 𝑑𝑔(1 − 𝑐) so that the taper ratio c must 

lie within the range 0 ≤ 𝑐 ≤ 1. Thus, c = 0 represents a uniform bar whereas when c = 1, the bar tapers 

to a point which is the limiting case that cannot be achieved in practice. 
 

Incorporating the Rayleigh-Love theory [1,2], the expressions for kinetic (T) and potential (V) energies 

of the conical bar of Figure 1 are given by 𝑇 = 12 ∫ {𝜌𝐴(𝑥)𝑢̇2 + 𝜌𝜈2𝐼(𝑥)(𝑢̇′)2}𝐿0 𝑑𝑥; 𝑉 = 12 ∫ 𝐸𝐴(𝑥)(𝑢′)2𝑑𝑥𝐿0     (2) 

where u is the displacement of a point on the axis of the bar at a distance x from the left hand end, 𝜌 is 

the density, E is the Young’s modulus and 𝜈 is the Poisson’s ratio of the bar material. An overdot and 

a prime represent differentiation with respect to time t and x, respectively. Hamilton’s principle is now 

applied to derive the governing differential equation of the conical bar of Figure 1 in free vibration.  

 

Hamilton’s principle states 

 𝛿 ∫ (𝑇 − 𝑉)𝑑𝑡 = 0𝑡2𝑡1       (3) 
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where T and V are the kinetic and potential energies, 𝛿 is the variational operator and t1 and t2 are the 

time intervals of the dynamic trajectory. 
 

Substituting T and V from Equation (2)  into Equation (3), making use of the variational operator 𝛿, 

substituting Equation (1) and finally performing integrations per parts, the governing differential 

equation and the expression for the axial force are obtained as follows 

 𝐺𝑜𝑣𝑒𝑟𝑛𝑖𝑛𝑔 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛:        𝜉2𝑢′′ + 2𝜉𝑢′ + 𝐶1𝜉4𝑢̈′′ + 4𝐶1𝜉3𝑢̈′ − 𝐶2𝜉2𝑢̈ = 0 (4) 

 where                                                                   𝜉 = (1 − 𝑐 𝑥𝐿);   𝐶1 = 𝜌𝐼𝑔𝜈2𝐸𝐴𝑔 ;  𝐶2 = 𝜌𝐿2𝐸𝑐2  (5) 

 

and a prime now denotes differentiation with respect to 𝜉. 

 

Axial Force:                                         𝐹(𝜉) = 𝐸𝐴𝑔𝑐𝐿 𝜉2[𝑢′ + 𝐶1𝜉2𝑢̈′]    (6) 

For harmonic oscillation, 𝑢 = 𝑈𝑒𝑖𝜔𝑡 and hence Equation (4) becomes  𝜉(1 − 𝐶1̅𝜉2)𝑈′′(𝜉) + 2(1 − 2𝐶1̅𝜉2)𝑈′(𝜉) + 𝐶2̅𝜉𝑈(𝜉) = 0  (7) 

 

where 𝐶1̅ = 𝐶1𝜔2 and 𝐶2̅ = 𝐶2𝜔2, which are non-dimensional quantities. 
 

By seeking solution in the form 𝑈 = 𝑊 (𝜉√𝐶1̅) /𝜉, Equation (7) can be expressed in the form of 

Legendre’s differential equation as follows                                                     (1 − 𝜁2)𝑊′′(𝜁) − 2𝜁𝑊′(𝜁) + 𝜇(𝜇 + 1)𝑊(𝜁) = 0   (8) 

 

where  𝜁 =  𝜉√𝐶1̅ ;  𝜇 = − 12 + √94 + 𝐶2̅𝐶1̅   (9) 

The solution of the Legendre’s equation can now be obtained in series form which can be found in many 

advanced mathematics texts, see for example Ref [9]. In this way, 𝑊(𝜁) can be expressed in terms of 

two series, say functions Φ(𝜁)and Ψ(𝜁), connected by two arbitrary constants A1 and A2. Thus 

 𝑊(𝜁) = 𝐴1Φ(𝜁) + 𝐴2Ψ(𝜁)     (10) 

 

The expression for axial force in Equation (6) in terms of the new variable 𝜁 now becomes 𝐹(𝜁) = 𝐸𝐴𝑔𝑐𝐿 𝜁2(1 − 𝜁2){𝐴1Φ′(𝜁) + 𝐴2Ψ′(𝜁)}   (11) 

 

           
Figure 1. Coordinate system and notation for a solid conical bar. 

 

For a given boundary conditions of the conical bar shown in Figure 1, the constants A1 and A2 of 

Equations (10) and (11) can be eliminated to obtain the frequency equation yielding the natural 

frequencies and the associated mode shapes of the bar. For illustrative purposes, results are given for a 
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cantilever conical bar for which the thick end g of Figure 1 is considered to be built-in. Clearly, at x = 

0, i.e., 𝜉 = 1 and 𝜁 =  √𝐶1̅  ,see Equations (5) and (9), the displacement  𝑊(𝜁) of Equation (10) will 

be zero whereas at the free end, at x = L, i.e., 𝜉 = 1 − 𝑐 and 𝜁 =  (1 − 𝑐)√𝐶1̅ , see Equations (5) and 

(9), 𝐹(𝜁) of Equation (11) will be zero. Hence there will be two equaitons and two unknown constants 

A1 and A2 from which the frequency equation can be derived by eliminating A1 and A2. 

 

Using the above theory, the natural frequencies and mode shapes of a cantilever conical beam are 

computed for the taper ratio c = 0.5 and 0.75, respectively. The results are shown in Table 1 in non-

dimensional form for four different values of the length to radius ratio (L/r) of the bar alongside the 

results obtained using the classical theory which ignores the lateral inertia and for which the L/r ratio is 

irrelevant. Clearly, for smaller values of L/r ratios, differences in natural frequencies between the 

current theory and classical theory are apparent, particularly for the higher order ones. For c = 0.5 and 

L/r = 2, the difference in the first five natural frequencies are 0.34, 6.8, 19, 36 and 58%, respectively. 
 

Table 1. Non Dimensional Natural frequency for various taper ratio. 

 

Taper 

ratio  

(c) 

Frequency 

number (i) 

Non-Dimensional natural frequency 𝜆𝑖 = 𝜔𝑖√ 𝜌𝐸𝐿2 

Rayleigh-Love theory 
Classical theory 

L/r 

2 4 6 8   

0.5 

1 1.162 1.165 1.165 1.165 1.166 

2 4.312 4.527 4.569 4.584 4.605 

3 6.552 7.426 7.623 7.695 7.792 

4 8.045 9.994 10.497 10.690 10.953 

5 8.925 12.195 13.167 13.556 14.105 

0.75 

1 0.844 0.845 0.845 0.845 0.845 

2 4.323 4.491 4.523 4.534 4.550 

3 6.740 7.478 7.631 7.686 7.760 

4 8.376 10.172 10.579 10.729 10.930 

5 9.274 12.533 13.354 13.665 14.088 

 

Figure 2 shows the first five non-dimensional natural frequencies and mode shapes for the conical bar 

with cantilever boundary condition when the taper ratio c = 0.5 and L/r = 4 using both the Rayleigh-

Love theory and the classical theory. Note that the natural frequencies shown in the parenthesis 

correspond to the classical theory. Although the mode shapes for the first three natural frequencies have 

not changed appreciably when applying the Rayleigh-Love theory as opposed to the classical theory, 

the fourth and fifth mode shapes have undergone some changes as can be seen in Figure 2. However, 

for higher order natural frequencies and lower values of L/r ratios, the changes are expected to be much 

more pronounced. The investigation is focused on the free longitudinal vibration of conical bars in the 

high frequency range with lower values of L/r ratios for which an accurate natural frequency 

computation is an essential requirement when carrying out energy flow analysis in structure. The 

classical theory may be deficient in this respect. 
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          Figure 2. Mode shapes of a conical bar.                  Rayleigh-Love theory -------- classical theory. 
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Summary 

Exact solutions are the best possible way for solving a large variety of dynamic problems for 

continuous systems. Within this scope, recent advances have been made in the field of damaged 

structures. In particular, for discontinuos beams, generalised functions have been widely applied 

as an effective modelling strategy for numerous problems in structural engineering [1]. 

According to this approach, a concentrated damage can be conveniently treated as a 

concentrated stiffness reduction mathematically modelled with a Dirac’s delta in the governing 
equation. A similar strategy is based on considering the unknown bending moments at the right 

hand side of the governing equation as, for example, adopted in the governing equation of the 

free vibration of a multi-craked Euler-Bernoulli beam in presence of an additional concentrated 

mass [2]. Here, without considering the presence of a concentrated mass, the following 

governing equation of a a multi-cracked Euler-Bernoulli beam is considered: 

       
4

1

, , ,
n

i i i

io o

mL
u t u t u t

E I
      



  IV II II&& . (1)  

being u(,t) the normalised deflection function,  the normalised spatial abscissa, m the 

distributed mass, L the length of the beam, EoIo the flexural stiffness, in presence of multiple 

cracks located at the abscissae i, i=1,…,n with dimensionless crack compliances i=EoIo/KiL 

(where Ki is the stiffness of the rotational spring equivalent to the crack) which can be collected 

in the vector =[1,2,…,i,…,n]. 

Once the governing equation is properly integrated with the necessary expedients to treat the 

generalised terms, the main advantage of such an approach is avoiding the enforcement of 

continuity conditions at the cracked sections (irrespectively of their number). The enforcement 

of the end conditions only is required leading to a more effective computational strategy. Within 

this method, exact solutions have been proposed for a significant amount of problems (see for 

example the statics of multi-cracked circular arches [3] or the dynamic behaviour of axially 

loaded multi-cracked frames [4]).  

It is remarkable to note that the above mentioned approach presented in [2] avoids enforcing 

continuity conditions at the cracked sections and provides exact solution for the mode shapes. 

However, it can also be noted that the latter approach implies the numerical solution of the 

characteristic equation to obtain the eigenfrequencies. In some cases the Wittrick & Williams 

algorithm is employed to compute the natural frequencies and the relevant mode shapes of a 

structure with the desired accuracy [4]. Numerical solutions of eigen problems can be 

sometimes cumbersome and difficult to handle. For the latter reasons, it would be desirable for 

problems associated to copious computations (e.g. re-analyses, sensitivity assessments, inverse 
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problems and forced vibrations) to have at disposal explicit expressions of the modal parameters 

aiming at fast and simple solutions. Therefore, explicit solutions are enticing tools to solve 

dynamic problems in alternative to cumbersome numerical procedures even when devoted to 

pursue exact solutions. 

Within the study of forced vibrations of multi-cracked beams, the Sherman-Morrison formula 

(which was applied with reference to static interval analysis in [5]) is here employed to 

approximately express the main modal parameters. Precisely, the dependency of the p-th 

frequency parameter  4

p λ , the generalised modal mass  pM λ  and the load term  ;pQ t λ  on 

the crack intensities, by enforcing the correspondence between explicit approximate and exact 

parameters for 2n+1 damage configurations, is explicitly formulated.  

In Figure 1 a comparison between approximate and exact solutions of these modal parameters is 

reported for the single cracked beam shown in Figure 1a (with 1oq  ), demonstrating how the 

considered approximation is in good agreement with the exact parameters. The reported modal 

parameters are normalized by those relative to a reference damage intensity ( 0.2  ). 

(a) (b) 

(c) (d) 

Figure 1. Comparison between exact and approximated modal properties vs crack intensity for 

the beam in (a): (b) frequency parameter, (c) generalized modal mass and (d) load term. 

 

The explicit and accurate expressions proposed for the modal parameters are then employed, via 

modal superposition analysis, to infer explicit solutions of the response of a damaged beam 

subjected to forced vibrations. The latter explicit formulation allows a full sensitivity analysis of 

the response to the damage intensities including, among others, the evaluation of bounds of the 

response. The accuracy of the response sensitivity to the damage, obtained by the proposed 

explicit approach, has been assessed by means of a comparison with the exact solution 

procedure applied to each damage configuration. In Figure 2 the bounds of the response 

associated to a time history computed with this approach (blue lines) are compared to the exact 

results for the beam reported in Figure 1 (considering the characteristics L=5 m, E=2.1*1011 

N/m2, I=8.33*10-6 m4, m=75 kg/m) and subjected to a pulsating load ( 5 /rad s  ) associated 

to a re-analysis according to a scanning exact procedure (grey band). The computational burden 

associated to the approximated approach is significantly lower with respect to the re-analysis 

and the agreement with the exact approach is ensured. 

A further possible application of the presented approach, when the transient contribution is 

neglected, is the evaluation of the frequency-response of a damaged beam (with the same 

physical characterization of the previous application) subjected to a pulsating concentrated load 
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( 1oP  , 5 /rad s  ) at the midspan, Figure 3a . The results relative to the undamped and 

reported in Figure 3b. The results are reported in terms of steady-state transversal displacement 

of the midpoint normalized by the corresponding response of the beam when subjected to the 

static load versus the normalized frequency parameter of the pulsating load 2 2

,1o   . The 

results show how the proposed approximated explicit approach is able to bind the envelope 

obtained with the re-analysis for the whole considered range of the load frequency, also when 

the response is unbounded.  

 
Figure 2. Interval time-domain response for the beam reported in Figure 1a: comparison 

between the exact results associated to a re-analysis (grey band) and response bounds obtained 

with the proposed approach. 

 (a) (b) 

Figure 3. Frequency-response interval spectrum for the undamped beam in (a): (b) normalized 

response bounds obtained with the proposed approach. 

References 

[1] Caddemi, S.; Caliò, I.; Cannizzaro, F.: Closed-form solutions for stepped Timoshenko 

beams with internal singularities and along-axis external supports. Archive of Applied 

Mechanics Vol. 83, No. 4, pp. 559-577, 2013; ISSN: 0939-1533, doi: 10.1007/s00419-012-

0704-7. 

[2] Cannizzaro, F.; De Los Rios, J.; Caddemi, S.; Caliò, I.; Ilanko, S.: On the use of a roving 

body with rotary inertia to locate cracks in beams. Journal of Sound and Vibration, Vol. 

425, pp. 275-300, 2018; https://doi.org/10.1016/j.jsv.2018.03.020. 

[3] Cannizzaro, F.; Greco, A.; Caddemi, S.; Caliò, I.: Closed form solutions of a multi-cracked 

circular arch under static loads. International Journal of Solids and Structures, Vol. 11, pp. 

191-200, 2017; doi: 10.1016/j.ijsolstr.2017.05.026. 

[4] Caddemi, S., Caliò, I., Cannizzaro, F.: The Dynamic Stiffness Matrix (DSM) of axially 

loaded multi-cracked frames. Mechanics Research Communications, Vol. 24, pp. 90-97, 

2017; doi: https://doi.org/10.1016/j.mechrescom.2017.06.012. 

[5] Impollonia, N.: A method to derive approximate explicit solutions for structural mechanics 

problems. International Journal of Solids and Structures, Vol. 43, pp. 7082-7098, 2006. 

ISVCS12 - Page 15 of 146

https://doi.org/10.1016/j.mechrescom.2017.06.012


ISVCS12 - Page 16 of 146



ISVCS12, 12th International Symposium on Vibrations of Continuous Systems

Sporthotel Panorama, Str. Sciuz, 1, 39033 Corvara In Badia BZ - Italy, July 28 - August 2, 2019

Preliminary Assessments on the Development of
Refined Shell Models for Free Vibrations via Machine Learning

Erasmo Carrera, Marco Petrolo

Department of Mechanical and Aerospace Engineering

Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

[erasmo.carrera, marco.petrolo]@polito.it

Summary

This work presents a new framework to build refined shell models for structural dynamics appli-

cations. Shell structural theories are well-established formulations for the analysis of thin-walled

structures [1]. The adoption of refined models with enriched displacement field is of interest for

composite structures to detect various effects including shear deformability and transverse stretch-

ing [2]. One of the methodologies to refine structural models is the Axiomatic/Asymptotic Method

(AAM) [3] exploiting the hierarchical capabilities of the Carrera Unified Formulation (CUF) [4] to

evaluate the influence of each generalized unknown on the solution as design parameters change.

The AAM leads to Best Theory Diagrams [5] in which, for a given accuracy level, the minimum

number of required unknowns is available. The easiest way to obtain a BTD is to evaluate the

accuracy of each combination of unknowns of a given full model. For instance, a fourth-order

equivalent-single-layer model (ED4) has 15 variables leading to 215 reduced models. One of them

is in Eq. 1 in which nine out of 15 unknowns are active, see Fig. 1 for the reference frame.

This paper presents a new methodology to build the BTD with far less computational overhead as

h/2Ωk

α β

z

k-1

Rβ Rα

hk

k

k+1

Figure 1: Shell reference frame.

follows:

1. CUF generates the FEM arrays for the eigenvalue problem on the basis of an ED4 and its

reduced models, (kkkk
τsi j−ω2mmmk

τsi j)uuu
k
τi = 0. Each analysis generates results concerning natural

frequencies and modal shapes.

2. The results from each analysis become the input to train an Artificial Neural Network

(ANN).

3. ANN generates outputs for all the 215 models and for varying design parameters.
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ANN is well-known for its universal approximation capabilities [6]. A typical ANN configuration

has a multilayer feed-forward artificial neural network. Each layer has a finite number of neurons.

This paper adopts Levenberg-Marquardt training functions and a single layer. The coding of inputs

and targets is the following:

• An input is a vector with 15 elements. Each element is either ’1’ or ’0’ to indicate an active

or inactive generalized displacement unknown, respectively.

• Each input has an associated output composed by a vector containing the normalized first

five frequencies and the MAC matrix components. Normalization of frequency uses the

reference values of the full fourth-order model.

As an example, the following equation shows the coded input of a generic shell model:

ux = ux1
+ zux2

+ z4 ux5

uy = uy1
+ zuy2

+ z3 uy4
=> [111111001010100]

uz = uz1
+ zuz2

+ z2 uz3

(1)

The numerical example deals with a simply-supported square laminated shell previously analyzed

in [7]. The shell has a = b, Rα = Rβ = R, and a/h = 10. The material properties are E1/E2 = 25,

G12/E2 = G13/E2 = 0.5, G13/E2 = 0.2, ν = 0.25. The stacking sequence is 0/90/0 with layers of

same thickness. The finite element model of a quarter of shell has a 4×4 mesh as this discretization

provides sufficiently accurate results. Table 1 shows the ED4 reference values adopted to train the

ANN and a comparison with a fourth-order layer-wise model.

Table 1: Reference values for the first frequency, ω
√

ρa4

h2ET
.

R/a = 2 R/a = 5 R/a = 10 Plate

LD4 [7] 12.773 11.685 11.515 11.457

ED4 13.008 11.972 11.811 11.756

Figure 2 shows the accuracies of all the 215 models concerning the first natural frequency and the

BTD. The FEM solution considered all 215 analyses whereas the ANN used 2000 analyses and ten

neurons. Table 2 shows the BTD models. Each triangle indicates a generalized variable and its

color indicates the status of the variable, i.e., ’black’ stands for an active variable and ’white’ for

inactive. For instance, the best shell model with nine DOF is the following:

ux = ux1
+ zux2

+ z3 ux4

uy = uy1
+ zuy2

+ z3 uy4

uz = uz1
+ zuz2

+ z2 uz3

(2)

As shown in Table 2, constant, linear and cubic unknown variables have a more significant role.

The results show that

• The ANN framework is a valid tool to create BTD with reduced computational costs.

• For the problem considered, The importance of third-order terms in the displacement field

is evident.

• The future developments must address the possibility to build BTD via ANN for various de-

sign parameters. Such a development may potentially decrease the computational overhead

even more significantly than in the current numerical examples.
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Figure 2: Verification of the ANN trained with 2000 inputs against FEM 215 FEM results.

Table 2: BTD models
DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 N N N N N N N N N N N N N N N

14 N N N N N N △ N N N N N N N N

13 N N N N N N △ N N N N N △ N △

12 N N N N N N △ N N N N N △ N △

11 N N N N N N △ N N N N N △ △ △

10 N N N N N N △ N N N N △ △ △ △

9 N N N N N N △ △ N N N △ △ △ △

8 N N N N N N △ △ △ N N △ △ △ △

7 N N N N N N △ △ △ N △ △ △ △ △

6 N N N N N N △ △ △ N △ △ △ △ △

5 N N N N N △ △ △ △ △ △ △ △ △ △
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Summary 

Phononic crystals (PCs) have been a hot reseach topic since the concept was proposed nearly 30 
years ago [1]. The particularity of PCs relies on the band gap in its frequency spectrum within 
which the waves can not propagate through the structure. The band gap in PCs is formed by the 
Bragg scattering due to the structural periodicity. Another mechanism, i.e. the local resonance, 
to form the band gap was later found by Liu et al. [2]. Materials with local resonant units are 
known as metamaterials (MMs). PCs are now also included as a particular type of MMs.  
 
MMs have been widely explored to design novel functional devices. In the design of acoustic 
diodes (ADs), which allow waves to propagate only in one-direction but not inversely, there are 
two main approaches. One is to use nonlinear media to change the frequency of the incoming 
wave [3], and the other exploits the wave diffraction phenomena to alter the wave number of the 
incoming wave [4]. But these two approaches are inapplicable to one-dimensional, linear ADs. 
 
A new approach has been developed by the authors to realize one-dimensional ADs in the 
completely linear regime [5]. The design makes use of the free vibration characteristics of the 
AD which is practically of finite size as well as of the functionally graded property that is 
introduced particularly. The key is to make one resonant frequency of the structure locate in the 
band gap, and this frequency is further splitted into two peaks corresponding to the cases that 
the wave propagates in different directions. Then the wave with its frequency identical with one 
peak can propagate from the left to the right for instance, but cannot get through the structure in 
the opposite direction, and vice versa. 
 
This study focuses on the design of tunable one-dimensional linear ADs based on our previous 
work. The tunability is realized by making use of soft materials which can withstand reversable 
large deformation under mechanical loads. The design is shown in Figure 1 below. It consists of 
12 A-phases and 11 B-phases. The material parameters of both A-phases and B-phases may 
vary along the longitudinal direction so as to exhibit a functionally graded property. Either 
phase is soft and hyperelastic, characterized by a compressible Gent model with the following 
form of the energy density function  :  
 

 21 3ln 1 ln 1
2 2m

m m

I
J J J

J J

 
    

          
   

. (1) 
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Here   and   are the shear modulus and the first Lamé’s parameter of the material in the 
undeformed configuration, respectively, 2 2 2

1 1 2 3I       represents the first invariant, and J is 
the volume change ratio. There is a relation among the first Lamé’s parameter, Poisson’s ratio 
 , and shear modulus as   2 / 1 2    . mJ , usually known as the Gent constant, is the 
dimensionless stiffening parameter of the material. When mJ  , the above Gent model 
degenerates to the neo-Hookean model. It is noted that although the material is nonlinear, we 
only consider the linear waves (and hence linear ADs) superimposed on a finite deformation.  
 

 
Figure 1. A graded AD subject to lateral bi-axial stretch and longitudinal pre-stress. When we 
consider the case that the wave propagates from the left to the right, a dynamic displacement of 

unit amplitude is imposed on the left end, and vise versa. 

 
The graded AD can be subject to lateral bi-axial stretch 1  and longitudinal pre-stress 33  as 
shown in Figure 1. These mechanical loads will alter the geometry of the AD and the effective 
material properties of either phase, and hence can change the propagation behavior of the 
superimposed infinitesimal linear elastic waves. In this study, the finite pre-deformation 
analysis is carried out based on the fully nonlinear theory of hyperelasticity, while the wave 
analysis relies on the linear perturbation of the original nonlinear governing equations. Since the 
material is functionally graded, the approximate laminate technique [6] is employed here, along 
with the state-space formulations, to achieve an efficient and accurate wave analysis. 
 
For numerical illustration, we suppose that the normalized shear modulus of the p-phase varies 
in the form of    3 3 / 2p p px K x D      in the undeformed configuration, where 

pK  

denotes the grading degree of material p, p  is the normalized shear modulus at 3 / 2x D , and 

12 11A BD h h   is the total length of the AD, with Ah  and Bh  being the thicknesses of the 
layers A and B respectively. In the calculation, we take the normalized densities as 

0 0 1A B    , normalized shear moduli as 2,  1A B    , thicknesses as 0.5A Bh h  , 
Poisson’s ratios as = =1/3A B  , and Gent constants as 10mA mBJ J  . The normalization is 
taken with respect to the silicon rubber Zhermarck Elite Double 32 [7]. 
 
We here fix 1=1  and examine the effect of pre-stress on the transmission (defined as the 
logarithm of the displacement ratio between the output and input ends) spectrum of the finite 
graded AD. To display the influences of material grading degrees on wave propagation under 
mechanical biasing fields, we take 0.02, 0.02A BK K   to enhance the asymmetry of the finite 
structure. We show the transmission spectra in Figure 2 around the first band gap under the 
normalized pre-stresses 0

33 =0, 4, 8, and 12, respectively. L  and R  indicated in the figure 
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denote the resonant frequencies of waves propagating along opposite directions. It is found from 
Figure 2 that when the pre-stress equals 8 the band gap of the PC will be closed. Also, the 
resonant frequency peaks outside the band gap are seldom affected by the grading degree of the 
material. However, we can see from Figures 2(a), 2(b), and 2(d) that the grading of material 
properties induces the separation of the resonant frequency peaks in the band gap and 
asymmetric transmission behaviors in opposite propagation directions are gained. Additionally, 

L  and R  vary along with the band gap when the pre-stress changes. Thus we can conclude 
that the two-way filtering of the finite graded AD can be effectively tuned by the pre-stress. 

   

  

Figure 2. Transmission spectra under different pre-stresses ( 0.02, 0.02A BK K  ). 
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Summary 

Detection of structural damage is an important and technically challenging problem. As a 

consequence of manufacturing defect, improper use, service wear, fatigue or even sabotage, 

engineering assets (e.g., land/water/air/space vehicles, civil infrastructure and heavy equipment) 

experience continuous accumulation of damage over their lifespan. The damage, in whatever 

form it manifests, can considerably jeopardize the structural integrity and system functionality, 

potentially leading to catastrophic failure without timely detection. With safety being the 

paramount priority for all engineering assets, reliability, integrity and durability criteria must be 

strictly met. To meet this requirement, a large variety of nondestructive evaluation (NDE) 

methods have been developed in the past. Most of these well-defined techniques can fulfill 

offline detection of local damage in small-scale structural fragments. In practice, however, it is 

highly imperative to develop continuous and automated damage evaluation techniques 

conducive to implementation of online damage characterization. Such a consensus has entailed 

intensive research and development activities on damage identification and structural health 

monitoring (SHM) in the past two decades. 

 

 

In this talk, a vibration-based damage identification method, referred to as Pseudo-Excitation 

(PE) technique, is reviewed. Envisaging the existing deficiencies of the conventional vibration-

based damage detection method in terms of insensitivity to small damage, and driven by recent 

breakthroughs in advanced signal processing and measurement technology, a novel inverse 

damage identification technique was developed, by canvassing locally perturbed dynamic 

equilibrium characteristics of a structural component (exemplified by beam and plate elements) 

governed by high-order spatial derivatives. The basic philosophy behind is that an intact 

structure locally satisfies a certain type of dynamic equilibrium based on certain physical laws 

such as the local equation of motion. Upon occurrence of damage, the dynamic equilibrium of 

the intact structural is locally perturbed, resulting in a residual term in the dynamic equation, 

equivelent to a virtual pseudo-excitation, which can be used to pinpoint the damage occurrence. 

 

Different versions of the approach, relying on the integral utilization of multi-types of structural 

vibration signals, are formulated. By exploring the local equilibrium of the structure, both 

“strong” and “weak” versions of PE technique are derived. Taking a beam component as an 

example, the strong formulation directly explores the structural equilibrium based on the dense 

displacement measurement, with a damage index DI defined as : 
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Its weak counterpart introduces a weighting  function  x  and a windowed integration as 
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x x x dx








                                                                                                   (2) 

Through a proper choice of  x  and integration by part, various forms of DI expressions can 

be generated and used to avoid direct higher-order derivatives of structural vibration signals. 

This, by the same token, allows the use of different measured vibration signals (e.g., vibration 

displacements, rotations and dynamic strains, etc.). Such a merit gives rise to the possibility of 

integrating multi-types of vibration signals to achieve improved detection accuracy whilst 

increasing the robustness of the approach against meaurement uncertities and reducing the 

number of measurement points. As an example, damage detection of beam-like and plate-like 

structures using both laser-vibrometer and Micro Piezoelectric Fiber sensor array will be 

demonstrated. A typical detection result is shown in Fig.2, in which multiple damge (debonding 

of a metal-concrete joint) is detected.  

 

             
a)                                             b) 

 

 

c) 

Figure 1. Examples of damaged strcutures. a). Corrosion damage in a plate-beam assembly ; b). 

Debonding of a metal-concrete joint; c). Metal-core piezoelectric fiber-based smart layer. 

 

 

 

 

 

 

 

Figure 2. A typical detection result on a beam with multiple damage (debonding of a metal-

concrete joint). DI from the strong formulation using displaccement data coverted from a Laser-

vibro-meter meaurement. 
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Summary 

The Fourier method of separation of variables is a standard approach used to solve forced 
vibration problems of linear continuous bodies, when a force is applied inside the body. 
Vibration problems in which a force (stress) or displacement are prescribed on the boundary are 
also of much interest. Such problems arise in a natural way, e.g., in the determination of the 
forced vibration of piezoelectric continua, when electrical potential is applied to electrodes 
placed on the surface of a piezoelectric body. Some of the methods discussed below are now 
also being implemented to study the vibration of piezoelectric 3-D bodies subject to excitation 
by electrostatic potential applied to the boundary. 

When problems with boundary excitation are solved using the Fourier method, the satisfaction 
of the boundary condition is not straightforward, since the solution is obtained in terms of the 
modal shapes of the corresponding homogenous problem. This talk will review several methods 
that can be used to analyse vibration problems with time-varying boundary conditions, with 
emphasis on the character of the convergence of solution. The solution approaches include:  
a method by which a problem with non-homogenous boundary conditions is transformed, by  
a proper change of the dependent variable, to one with homogenous boundary conditions,; the 
use of the Laplace transform technique; Green function approach; and the use of the theory of 
generalized functions (distributions). The mode superposition method can also be applied to 
other one-dimensional problems and to more complex geometries, including two- and three-
dimensional bodies. This is not true of the travelling wave solution method, which can be used 
e.g. for bars. One interesting application of the series solutions is in the field of optimal control 
of continuous systems. A solution method will be presented, which allows the calculation of the 
optimal boundary control force, which brings a bar with the prescribed initial conditions or/and 
subjected to given transient excitation to rest at a given time T. 

To illustrate different approaches, longitudinal vibration of an elastic bar with one end fixed and 
a time-varying force applied to its right end is considered. The problem is described by the 
governing equation with the prescribed initial and boundary conditions: 
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The initial conditions and the distributed forces pose no solution problems, and they have been 
taken to be equal to zero. In Eq. (1), )(tP is a force applied to the bar right end. 

I. Transforming the problem by a change of the dependent variable 

 
One sets: )(),(),( txtxztxu  , and problem (1) with a non-homogenous boundary condition 

is transformed to that with a homogenous one: 
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Assuming that the applied force is a smooth enough function of time, problem (2) can be solved 
in a standard way. Of the four methods discussed this approach is the only one, for which the 
boundary condition at the bar right end is satisfied if one sets lx  .     

 
II. The Laplace transform method 

 
One takes the Laplace transform with respect to time of  (1), so that the following expression for 
the Laplace transform of the solution is obtained: 
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To find the time response, one uses the inverse Laplace transform formula together with the 
residue theorem of complex analysis. The residues are calculated at the poles (zeros of the 

denominator of (3)), which are equal to: ,2,1,0,)12(
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the imaginary unit). Thus, the response to a force )(tP  acting on the right end of the bar is:     
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The Laplace transform of the longitudinal force in the bar is dxpxuEAdpxN /),(),(  , where 

),( pxu is given by Eq. (3). Assuming a force )()( 0 tHPtP  , where )(tH is the Heaviside 

function, the longitudinal force in the bar is equal to:   
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Expression (5) can also be obtained by taking the derivative of series (4), showing that  
differentiating the series term by term is justified in this case. Series (5), being expressed in 

terms of the vibration modes of a fixed-free bar, is equal to zero for lx  . The boundary 

condition is satisfied in the limit as x tends to l, and there is a discontinuity at lx  . 
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III.  The use of  Green  functions 

 
It is known from potential theory, heat conduction and the analysis of the wave equation, that 
the Green function of a homogenous problem can be used to calculate the response to the 
prescribed boundary conditions. In the present case, when a force is applied to the right end of 
the bar, use is made of the time-dependent Green function of a bar with the left end fixed and 
the right end free, the explicit expression of which is given by the series: 
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Making use of this Green function, the solution of the non-homogenous problem can be 
calculated using the formula: 
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This solution coincides with (4). 
 

IV. The use of generalized functions (distributions)  

 
It is possible to treat the force acting on the right end of the bar as a distributed force, expressed 
by the Dirac delta-function. If one then calculates the Fourier solution of the forced vibration 
problem, expanding the solution by the mode shapes of a fixed-free rod, result (4) is obtained 
once again. A more rigorous and more general method making use of the theory of distributions 
will be presented during the Symposium, which can handle a wide range of problems, including 
one-dimensional problems with prescribed force or displacement excitation, equations with 
several independent variables, as well as problems described by a set of differential equations 
with non-homogenous boundary conditions.     
 
It will be shown that in the direct vicinity of the right end the force in the bar obtained by the 
first solution method has a better behaviour than that obtained by the remaining methods, which 
effects the number of terms needed to obtain accurate results in this region. On the other hand, 
only solutions II, III and IV are applicable to the approach that will be used to calculate the 
optimal control force.        
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Summary

Inflatable structures have received considerable attention in the recent past due to their advantages
of light weight, quick and self-deployability, and compact storage. Such structures are typically
found in terrestrial and space applications [1]. However, the membrane material is usually very
thin and has material nonlinearity. Further, large deformations of the membrane make the problem
geometrically nonlinear as well. Some initial references on the large deformation analysis are
available in [2, 3, 4]. In this work, however, we focus our attention on a simple axisymmetric
inflated beam. We aim at obtaining a one-dimensional theory for such inflated structures, and
studying the modes of vibrations about an equilibrium configuration.

z, w

l

x

Figure 1: Schematic diagram of an inflated axisymmetric beam

We consider an axisymmetric inflated beam, as shown in Fig. 1. The beam is assumed to be inflated
starting from an initial tube of uniform radius. The ends of the beam are assumed to be closed by
light discs that maintain a constant end-radius, and are simply-supported. We assume that the
structure executes oscillatory motion about its equilibrium straight configuration. The existence
of a neutral plane, and negligible damping and pressure variations are assumed. The structural
time period is assumed to be much larger than the acoustic time period. The membrane material is
considered to be a homogeneous and isotropic hyperelastic solid.

Consider the deflection of a small element of the beam, as shown in Fig. 2. The surface of the
beam is parametrized by (θ ,z), where θ is the angular coordinate, and z is the axial coordinate.
Upon deflection, the cross-section may not remain orthogonal to the neutral fiber, whose deflection
is represented by the field variable w(z, t). This implies that the element will undergo both flexure
and shear. To model this simply, we introduce an unknown complementary shearing factor α in
the kinematics of rotation of the cross-section. Further, the cross-section of the beam will also
deform and ovalize, which is captured by introducing two more field variables u(z, t) and v(z, t).
We combine all these effects in our kinematics of deformation of the beam element as follows.
The parametrization of beam surface in the undeflected configuration may be written as

x1 = a(z)cosθ , x2 = a(z)sinθ , x3 = z (1)
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x

(a)

(b)

Figure 2: Deformation of (a) a beam element, and (b) a beam cross-section

where a(z) is the radius of the beam. In the deflected configuration, the parametrization is ex-
pressed as

x̃1 = [a+u]cosθ , x̃2 = w+[a+ v]sinθ , x̃3 = z−α [a+ v]sinθ w,z (2)

where w,z = ∂w/∂ z.

Using these parametrizations, one can now determine the induced metric tensors gi j and g̃i j in the
undeflected and deflected configurations, respectively. The material strain energy function of an
incompressible hyperelastic membrane can then be written as

Vm =
∫ l

0

∫ 2π

0
[C1(I1 −3)+C2(I2 −3)]h

√
gdθdz (3)

where C1 and C2 are material constants, I1 = gi jg̃i j +λ 2
3 , I2 = g̃i jgi j +1/λ 2

3 (summation convention
used), h is the thickness of the membrane in the undeformed state, and λ 2

3 = g/g̃ (obtained from the
incompressibility condition). The potential energy of the gas is given by Vp =

∫
Ω p dΩ, where p is

the gauge pressure of the gas, and dΩ is the volume element. We convert this volume integral into
an area integral using the Gauss divergence theorem, and write the total potential energy function
as V = Vm −Vp. The kinetic energy of the beam is written as

T =
1

2

∫ l

0

∫ 2π

0
ρ[( ˙̃x1)2 +( ˙̃x2)2 +( ˙̃x3)2]h

√
gdθdr (4)

where ρ is the density of the membrane material. Finally, we form the Lagrangian of the structure
as L = T −V , and write the action as S =

∫ t2
t1

L dt. Using the Hamilton’s principle, one can
derive the partial differential equations of motion of the beam. However, we use the Ritz method
to discretize the equations of motion, and perform the discrete modal analysis.
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(a) (b)

Figure 3: (a) Sinusoidal, and (b) varicose modes of vibration of an inflated beam

We consider a simply-supported beam of length l with the following geometric boundary condi-
tions u(0, t) = u(l, t) = 0, v(0, t) = v(l, t) = 0, and w(0, t) = w(l, t) = 0. The horizontal diameters
of the two end-discs are assumed to be fixed. The Ritz expansion is assumed to be of the form

u(z, t) =
N

∑
n=1

an(t)sin
nπz

l
, v(z, t) =

N

∑
n=1

bn(t)sin
nπz

l
, w(z, t) =

N

∑
n=1

cn(t)sin
nπz

l

where an(t), bn(t) and cn(t) are the modal coordinates. Substituting these expansions in the action
and using the Hamilton’s principle yields

δ
∫ t2

t1

L (a,b,c, ȧ, ḃ, ċ, p,α) dt = 0 (5)

⇒ M(α)Ÿ+K(p,α)Y = 0 (6)

where Y = [aT ,bT ,cT ]T is the vector of the modal coordinates, and M and K are, respectively, the
modal mass and stiffness matrices.

We perform the discrete modal analysis of (6) for a specific pressure p. At this stage, the comple-
mentary shearing factor α is determined by minimizing the eigenfrequencies. The results obtained
for a simply supported inflated beam indicate two kinds of modes, namely the sinusoidal mode and
the varicose mode, as shown in Fig. 3. In a similar manner, by appropriate choice of shape func-
tions, one can also study other boundary conditions.

Acknowledgement: This work was initiated when the author was visiting Professor Peter Hage-
dorn at Darmstadt with a Research Fellowship from the Alexander von Humboldt Foundation.
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Summary

Machine learning methods allow to find patterns and regularities in data: the available data is

conveyed in a training set, used by an algorithm which modulates the adjustable parameters of

a model; these are supposed to rule the system behavior. Such modulation is called learning

and it provides to a computational device the capability of improving its performance on the task

without being explicitly programmed. A trained algorithm should be able to generalize, i.e. to

provide a correct output when interrogated with an input that does not belong to the training set.

An algorithm unable to generalize is said to overfit.

An example of machine learning application in vibroacoustic field is given by Sharp et al. [1];

they classify unknown railway vibration signals to derive exposure-human response relationships.

Recently, Wang et al. [2] have combined Finite Element Method (FEM) and Artificial Neural

Networks (ANN) to predict the behavior of human auditory system. These works show how the

choice of the right characteristic to train with a machine learning algorithm strongly affects the

results, because each case study depends on its own set of features. Data selection (range, quality

etc.) and feature choice are fundamental steps when using machine learning.

Therefore, pattern recognition techniques show to be very helpful. Learning from data, they are

able to exploit the information in order to perform predictions in an automatic way. Such prediction

capabilities may help to maximize the amount of information obtainable from any kind of test

minimizing, at the same time, the number of simulations. This is helpful especially when testing

experimentally systems in similitude. In fact, it is unfeasible to produce a full set of structures,

form a financial and a temporal point of view; furthermore, it is useless to produce test articles too

large or too small because they could be not easily analyzed during an experimental phase.

Nonetheless, the predictions of analytical and numerical tests must be necessarily validated, thus

experimental tests are fundamental when designing a new product. Unfortunately, experiments

are money and time consuming; in addition, some experimental uncertainties can lead to repeated

test-sessions. For these reasons, it is useful to test a scaled (up or down) version (called model) of

the full-scale structure (called prototype) to overcome many of the cited problems. However, the

model exhibits a response different from the prototype, thus it is needed a tool that would allow

to design the model and, by testing it, to reconstruct the response of the prototype. Similitude

theory provides such tools, the similitude methods, which provide the similitude conditions that,

if satisfied, allow to derive a set of univocal scaling laws linking the system response to the input

parameters (geometrical, material, excitation etc.). When this happens, a replica is obtained and

the prototype response is perfectly predicted. If, at least, one of the conditions is no more satisfied,

then an avatar is obtained: avatars lack of univocal scaling laws and the prototype behavior is hard

to be reconstructed with acceptable errors.
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Literature provides many similitude methods. The most important is the dimensional analysis,

based on the definition of dimensionless groups by means of Buckingham’s Π Theorem, and it

has been used for the first time in structural engineering by Wissmann [3]. Simitses and Reza-

eepazhand [4] use Similitude Theory Applied to Governing Equations (STAGE), a method which

introduces the scale factors directly into the governing equations of the system, to analyse lami-

nated plates under different loading conditions. De Rosa and Franco [5] investigate the possibility

to reduce the computational costs by means of similitude with Asymptotical Scaled Modal Anal-

ysis (ASMA), that reduces the extension of the parameters not involved into energy transfer. Suc-

cessively, they propose a new method, Similitude and Asymptotic Models for Structural-Acoustic

Research Applications (SAMSARA), based on the generalization of modal approach which allows

to involve the modal parameters into the scaling process [6]. However, other relevant methods exist

and a comprehensive review is provided by Casaburo et al. [7].

In this work, machine learning is applied, for the first time, to similitude theory in order to investi-

gate its prediction capabilities in determining the natural frequencies and the scaling characteristics

of a structure. Particular attention is given to avatars, that are the most interesting models because,

for many reasons (for example boundary conditions, common uncertainties), they are more prob-

able than the proportional-side ones. Furthermore, they may rise during manufacturing processes

because of errors or limits of the process itself. Therefore, avatar understanding is fundamental but

the lack of univocal scaling laws limit the control on their responses. To overcome such problem,

the generalization capabilities of ANNs have been investigated. ANNs, loosely ispired to human

brain, are machine learning methods useful to reproduce nonlinear functions; their architecture is

characterized by computational units, called neurons, organized in layers: the output of one layer

is the input to the successive one.

To test these capabilities, a simply supported aluminium plate, having length, width and thickness

equal to a = 2 m, b = 1 m, t = 0.002 m, and its models have been considered. According to

SAMSARA, the similitude condition is ra = rb (from here, the model is also called proportional

sides), that leads to the univocal scaling law

r f =
rt

r2
a

=

rt

r2
b

(1)

When the condition is not fulfilled (ra 6= rb), the relation between input and output parameters is no

more univocal and neither of the scaling laws derived is able to reconstruct the prototype response

in all the frequency range with an acceptable accuracy.

Results have been carried out using the first five natural frequencies as inputs and the scale factors

of length and width as outputs. To characterize the neural network (number of training exam-

ples, number of layers and neurons), a trade-off among an acceptable error, overfitting avoidance

and computational time has been performed by means of a trial-and-error approach. Levenberg-

Marquardt algorithm is used for training and it is coupled with Bayesian regularization to have a

better control on overfitting [8]. The network used has four hidden layers (5–10–15–5 neurons)

and is trained on 3662 examples. They are randomly sampled from a set made of models having

length and width scale factors ranging from 0.5 to 4, with steps of 0.05. After the training, the

network performance is tested on 8 models: 2 proportional sides (PS) and 6 avatars (A). It has to

be remarked that for the proportional sides the models exactly reproduce the prototype. Fig. 1

shows the ANN performance by comparing the analytical scale factors (x-axis) with the predicted

ones (y-axis) of the above-mentioned 8 test models. The bisector (blue line) represents the locus

of points along which the analytical and predicted results are equal.
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Figure 1: predicted VS analytical scaling factors: (left) length, (right) width.

The ANN performance is, generally, good. In fact, the predictions of many test models lie on the

bisector, which is an index of good generalization. Two models lie far from the bisector: PS1 and

A6, showing that in both cases it is still possible to have poor correlation between analytical and

predicted results. Such discrepancies are measured by the mean square error (MSE), that in this

case is approximately 0.23, coherent with the results. These outcomes demonstrate the usefulness

of machine learning methods and motivate the efforts to identify more suitable techniques that

would allow to obtain better results and, at the same time, to gain a greater control over the method.
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Summary

Introduction. Due to their high strength to weight ratio, sandwich panels are adopted as structural

members in several engineering applications, such as space launchers and ship hulls. They can

be considered a particular case of composite structures, featuring a fundamental pattern of two

stiff and thin outer sheets, the skins, enclosing a relatively thick and compliant layer, the core. As

opposed to the case of thin-walled panels, a complicating effect of sandwich panels is due to the

strong mismatch of geometric and constitutive properties along the thickness, which induces sharp

gradients across the thickness direction. For this reason, specific ad-hoc structural models are typi-

cally required to obtain accurate and reliable predictions of their dynamic behavior. The evaluation

of the acoustic performance of sandwich panels can be also crucial in some applications. Indeed,

interior noise quality and speech intelligibility has become increasingly important in modern light

and fast transportation vehicles, where novel arrangements are designed through the adoption of

sandwich configurations to achieve high structural efficiency. In particular, various solutions have

been studying in the aerospace industry with the aim of improving the cabin acoustic comfort,

especially for VIP aircrafts and helicopters. A common way to reduce the noise radiated by a vi-

brating fuselage panel is to add viscoelastic materials. The most efficient solution is the so-called

constrained-layer damping treatment, where a viscoelastic layer is inserted between the vibrating

structure and a constraining rigid layer, thus leading to a sandwich configuration. Another effec-

tive approach for noise reduction is to adopt inner fuselage panels, called trim panels, specifically

designed for optimizing the acoustic absorption or the transmission loss (TL). Trim panels have

typically a classical sandwich multilayer structure with stiff facesheets and a thick low-density

core.

Motivation. In both previous approaches, the material and thickness of core and skins of the

sandwich panel, the number of layers of external sheets, the topology of the core and the total

and relative thickness are, among others, important design parameters affecting the acoustic per-

formances of the structural component. The acoustic design can be further complicated by the

adoption of less-conventional and innovative configurations involving multiple cores. Since an

extensive experimental campaign is lengthy and costly, suitable numerical simulations can be car-

ried out to guide the design process, i.e., to evaluate the effect of the main parameters and to study

the nature and arrangement of layers. However, accurate 2-D modeling of multilayered sandwich

panels for vibration and acoustic analysis is challenging, mostly due to their highly heterogeneous
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anisotropic constitution in the thickness direction and the wide frequency range of interest. In

particular, it can be difficult to identify sufficiently simple yet reliable theoretical models without

unnecessary complexity.

Mathematical formulation. In this work, a powerful and effective numerical tool for the acous-

tic analysis of composite panels of finite extent having classical and complex advanced sandwich

configurations is presented [1]. Main feature of the proposed formulation is the versatile kinematic

representation of the displacement field along the thickness direction, consisting in the represen-

tation of the plate by means of sublaminates, i.e. arbitrary groups of adjacent plies composing the

panel. Each sublaminate is associated with an independent and arbitrary kinematic description,

either equivalent single-layer or layerwise, so that the use of refined high-order theories can be

tailored to specific thickness subregions. Accordingly, each component of the 3-D displacement

field in the generic ply p of the sublaminate k is postulated in a layerwise (LW) manner as follows:

u◦(x,y,zp, t) = Fαu◦
(zp)u

p,k
◦αu◦

(x,y, t) αu◦ = 0, . . . ,Nk
u◦

(◦= x,y,z) (1)

where zp is the local ply-specific thickness coordinate, Fαu◦
(zp) are thickness functions, u

p,k
◦αu◦

is

the kinematic coordinate of the adopted 2-D approximation, Nk
u◦

is the order of expansion taken

as a free parameter, and the summation is implied for repeated theory’s indexes αu◦ . It is noted

that equivalent single-layer (ESL) sublaminate model can be recovered by setting zp equal to the

sublaminate-specific thickness coordinate zk. The thickness functions are taken as a proper com-

bination of Legendre polynomials so that the continuity between adjacent plies or sublaminates

is easily imposed. The equilibrium equations are derived through the Principle of Virtual Dis-

placements (PVD). Once a specific plate theory is postulated through Eq. (1), the corresponding

displacement approximation is substituted into the PVD equation so that the original 3-D prob-

lem is transformed into a 2-D problem in the x− y plane. The resulting variational form contains

2-D generalized kinematic coordinates, which are further expressed through a Ritz expansion as

follows:

u
p,k
◦αu◦

(x,y, t) = Nu◦i(x,y)u
p,k
◦αu◦ i(t) i = 1, . . . ,M (◦= x,y,z) (2)

where Nu◦i(x,y) form a complete set of admissible functions, which are taken as the product of

Legendre polynomials and proper boundary functions after defining the problem in the computa-

tional domain (ξ ,η), with ξ ,η ∈ [−1,1]. After substituting Eq. (1) and Eq. (2) into the PVD, the

discretized weak form of the dynamic equilibrium equations can be expressed in compact form

by means of self-repeating building blocks, denoted as fundamental kernels of the formulation,

which are invariant with respect to the number of sublaminates, the typology of the local kine-

matic description (ESL or LW) and the orders of expansion of each local displacement quantity.

Accordingly, the proposed approach allows for the hierarchical generation of plate models with

different 2-D kinematic descriptions from the same unified mathematical framework. The expan-

sion and assembly procedure involves four main steps. The first step deals with the expansion of

the kernels according to the summation related to the order of the kinematic description postulated

in each sublaminate. The second step is the assembly of the ply-contributions in each sublaminate

involving a cycling over the index p. All sublaminate contributions are subsequently stacked along

the thickness coordinate to account for the continuity of the generic displacement variable at the

interfaces between adjacent layers. The sublaminate contributions of different layers are always

assembled in a LW manner. The assembly of the sublaminates contributions involves the cycling

over the index k. The final step deals with expansion corresponding to the summation related to

the Ritz series approximation of the kinematic quantities. Once the final set of equations govern-

ing the structural problem is obtained, the acoustic performance of the panel can be evaluated.

In particular TL simulations are performed by assuming the plate in an infinite rigid baffle with a

negligible air loading and imposing a diffuse field on one side of the panel through a set of incident
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plane waves of same amplitude and different incidence angle (θ ,φ). The incident pressure field

on the top side of the panel can be expressed as p = 2e− jk sinθ(xcosφ+ysinφ) where k = ω/c0 is the

wavenumber. For each incident wave, the incidence transmission coefficient is computed as

τ(ω,θ ,φ) =
2ρ0c0P(ω,θ ,φ)

Scosθ
(3)

where S is the panel area and the radiated sound power is evaluated in terms of elementary radi-

ators [2]. Finally, the diffuse transmission loss is computed as TL(ω) = −10log(τd(ω)), where

τd is the diffuse transmission coefficient derived by integrating the response of all incident plane

waves over the incident angle and weighting them with the solid angle to account for the directional

distribution.

Figure 1: Stacking sequence of a sandwich

acoustic trim panel.

Figure 2: Diffuse transmission loss: compari-

son between numerical predictions and experi-

mental data.

Illustrative example. Some vibration and TL results on different sandwich plates will be pre-

sented and discussed at the Symposium, including also comparison with experimental data, to

show the effectiveness of the proposed approach. An illustrative example is here reported in

Figure 1, which shows the stacking sequence of an acoustic trim panel of size 0.90× 0.90 m2,

thickness 21.7 mm, with clamped boundary conditions and composed of melamine foam placed

between Nomex honeycombs and external fiberglass layers. The simulation of the TL and the

experimental measurements are compared in Fig. 2. The numerical model is built by properly sub-

dividing the plate into five sublaminates having first-order kinematics in the outer stiffer thickness

regions and a higher-order normal and shear deformation theory in the internal soft layer. The

high TL is assured thanks to a dilatation effect of the foam from medium frequencies and the static

bending stiffness of the honeycombs. The peculiar behavior of a double wall resonance around

600-700 Hz is observed and well predicted by the simulation using a model suitably tuned to give

an optimal balance between accuracy and computational cost.
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Summary 

Three new analytical solutions for vibrations of shallow shells with two principal 

constant curvatures are presented in this work. The new solutions address different 

cases of in-plane and out-of-plane boundary conditions, and provide an interesting 

insight into the dynamics of such shells. The formulation is here applied to cylindrical, 

spherical, elliptical paraboloidal, and hyperbolic paraboloidal shallow shells, as 

illustrated in Figure 1. Previous works in this field have not addressed the present 

boundary conditions in analytical form. 

 
Spherical Cylindrical Hyperbolic Paraboloidal 

Rx = Ry = 100 Rx = 100; Ry = 10000 Rx = 100; Ry = -150 Rx =100; Ry = 200 

    

 

Figure 1: Sample shallow shells with two principle constant curvatures 

 

The linearized equations of motion for the harmonic linear vibrations of shallow shells 

are three coupled differential equations with three unknowns, u(x,y), v(x,y), and w(x,y), 

and are given as [1,2] 

         (1) 

         (2) 

         (3) 

where the origin of the coordinate system is placed at the apex in each case. These 

equations are solved analytically for four cases of boundary conditions as given below 

and illustrated in Figure 2. 
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Case 1 { 
v(+/- a/2,y) = w(+/- a/2,y) = w,xx(+/- a/2,y) = 0, 

(4) 
 

u(+/- b/2,x) = w(+/- b/2,x) = w,yy(+/- b/2,x) = 0, 

Case 2 { 

 

(5) 

v(+/- a/2,y) = w(+/- a/2,y) = w,xx(+/- a/2,y) = 0, 

 

v(+/- b/2,x) = w,y(+/- b/2,x) = w,yyy(+/- b/2,x) = 0, 

 

Case 3 { 
u(+/- a/2,y) = w,x(+/- a/2,y) = w,xxx(+/- a/2,y) = 0, 

(6) 
 

v(+/- b/2,x) = w,y(+/- b/2,x) = w,yyy(+/- b/2,x) = 0, 

 

Case 4 { 
u(+/- a/2,y) = w,x(+/- a/2,y) = w,xxx(+/- a/2,y) = 0, 

(7) 
 

u(+/- b/2,x) = w(+/- b/2,x) = w,yy(+/- b/2,x) = 0, 

 

 Case 1 Case 2 Case 3 Case 4 

In-Plane 

    
 

 

 

 

Out-of-

Plane 

 

 

              SS 

 

SS                        

SS 

 

 

              SS 

              G 

 

SS                          

SS 

 

 

              G 

                G 

 

 G                          

G 

 

 

                G 

              SS 

 

G                          

G 

 

 

              SS 

 

The analytical solutions that satisfy exactly the differential equations and all the 

boundary conditions for the four cases are given in Table 1 below. 

Table 1: Analytical solutions for the four cases investigated 

 

 Case 1 Case 2 Case 3 Case 4 

u     

v     

w     

where  = n/a and  = m/b with  m and n odd numbers, and a and b are the dimensions 

in the x and y directions, respectively.  Substitution of the solution into Eqs. (1-3) results 

in three equations with three unknowns for each value of m and n, leading to 
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                                         (8) 

 
The explicit expression for the entries of matrix A can be found in Ref. [1], and they are the 

same for all four cases of boundary conditions. Thus, for the four cases investigated, one gets 

the surprising result that the frequencies are the same but the associated mode shapes are very 

different, as can be seen in Figure 3 where the first four modes are ploted. 

 

 Case 1 Case 2 Case 3 Case 4 

n=1, m=1 

    

n=1, m=3 

    

n=3, m=1 

    

n=3, m=3 

    
 

Figure 3: Four mode shapes for the four combinations of boundary condition 

investigated, for an hyperboloidal shallow shell (a = 1, b = 1.5, Rx = 100, Ry = -150, 

 = 0.3) 

 

For the shallow shells, the present results indicate that the specific changes in boundary 

conditions investigated have a consequence on the modes of vibration but do not affect the 

natural frequencies of the shell. 
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Summary 

In the linear theory of one-dimensional solids, the vibrational behavior of the cross-section is 

usually split into deformation patterns associated with axial, torsional, and flexural mode shapes. 

Each of these behaviors is represented by a single ordinary differential equation in the axial, 

rotational, and transverse displacement components that are completely uncoupled. The natural 

frequencies associated with these classes of displacement are well known and depend on the 

material density,  cross-sectional area, moments of inertia, material properties, and length of the 

section. In all of these cases, the problem has been linearized and it is not possible to determine 

the unique value of the amplitude of the vibrational motion.  Since many if not most structural 

applications rely on design constraints in which the displacements must remain infinitesimal, this 

is a reasonable assumption.  

 

The difficulty comes when the amplitude of vibration is no longer small. The earliest and most 

dramatic example of this was presented by Woinowsky-Krieger in 1950 for the case of the planar 

hinged-hinged beam. In this case, the axial and transverse displacements are no longer 

independent and are represented by the two coupled ordinary differential  equations 

 𝜕𝜕𝑥 {𝐴𝐸 [𝜕𝑢𝜕𝑥 + 12 (𝜕𝑤𝜕𝑥)2]} + 𝑓 = 𝜌 𝜕2𝑢𝜕𝑡2  

 

(1)  

 𝜕2𝜕𝑥2 (𝐸𝐼 𝜕2𝑤𝜕𝑥2) + 𝜕𝜕𝑥 {𝐴𝐸 𝜕𝑤𝜕𝑥 [𝜕𝑢𝜕𝑥 + 12 (𝜕𝑤𝜕𝑥)2]} + 𝑞 = 𝜌 𝜕2𝑤𝜕𝑡2  (2)  

 

Here A is the section area, I is the second moment of area, f and q are distributed axial and 

transverse forces, u and w are the axial and transverse displacements, ρ is the material density, x 

is the independent axial coordinate, and t is time. Woinowsky-Krieger (1950)  found the 

relationship between the frequencies under large deformations for an Euler-Bernoulli beam  to be 

considerably larger than those of the linear theory. Many other studies have confirmed this 

behavior.  Most of these studies focused on Euler-Bernoulli descriptions of the beam bending. 

The Timoshenko theory was used by Sarma and Varadan (1985) and a higher-order beam theory 

was used by Heyliger and Reddy (1988). Recent work by Pagani and Carrera (2018) and Filippi, 

Pagani, and Carrera (2018) used the Carrera Unified Formulation to condense many of these 

theories under a single generalized class of approximation. 
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There are several limitations with many existing one-dimensional beam theory formulations. The 

first is inclusion of only the dominant nonlinear term (𝜕𝑤/𝜕𝑥)2 in the governing equations of 

motion. This is the so-called von Karman nonlinearity, and for thin beams in particular, this term 

does in fact dominate the nonlinear behavior and is the primary source of axial-flexural coupling. 

But as the beam becomes shorter in length, the inclusion of other nonlinear terms have have some 

impact.  Second, most theories used to describe the beam kinematics are necessarily restricted to 

displacement fields that are of relatively low order in the thickness coordinate of the beam. By 

far, most studies have used the Euler-Bernoulli model in which the transverse shear strains are 

equal to zero. But more flexible fields, including the Timoshenko and higher-order displacements,  

have also been explored and generally show an increase in nonlinear frequency ratio over Euler-

Bernoulli models. Finally, there is the additional issue of Poisson effects near fixed supports.  

Most beam models assume that the Poisson ratio is zero and that only the axial and transverse 

displacements at the centerline need constraining. But such assumptions have consequences of 

unknown magnitude. 

 

In the present formulation, the nonlinear aspects of the problem are directly considered by 

including the nonlinear terms in the Green-Lagrange strain tensor as they appear in the original 

statement of Hamilton's principle. The dominant nonlinear term for most bending theories is the 

square of the transverse displacement  gradient (𝜕𝑤/𝜕𝑥). In the full planar elasticity formulation, 

however, there are far more terms that can appear. Related observations have been made by 

Carrera and co-workers (2018).  In this study, a combination of analytic functions along the beam 

axis is combined with power series in the thickness of the beam.  

 

Several representative results will be given for the dominant modes of deformation for the 

nonlinear beam.  One special case is the purely axial mode of vibration. This is the case where 

the mode of vibration is not associated with flexure or shear but rather  the longitudinal 

deformation along the axis of the beam. Such modes are purely linear according to the one-

dimensional theories since in this case the transverse displacement of the beam centroid is exactly 

zero. But for the elasticity model, there are nonlinear terms associated with the squares of the 

displacement  gradients along with non-zero transverse normal strains that are usually neglected 

in one-dimensional theories. This problem, although simple in structure, has seen extremely 

limited study (Cveticanin 2016, Kovacic 2018).   

 

There is another behavior that influences frequency response, and that is the Poisson effect in the 

region of bar supports. In one-dimensional models, these effects are neglected. Yet there is a 

stiffening effect that can occur in such regions, and this changes the nature of the displacement 

field in the region of, for example, fixed supports. The results are shown in Figure 1, and indicate 

the physical nature of the difference of including Poisson effects near the beam supports under 

large deformation. 

 

In this study, direct comparisons are made between results from existing beam theories and those 

using more comprehensive elasticity-based results. For longer beams and fairly small amplitudes, 

the results among various formulations are in very good agreement. But it is shown that as the 

beam becomes thick relative to its length and the amplitude increases,  the beam theories 

underpredict the ratio of linear to nonlinear frequency. Hence more inclusive  kinematic models 

may be required under these conditions to accurately capture the influence of large deformations 

on the frequency and actual deformed mode shape of the beam.  
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Figure 1. The lowest nonlinear axial mode for the fixed-fixed bar of length  L=4 with a/r=2, 

plotted to scale without (left) and with (right) Poisson effects at the supports. Surprisingly, 

although the frequencies for the ba on the right are notably higher than those neglecting 

Poisson ratio, the ratio between linear and nonlinear frequencies are nearly identical. 
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Summary 

Due to development of manufacturing techniques of carbon fiber reinforced plastics (CFRP), it 

becomes possible to fabricate variable stiffness composites with curvilinearly shaped reinforcing 

fibers. It was revealed that the variable stiffness composites indicate superior mechanical 

properties to the constant stiffness composites [1]. There are some manufacturing approaches for 

variable stiffness composites, and the authors employ a tailored fiber placement (TFP) machine 

that is an application of embroidering technique to fabricate preforms with curved carbon fibers. 

To impregnate resins into carbon fiber preforms efficiently, we have recently developed a new 

manufacturing method, an electrodeposition molding (EDM) [2, 3]. An electrodeposition solution 

based on epoxy is filled in a steel tank that becomes an anode in the process, and the carbon 

preform for a cathode is sunk in the solution. The schematic illustration of the EDM mechanism 

is shown in Figure 1. By energization to the system, the resin precipitates around the carbon fiber 

surface and fills in the space between fibers. This electrochemical process reduces voids and 

defects for the molded composites. Convergence of the current reduction in the system indicates 

enough impregnating of the resin. After this, composites are heat-cured at 170	°∁. Figure 2 is a 

microstructure of test specimen. Few voids are observed, and it is known that resin is impregnated 

will between fibers. Compared to other molding methods including a resin transfer molding 

(RTM), the present method is more effective and suitable for mass production since the technique 

of electrodeposition is established well and employed to paintings of automobiles. From the 

following, we propose an approach to predict and optimize vibration behaviors of composites by 

the TFP and EDM. 

 

 

 

Figure 1. Schematic illustration of EDRM 

system. 

Figure 2. Microstructure of test specimen 
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Since the variable stiffness composite has curvilinear reinforcing fibers, adjacent tows overlap 

each other because of their curvatures. This causes partial thickness increases and affects vibration 

characteristics of laminated plate significantly. Thus, these thickness distributions or variable 

thicknesses should be estimated correctly and be included to the prediction of vibration behavior 

of variable stiffness composites. When a fiber shape is given by 𝑓(𝑥, 𝑦), the overlap rate 𝜆 of 

fiber tows can be estimated by  

 

𝜆 = 1 −
1

|∇𝑓(𝑥, 𝑦)|
 (1) 

 

where a cubic spline function is used as the fiber shape function. With the overlap rate 𝜆, we can 

estimate the thickness of laminated plates with the experimental data as  

 

𝑡	 =
0.68

(1 − 𝜆)(0.12𝜆7 + 0.051𝜆 + 0.44)
	[mm] (2) 

 

Using Equations (1) and (2), we can predict frequencies and mode shapes of variable stiffness 

composites correctly, and details are omitted in this report. Hereafter, the optimization of fiber 

shapes to maximize fundamental frequency of variable stiffness composites is mentioned for the 

cases with and without thickness distributions. Design variables are shape determining factors of 

cubic spline 𝑦>(𝑖 = 1,2,3, …7) and same fiber shapes are defined in the 𝑦 direction. Rotating 

angle 𝜙 of spline function in terms of center of plate is also assigned as the design variable. The 

particle swarm optimization (PSO) is used as an optimizer and obtained fiber shapes with and 

without thickness distributions are indicated in Figure 3. Each plate is square and has 150 mm 

length. Right bottom corner (grayed area) is clamped. 
 

  
(a) Without thickness distribution (b) With thickness distribution 

Figure 3. Obtained optimum fiber shapes with and without thickness distribution. 

 

  
Estimated thickness distribution Measured thickness distribution 

Figure 4. Estimated and measured thickness distribution for the optimum fiber shape. 
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89 Hz 

Without thickness distribution 

 
137 Hz 

With thickness distribution 

(a) Calculated vibration mode and frequency 

 
70 Hz 

Without thickness distribution 

 
111 Hz 

With thickness distribution 

(b) Measured vibration mode and frequency 

Figure 5. Comparison of vibration mode shapes and fundamental frequencies between 

calculation and experiments. 

 

Figure 4 shows estimated and measured thickness distribution for the plate in Figure 3 (b), and 

Figure 5 indicates the vibration mode shapes and fundamental frequencies from the finite element 

analysis and experiment. It is known from Figures 4 and 5 that the present thickness estimation 

method agrees well with the experimental results and the optimization approach with thickness 

estimation results in higher frequencies, both numerical and experiential results indicate more 

than 50 % higher frequencies, than result without thickness distribution.  

From above discussions, we conclude that it becomes possible to manufacture fibrous composites 

with curvilinear reinforcing fibers effectively with the present molding method or EDM, and it is 

also found that including variable thicknesses due to fiber curvature is important to predict and 

optimize vibration behavior of laminated composites with curvilinear fibers even it has been 

already revealed in Ref. [1] that the curvilinear fibers without thickness distributions enhance 

frequencies of composites over straight fibers. 
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Summary 

One of the challenges in using frequency measurements to detect the presence of a crack, and to 

solve the inverse problem of finding its severity and location, is that even with a single crack,is 

that different combinations of severity and location can result in the same natural frequencies. A 

method of using a roving rotary inertia to detect and identify the location of cracks in skeletal 

structures was presented at ISVCS11 [1] and subsequently published in a journal [2]. In this 

presentation we discuss the use of a relationship between the determinants of the exact dynamic 

stiffness of the following three structures: the structure with a crack; the corresponding structure 

with a hinge at the crack location; the original (undamaged) structure. The corresponding 

determinants are denoted by Dc, Dh and Do where the subscripts c, h and o refer to cracked, hinged 

and original states of the structure. In terms of the equivalent rotational stiffness of the beam at 

the crack k, the following linear relationship has been established [3]. 𝐷𝐶(𝑥, 𝜔, 𝑘) = 𝐷ℎ(𝑥, 𝜔) + 𝑘𝐷𝑜(𝜔)        (1) 

Here 𝜔 is any frequency and x is the location of the crack from a given convenient origin. 

By rearranging this equation, we obtain the following expression for the rotational stiffness of the 

beam at the crack. 𝑘 = (𝐷𝐶(𝑥, 𝜔, 𝑘) − 𝐷ℎ(𝑥, 𝜔))/𝐷𝑜(𝜔)        (2) 

Since at the natural frequency 𝜔𝑖 of the cracked structure 𝐷𝐶(𝑥, 𝜔𝑖, 𝑘) = 0, equation (2) may be 

reduced further giving 

 𝑘 = −𝐷ℎ(𝑥, 𝜔𝑖)/𝐷𝑜(𝜔𝑖)        (3) 

If several natural frequencies of a cracked structure are found through measurements, then 

equation (3) can be used to obtain an expression for the stiffness at any "potential" crack location 

x. As the crack location is not known, the locations are only trial values or potential locations. 

However, if the trial value is the correct location of the crack then irrespective of which natural 

frequency is being considered, the calculated stiffness would be the same. So the method of 

identifying the location relies on the fact that where the calculated stiffness vs potential crack 

location curves for various modes meet is the correct crack location.  
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Figure 1. Two bay, two storey frame used by Labib. 

 

The application of the methodology and its effectiveness in a simple search is demonstrated using 

the natural frequencies of the two bay two storey frame in Figure 1. Table 1 lists calculated values 

of the natural frequencies based on defined cracks (pseudo-experimental natural frequencies) 

obtained in a previous study [4] by numerical simulation. The respective values for 𝐷0(𝜔𝑖) and 𝐷ℎ(𝑥, 𝜔𝑖) for a set of 99 locations within beam BC were calculated and the results are presented 

here.  

 

Using equation (3) the stiffness values that nullify Eq. (1) are obtained for each measured 

frequency and plotted in Figure 2. All the obtained curves are located on the positive side of the 

stiffness, and intercept in a unique crossover point at 𝑥 = 0.52𝐿 and in the stiffness value of 𝑘 =0.146𝐸𝐼/𝐿 . The positive value of stiffness is consistent with the reduction in the natural 

frequencies for the intact beam and the crossing point indicates that, for this particular member, 

from all the possible stiffness values there is just one possible crack location. 

 

While this example demonstrates the potential use of the determinantal relationship (1) in 

separating the severity and location effects, it has to be borne in mind that the changes in the 

frequencies due to cracks are usually small and the effect of noise in measurements may make 

this method difficult to implement, even for a structure with a single crack. Following [4], the 

effect of noise is considered by evaluating equation (3) at the two frequencies 𝜔𝑖 ± 𝜀 where 𝜀 is 

a tolerance on the measured natural frequency 𝜔𝑖. The two resulting values of 𝑘 give a range of 

possible stiffness values 𝑘𝐿 ≤ 𝑘 ≤ 𝑘𝑈 for each potential crack location 𝑥. Each curve in Figure 2 

is replaced by two curves and the crossover point is predicted as a range of values of 𝑥 and 𝑘. 

 

Table 1. Pseudo-experimental natural frequencies for intact and cracked frame 

 

 3 (Hz) 4 (Hz) 5 (Hz) 6 (Hz) 

Intact 142.635 169.112 177.238 194.562 

Crack at x=0.52L, k= 0.146EI/L 142.625 169.082 177.212 194.495 

 

A B 

250 mm 

250 mm 

500 mm L = 500 mm 

260 

mm 

Crack 

20 mm 

10 mm 

C x 
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Figure 2. Numerical search from pseudo-experimental natural frequencies of Labib’s frame 

 

It should be noted that for a symmetric structure the crack location cannot be predicted uniquely. 

For the frame of Figure 1 the analysis would predict an alternative crack location symmetrically 

placed in beam AB. 

References 

[1] Ilanko, S.; De Los Rios, J.; Caddemi, S.; Kennedy, D.: The effect of roving rotary inertia 

as it passes a crack. ISVCS 2017 – Proceedings of 11th International Symposium on 

Vibrations of Continuous Systems, pp. 34-37, 2017. 

[2] Cannizzaro, F.; De Los Rios, J.; Caddemi, S.; Calio, I.; Ilanko, S.: On the use of a roving 

body with rotary inertia to locate cracks in beams. Journal of Sound and Vibration, 425, 

275-300, 2018: doi:10.1016/j.jsv.2018.03.020 

[3] De Los Rios Giraldo, J.O. Damage identification in skeletal structures: A dynamic 

stiffness approach (Thesis, Doctor of Philosophy (PhD)). The University of Waikato, 

Hamilton, New Zealand. 2017 

[4] Labib, D.; Kennedy, D.; Featherston, C.A.: Crack localisation in frames using natural 

frequency degradations. Computers and Structures, 157, pp. 51-59, 2015: doi: 

10.1016/j.compstruc.2015.05.001 

 

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Stiffness kL/EI

Location x/L

Probable stiffness

-Dh(x,i)/D0(i)
i=3 i=4 i=5 i=6

ISVCS12 - Page 57 of 146



ISVCS12 - Page 58 of 146



ISVCS12th International Symposium on Vibrations of Continuous Systems 
Sporthotel Panorama, Str. Sciuz, 1, 39033 Corvara In Badia BZ – Italy, July 28 - August 2, 2019 

 

 

 

From semi-analytical to Finite Element integrated low-dimensional 

models for nonlinear dynamic analysis of composite cylindrical shells  

 

Eelco Jansen
*
, Tanvir Rahman

# 

* Institute of Structural Analysis  
Leibniz Universität Hannover 

Appelstrasse 9A, 30167 Hannover, 
Germany 

e.jansen@isd.uni-hannover.de 

# DIANA FEA BV 
 

Delftechpark 19a, 2628 XJ Delft,  
The Netherlands 

t.rahman@dianafea.com 

Summary 

Composite cylindrical shells are basic components in mechanical and aerospace engineering. 
Stability and nonlinear dynamic analysis are of main importance for these structures, since they 
are prone to buckling instabilities under static and dynamic compressive loading. Moreover, 
under dynamic loads they may be directly or parametrically excited into resonance at their 
natural frequencies. The notorious discrepancy between the experimental results and the 
theoretical predictions for the buckling load of a cylindrical shell under axial compression led to 
an enormous research effort since the 1960s. The important problem of the nonlinear vibration 
behavior of cylindrical shells has also been studied since that time and has received a 
considerable amount of attention [1].  
  
The nonlinear structural behavior of shell structures can be studied by means of Finite Element 
analysis, but this requires considerable effort and expertise from the user and corresponds to 
high computational costs. In particular in the area of nonlinear dynamics it has been recognized, 
that low-dimensional models (i.e. models with a relatively small number of degrees of freedom) 
are indispensable in order to gain insight into the nonlinear behavior of the structure. Another 
obvious advantage of using low-dimensional models lies in the quick evaluation of the dynamic 
response characteristics that can be attained, so that the methods can be used within a design 
context. Instead of carrying out a transient analysis with a (large) Finite Element model, one 
solves a relatively small set of nonlinear ordinary differential equations through numerical time 
integration.  The current contribution presents characteristics of two different types of low- 
dimensional models.  
  
Work in the field of nonlinear dynamics is often rooted in a semi-analytical framework based on 
the governing differential equations. In earlier work, semi-analytical models for buckling and 
vibration of anisotropic, composite cylindrical shells have been developed and were presented 
in a unified, simplified analysis framework based on Donnell-type governing equations using a 
Galerkin-type approach (Figure 1) [2]. These low-dimensional semi-analytical models are 
believed to capture important characteristics of the nonlinear static and dynamic behavior of 
composite cylindrical shells. Basic analysis cases which have been analyzed using these 
analytical methods include 
  

 dynamic buckling (buckling under step loading) 
 parametric excitation (vibration buckling under pulsating loads) 
 nonlinear vibrations 
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Several reduced-order models for the nonlinear, large amplitude vibration analysis of composite 
shells are available [2, 3, 4]. These models can be used in a systematic, three-level hierarchical 
approach, based on the level of complexity of the description of the spatial behavior of the 
structure: 

 

 Level-1 Analysis (Simplified Analysis) [3]: Semi-analytical approach based on a limited 
number of assumed spatial modes, approximately satisfying simply supported boundary 
conditions at the shell edges. The Method of Averaging is used to approximate the 
temporal behavior; 

 Level-2 Analysis (Extended Analysis) [4]: Semi-analytical approach in which the 
boundary conditions at the shell edges are satisfied accurately. A perturbation method is 
used to approximate the temporal behavior; 

 Level-3 Analysis: Numerical analysis corresponding to a detailed Finite Element 
discretization. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.  Shell geometry, applied loading and laminate layer orientation within semi-
analytical nonlinear dynamic analysis of composite cylindrical shells [2]. 

 

Semi-empirical methods and the „classical” semi-analytical methods [3,4] are very helpful, but 
are available for specific structures with relatively simple geometries only. A second type of 
low-dimensional models is constituted by Finite Element integrated reduced complexity 
approaches, which provide a way to systematically carry out nonlinear analyses for arbitrary 
structures (Figure 2) [5]. The usefulness of this type of reduced complexity models, based on 
perturbation approaches, to gain insight into the characteristics of the nonlinear static and 
dynamic behavior of cylindrical shell structures and to reduce the computational effort involved 
in the nonlinear Finite Element calculations has been demonstrated in earlier work, see e.g. [6, 
7, 8].  
 
The Finite Element integrated low dimensional models make use of an analytical approach to 
approximate the nonlinear behavior, Koiter’s perturbation approach for buckling and dynamic 
buckling analysis and a Lindstedt–Poincaré type perturbation approach for nonlinear vibrations, 
respectively. Similar to the „classical” semi-analytical methods, they are also using „buckling 
modes” and „vibration modes” to establish a set of appropriate generalized coordinates for the 
nonlinear structural analysis. A modal-based reduced-order model for dynamic buckling of 
imperfection-sensitive structures was presented [7], while an extension of this reduced-order 
modelling approach to dynamic response analysis is currently under development. In parallel, 
Finite Element based reduced order-models for nonlinear, large amplitude vibrations of thin-
walled structures have been developed and applied to composite cylindrical shells [8].   
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Figure 2.  Standard Finite Element approach versus approach using Finite Element 
integrated low-dimensional reduced complexity methods for nonlinear structural analysis [5]. 

 
In the present contribution, results of the two types of low-dimensional models developed are 
illustrated. Firstly, two „classical” semi-analytical approaches (Simplified Analysis and 
Extended Analysis) demonstrate nonlinear vibration characteristics of specific composite 
cylindrical shells. Moreover, results of the second type of low-dimensional model, the Finite 
Element integrated reduced-order modelling approach, illustrate important features of the 
dynamic buckling and nonlinear vibration behavior of various composite cylindrical shells.   
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Summary 

Plates and stiffened panels are widely used in aerospace and other applications. Their structural 

performance is degraded by the presence of damage such as delaminations and cracks, which are 

difficult to detect visually, particularly in built-up structures such as wing and fuselage panels. 

Changes in the natural frequencies enable damage to be identified using non-destructive testing. 

 Dynamic stiffness analysis provides an efficient, accurate alternative to finite element (FE) 

analysis by using a transcendental stiffness matrix based on exact solutions to the governing 

differential equations. Plates and their loading are required to be invariant in the longitudinal (x) 

direction, so that the vibration modes vary sinusoidally in this direction [1]. Arbitrarily damaged 

structures violate this restriction, but can be modelled using a hybrid method [8] which combines 

an exact strip model of the undamaged regions with a rectangular FE model of the longitudinal 

strips containing the damage, see Figure 1(a). Displacements and rotations at the boundaries are 

coupled using Lagrangian multipliers, and natural frequencies are found using the Wittrick-

Williams algorithm [9]. Previous analyses have been restricted to cracks located at the centre or 

at a plate edge, running parallel to the edges, over the full length or width, or through the full 

thickness [3, 5, 7]. The present analysis permits cracks of arbitrary length, depth, location and 

orientation. Figure 1(b) shows part of the FE model. A crack runs along the line 𝑃𝑄𝑅𝑆 through 

elements 𝑎, 𝑏 and 𝑑. It is modelled as a rotational spring with depth-dependent compliance 𝐶 per 

unit length [4] which is resolved into rotational components (𝐶𝑥, 𝐶𝑦) about the 𝑥 and 𝑦 axes. The 

components in element 𝑎 are integrated along 𝑃𝑄 to allocate compliances to nodes (1, 2, 4, 5). 

Similarly the compliances in elements 𝑏 and 𝑑 are allocated to nodes (2, 3, 5, 6) and (5, 6, 8, 9).  

 

 

 

 

 

 

 

 

 

(a)                                           (b)                                             (c) 

Figure 1. (a) Cracked plate, showing coupled exact strip and FE models. (b) Detail of a 

portion of the FE model. (c) Rotational degrees of freedom at node 5. 
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The finite elements have three degrees of freedom at each node: vertical displacement 𝑤 and 

rotations 𝜃𝑥 and 𝜃𝑦 about the 𝑥 and 𝑦 axes. Nodes to which rotational compliances (𝐶𝑥 , 𝐶𝑦) have 

been allocated are given additional rotational degrees of freedom, e.g. as shown in Figure 1(c) for 

node 5. Element 𝑎 connects to (𝑤5, 𝜃𝑥5L, 𝜃𝑦5L) while element 𝑏 connects to (𝑤5,  𝜃𝑥5L, 𝜃𝑦5𝑈). 

Rotational springs of stiffness (1 𝐶𝑥⁄ , 1 𝐶𝑦⁄ ) connect freedoms (𝜃𝑥5L, 𝜃𝑥5U) and (𝜃𝑦5L, 𝜃𝑦5U). 

Table 1 lists normalised natural frequencies with (𝑚, 𝑛) half-waves in the (𝑥, 𝑦) directions for an 

undamaged simply supported square plate of length 𝑙, thickness ℎ, Young’s modulus 𝐸, Poisson’s 
ratio 𝜈 and density 𝜌. Results obtained from the present method using a 40 × 40 FE mesh are 

seen to be close to classical results [2]. A crack of depth 0.4ℎ is now introduced to the plate, 

running from (𝑥, 𝑦) = (𝛼𝑙, 0) to (𝛼𝑙, 𝛽𝑙) where 𝛼 is a location parameter in the range 0.1 ≤ 𝛼 ≤0.9 and 𝛽 is a length parameter in the range 0.2 ≤ 𝛽 ≤ 0.8. The four lowest non-dimensional 

natural frequencies are shown in Figure 2. 

Figure 3 shows contour plots of two of the vibration modes for four different locations of a crack 

of length 0.4𝑙. The mode shapes show increasing skewing as the crack is moved towards the 

centre line of the plate. But as a result of symmetry the pure (2,1) and (1,2) modes return when 

the crack runs along the centre line, with no degradation in the natural frequency 𝛺21 (see Figure 

2). Care is needed to identify such crossovers when tracking the natural frequencies. 

Table 1. Non-dimensional natural frequencies 𝛺𝑚𝑛 = 2𝜋𝑙2𝜔𝑚𝑛√12𝜌(1 − 𝜈2) 𝐸ℎ2⁄  for 

undamaged simply supported square plate. 

(m, n) (1, 1) (1, 2) (2, 1) (2, 2) (1,3) (3,1) 

Present analysis 20.194 50.083 50.083 80.796 99.532 99.532 

Classical results [2] 19.739 49.348 49.348 78.957 98.696 98.696 
 

 

Figure 2. Degradation of natural frequencies with crack location and length. 
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(m, n) = (1, 2):  a = 0.2                a = 0.3                         a = 0.4                         a = 0.5 

 

 
(m, n) = (1, 2):  a = 0.2              a = 0.3                         a = 0.4                         a = 0.5  

Figure 3. Variation of mode shapes with crack location 𝛼, for 𝛽 = 0.4. 
  

Morassi [6] demonstrated that the natural frequency degradation for a cracked beam is 

proportional to the square of the curvature in the vibration mode of the corresponding uncracked 

beam, measured at the crack location. This result will be generalised to cracked plates. 
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Summary

Wave propagation or dynamic response of multilayer media is commonly encountered in many

areas[1]. For example, environmental vibration caused by traffic loads may become irritating[2],

seismic wave may lead to disasters, rock blasting may give rise to slope instabilities, and ultrasonic

waves in media facilitate structural health monitoring purposes[3]. The first two examples are in

the low frequency ranges whereas the latter two fall into the mid- to high-frequency ranges. Hence,

an efficient and accurate model, hopefully within the whole frequency range, has been always an

essential objective for engineers.

This research presents a dynamic stiffness formulation for multilayer media. Firstly, given an

elastic layer in the xz plane (z ∈ [0,h], h is the thickness), the differential equation governing the

vibration of elastic media in the plane strain deformation is essentially the Navier equation in the

xz plane

σzz,z + τzx,x −ρW,tt = 0 , (1a)

τxz,z +σxx,x +ρU,tt = 0 , (1b)

in which, W and U denote the displacements in z and x respectively, ρ is the media’s density, and

the stresses are given as

σzz = (λ +2G)W,z +λU,x , (2a)

τxz = G(W,x +U,z) , (2b)

σxx = (λ +2G)U,x +λW,z (2c)

where λ ,G are Lame constant in plane strain. The boundary conditions on the top and bottom

surfaces are described as Eqs. (2a) and (2b).

Now we introduce a frequency parameter ωm and a wavenumber parameter kn in the x direction,

namely,

W (x,z, t) =
∞

∑
m=0

∞

∑
n=0

Wmn(z)exp(iωmt)exp(iknx) ,

U(x,z, t) =
∞

∑
m=0

∞

∑
n=0

Umn(z)exp(iωmt)exp(iknx) .

Therefore, we have (·)tt =−ω2
m(·), and ∂ j(·)/∂x j = (ikn)

j(·). Then Eq. (1) becomes

σzz,z + iknτzx +ρω2W = 0 , (3a)

τxz,z + iknσxx +ρω2U = 0 (3b)
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and Eq.(2) results in

σzz = (λ +2G)W,z + iknλU , (4a)

τxz = G(iknW +U,z) , (4b)

σxx = ikn(λ +2G)U +λW,z (4c)

Based on Eqs. (3) and (4), we may rewrite the governing different equation in the form of a

first-order differential equation of state space in the frequency-wavenumber domain to be

∂U(z)

∂ z
= AU(z) , (5)

where the state space vector U(z) and the coefficient matrix A are

U(z) =

{

f

d

}

=















σzz(z)
iτxz(z)
W (z)
iU(z)















, A =











0 −kn −ρω2 0
λkn

λ+2G
0 0

4G(λ+G)k2

λ+2G
−ρω2

1
λ+2G

0 0 − λkn

λ+2G

0 1/G kn 0











.

Therefore, the general solution of the elastic layer is U(z) = exp(Az). Letting T = exp(Ah), the

boundary conditions on the two surfaces can be related in the transfer matrix (or propagator matrix)

form

U(h) = TU(0) , (6)

where

U(h) =

{

f2

d2

}

=















σzz(h)
iτxz(h)
W (h)
iU(h)















, T =

[

T11 T12

T21 T22

]

, U(0) =

{

f1

d1

}

=















σzz(0)
iτxz(0)
W (0)
iU(0)















.

It is straightforward to rewrite the transfer matrix form into the following dynamic stiffness for-

mulation

fe = Kede , (7)

where

fe =

{

f1

f2

}

, Ke =

[

−T21
−1T22 T21

−1

T12 −T11T21
−1T22 T11T21

−1

]

, de =

{

d1

d2

}

.

Now we have formulated the dynamic stiffness matrix of a single elastic layer within the frequency-

wavenumber domain, the global dynamic stiffness matrix of multilayer elastic media can be easily

formulated by assembling the dynamic stiffness elements just like assembling bar or beam ele-

ments in the classical dynamic stiffness method or the finite element method.

If we need to perform wave propagation (dynamic response) analysis, the formulation of Eq. (7)

in the frequency-wavenumber domain can be utilized combined with some proper form of lin-

ear transform. In this research, we adopt Double Fast Fourier transform because there are many

well-developed efficient algorithms in a wide range of computational platforms. The procedure is

described as follows.

1. Determine the sampling time window Ts based on the duration of input force and the re-

sponse of the considered multilayer media; identify the sampling space window Xs in the

x direction based on the width of the applied force as well as that of the multilayer elastic

media in consideration;
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2. Determine the highest frequency fmax and largest wavenumber kmax based on the input

force, therefore, according to Nyquist condition, we have the sampling time interval ∆t 6

1/(2 fmax) and the sampling space interval in x direction ∆x 6 1/(2kmax);

3. According to the sampling number requirement of Double Fast Fourier transform, determine

the number of time samples Nt = 2pt and the number of space samples in the x direction

Nx = 2px , in which pt = plog2(Ts/∆t)q and px = plog2(Xs/∆x)q are integers, p·q stands for

ceiling function of ‘·’. Finally, the final sampling time interval dt = Ts/Nt and dx = Xs/Nx;

4. If external excitation applied on the ith surface fi(x, t) is given in an analytical manner, we

can evaluate the numerical values at t = (0 : Nt −1)×dt and x = (0 : Nx−1)×dx as a matrix

[ f num
i (t,x)] of size Nt ×Nx;

5. Apply the Double Fast Fourier transform, fft2[ f num
i (t,x)] leading to the external force on

the ith surface in the frequency-wavenumber domain [Fi(ωm,kn)] in a matrix form where

m ∈ {0,1, ...,Nt −1}, n ∈ {0,1, ...,Nx −1}. For each combination of ωm and kn, put all the

component Fi(ωm,kn) together, we have the overall force vector F(ωm,kn);

6. Calculate the displacement response in the frequency-wavenumber domain, we will have

D(ωm,kn) = K(ωm,kn)
−1

F(ωm,kn);

7. Apply the inverse Double Fast Fourier transform to the displacement response of the ith

surface ifft2[Di(ωm,kn)] leading to the displacement response of the ith surface in the time

and space domain (in x direction) dnum
i (t,x).

The method described in this paper has been used for the pavement vibration analysis induced by

travelling traffic. Further special attempts have been made to speed up the calculation process for

one order of magnitude, this is for the purpose that it could be used for parameters studies and

inverse problems. It has been demonstrated that this method is of two order of magnitude faster

than the FEM. The superiority is much more significant in the mid- to high-frequency ranges.
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Summary 

Eigenproblems arise in many areas of structural dynamics, including modal analysis and 
analysis of wave propagation. The right and left eigenproblems (EPs) are 
 

        ; T T
p p p p  B u C u z B z C   (1) 

 

where B(p) and C(p) are m m  matrices, while , u and z are the eigenvalues and right and left 

eigenvectors and p is some parameter (e.g. a material or geometric property). The sensitivities 

of the eigenvalues and eigenvectors with respect to p are of interest for reasons including 

uncertainty modelling, stability analysis, model updating and design. Linear perturbations can 

be developed to estimate changes in the eigensolutions without the need to re-solve the 

eigenproblem multiple times, reducing computational cost drastically.  

 

Much attention has been applied to the sensitivity analysis of eigenproblems. Of relevance here 

is the generalised, asymmetric eigenproblem (1), involving asymmetric and complex matrices, 

applied to a wave and finite element (WFE) model to analyse wave propagation in a waveguide 

with uncertain parameters. For some value p0 of the parameter p, the EP becomes 

 

 
0 0 0 00 0 0 0 0 0 0 0 0; ; 1T T T   B u C u z B z C z C u   (2) 

 

where the last equation is a normalisation condition. Assuming that 
o  is distinct, its derivative 

with respect to p is (see for example Seyranian and Mailybaev, section 2.12 [1])  
 

 0 0 0
Td d d

dp dp dp

 
 

  
 

B C
z u   (3) 

 
Expressions for eigenvector derivatives and for multiple eigenvalues can be found in [1]. This 
result reduces to that for symmetric eigenproblems for which B, C are real and symmetric and 
the left and right eigenvectors are equal. 
 
WFE eigenproblems and sensitivity analysis 
 
The WFE method for free wave propagation in a waveguide [2] involves determining the mass 
and stiffness matrices M and K of a short segment of length  , forming the dynamic stiffness 
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matrix (DSM) 2 D K M  relating the left-hand and right-hand degrees of freedom qL and qR 

of the segment, and applying periodicity equations. Damping can be included by a viscous 
damping matrix C or by K being complex. An eigenproblem follows, the solutions yielding the 

eigenvalues  exp ik    , with k being the (generally complex) wavenumber. The WFE 

eigenproblem can be phrased in a number of ways. Numerical issues are common [3], with two 
forms of the eigenproblem being especially attractive for sensitivity analysis. In the first, the 
equations of motion are projected onto the left-hand DOFs qL leading to an eigenproblem with 
 

 
  ,

RL LL RR LR

   
         

0 I I 0
B C

D D D 0 D
  (4) 

 
where the subscripts denote the partitions of the DSM. Alternatively, using Zhong’s method [4], 
the most numerically robust approach, the matrices in the eigenproblem are such that 
 

      
   

, , ,LL RR LR RLRL

LR RL LL RRLR




      
              

D D D DD 0q
B C B C

D D D D0 Dq
  (5) 

 
 

 
 

 
22

2

1 exp1
, ,

1 1

i ikk

p p p p

  
  

    
  

     
  (6) 

 

Applications to timber and CLT panels 
 
Radiata pine is widely used as a building material in 
New Zealand and elsewhere and consequently its 
acoustic and vibration behaviour is of interest for noise 
control. Recently, use of CLT panels, which involve 
layers of bonded timber (Figure 1), has grown rapidly, 
but their vibroacoustic behavior is poorly understood 
and is a subject of current research activity. Timber is 
highly anisotropic and properties are variable, depending on the growth site, the part of the tree 
from which the timber is cut, age, knots, moisture content etc. The density of radiata pine varies 
from 340-540 kg/m3 while the along-grain elastic modulus ranges from 6-14 GPa, correlates to 
some degree with density and is substantially higher than the cross-grain value [5]. 
 

Figure 2 shows the sensitivity k E  of the axial and bending wavenumbers of a timber beam 

with elastic modulus E = 7.2 GPa,  = 500 kgm-3 and width and thickness 100mm × 50mm. 
Axial waves contribute 
primarily to structure-
borne sound and flanking 
transmission in buildings, 
while bending waves 
dominate airborne sound 
transmission. Analytical 
and WFE results agree 
well except for finite 
element discretisation 
effects at high frequency 
(in particular for the axial 

Figure 1. CLT panel. 

Figure 2. Sensitivity of wavenumber with respect to E for timber beam: 
axial (left) and bending (right) waves: - - - analytical, __WFE. 
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waves) and numerical noise at low frequency due to 
rounding errors [3] (in particular for bending waves, 
for which the segment is shorter). Finally Figure 3 
shows the oblique transmission loss of a 6 × 33mm 
layer CLT panel, stacking sequence [0/90/0/0/90/0], 
modelled using WFE. Full details in [6]. The nominal 
value of the along-grain elastic modulus Exx = 
1.1×1010 but a range is plotted to reflect the inherent 
uncertainty. Each line shows a coincidence notch 
when the trace wavenumber equals the bending 
wavenumber.  

Concluding remarks 

 

The sensitivity of the eigenvalues of complex, non-
symmetric matrices was applied to WFE models to 
estimate the sensitivity of the wavenumber with 
respect to a parameter. From this, together with either 
a probabilistic or possibilistic description of the parameter, the variability of response quantities 
can be estimated at low cost: these quantities include natural frequencies, frequency response 
and sound transmission loss. In principle, spatially varying uncertainty can be included, e.g. 
through WKB methods. There is a real practical issue of an accurate description of the 
parameter variability. The sensitivity (3) breaks down for the case of equal (or very close) 
eigenvalues: there are two situations, corresponding to mode crossing or veering/instability in 
modal analysis, or wavenumber crossing or veering/locking for wave propagation. For spatially 
varying properties, additional problems arise at and around any critical sections where wave 
modes cut off. These situations are the subject of future work. 
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Figure 3. Transmission loss of CLT 

panel, incidence angles , 

Exx = 0.8×1010 Pa to 1.4×1010, thick line 
Exx = 1.1×1010 Pa. 
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Summary 

A new analytical procedure is presented on nonlinear vibrations of a thin rectangular shell-panel 

including clamped edges as shown in Figure 1. We introduce the x, y axes along the in-plane 

directions of the shell-panel and the z axis in the lateral direction. The origin is taken at the 

center of the panel. The symbols αx, αy are non-dimensional curvatures in x and y directions, 

respectively. The symbol W denotes the deflection, and U, V are in-plane displacements in the x 

and y directions, respectively. At the boundaries of two opposite edges along x direction, the 

shell-panel is classically simply-supported (shear diaphragm), while at the other two edges 

along y direction the panel is classically simply-supported or clamped in the lateral direction. 

The in-plane boundary conditions are expressed by elastic constraint with springs Kx*, Ky* in 

normal direction and shear springs along the edges Kxy*, Kyx*. When an edge is fixed in one or 

both of the in-plane directions, the corresponding in-plane spring constants are taken as 

sufficiently large value. The spring constants are taken as zero when the edge is free in the in-

plane direction. At the outer ends of the elastic constraints, initial uniform in-plane 

displacements U0*s, V0*s are applied in the normal in-plane directions, but these displacements 

are taken as zero in this research. The Poison’s ratio of the panel is denoted by ν . In the lateral 

direction, the shell-panel is subjected to periodic acceleration ad cosΩt, where ad, Ω and t are 

amplitude of periodic acceleration, the excitation frequency and the time, respectively. 

 

To reduce computational costs in the analysis, we express the in-plane motion with the stress 

function assuming that the panel is sufficiently thin and that the in-plane inertia can be 

neglected, instead of expanding in-plane displacements with multiple terms. The non-

dimensional equation of motion of the shell-panel is expressed as follows:    

L w, f( ) = w,ττ +∇
4
w−α

x
β 2 f ,

ηη
−α

y
f ,
ξξ
−β 2 f ,

ξξ
w,

ηη
−2 f ,

ξη
w,

ξη
+ f ,

ηη
w,

ξξ( )− pd cosωτ − qsδ ξ −ξ
1( )δ η −η

1( ) = 0    (1) 

∇
4
f = c{−αxβ

2
w,ηη −αyw,ξξ +β

2
(w

2
,ξη −w,ξξ w,ηη )}                                                                                             (2) 

Equation (1) denotes the equation of motion of the panel in the lateral direction, and Eq. (2) is 

the compatibility equation of the in-plane strain in terms of the stress function f, which is related 

to the in-plane resultant force nx, ny and nxy as follows. 

                                                                                                        (3) 

We employ single-term expansion to derive an ordinary differential equation. 

n
x
= β 2 f ,

ηη
,  n

y
= f ,

ξξ
,  n

xy
= −β f ,

ξη
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w ξ ,η,τ( ) = b̂11(τ )(d4ξ
4
+ d

3
ξ 3 + d

2
ξ 2 + d

1
ξ + d

0
)sinπη , ξ = ξ +1/ 2( ),η = η+1/ 2( )                             (4) 

The notation b̂
11
(τ )  is an unknown time function. Coordinate function of deflection is assumed 

with the product of power series with respect to ξ and trigonometric function with respect to η, 

in which the constants di are chosen to satisfy the lateral boundary conditions of edges 

perpendicular to the ξ direction. The solution of the compatibility equation (2) can be expressed 

as f = f0 + f1, where f0 and f1 are homogeneous and particular solutions, respectively. Assuming 

that the particular solution f1 has same form as the deflection as shown in Eq. (4), f1 can be 

determined by equating coefficients in the compatibility equation. The homogeneous solution is 

assumed as follow:  
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In the above expression, the terms with px, py correspond to uniform normal stresses, pxy denotes 

uniform shear stress and pxa, pya denote normal stresses proportionally distribute along the edges. 

The other terms denote stress distribution with trigonometric functions along ξ or η directions. 

The unknown coefficients in the above homogeneous solution can be determined by equating 

the virtual work by the in-plane forces, which corresponds to the in-plane boundary condition, 

to be zero as follows. 
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Then, substituting Eqs. (4) and (5) to Eq. (1) and applying the Galerkin procedure, the equation 

of motion is reduced to ordinary differential equations in terms of b̂
11

 in single-degree-of-

freedom system as follows. 

b̂
11
,
ττ
+2αω

1
b̂
11
,
τ
+α 2 b̂

11
+β b̂

11

2
+γ b̂

11

3
− p

d
cosωτG

1
= 0                                                  (7) 

Dynamic periodic responses are calculated with the harmonic balance method. 

 

First, a backbone curve is calculated with the present method for a cylindrical shell-panel αx 

=10 whose all edges are classically simply-supported (SSSS). Terms taken for the in-plane 

stress functions are as follows: ns=sn=0, 2, 4，nc=cn=1, 3, 5. The rigid line in Figure 2 shows 

the backbone curve obtained with the present method. The ordinate denoted the frequency 

normalized by the lowest natural frequency, while the abscissa denotes the maximum amplitude 

at the center of the panel in free vibration normalized by the thickness of the panel. The 

backbone curve corresponds to the spring characteristics of softening-and-hardening type. The 

dotted-and-dashed line is the backbone curve obtained by Kobayashi and Leissa[2], which agree 
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well with the result obtained with the present method. Figure 2 shows a numerical example of 

characteristics of restoring force and nonlinear frequency response curve of a cylindrical shell-

panel αx =10, 20, 30, one of the edges perpendicular to ξ direction is clamped while the others 

are classically simply-supported (SSSC). Terms taken for the in-plane stress functions are as 

follows: ns=sn=0, 1, 2, nc=cn=1, 2, 3.  As the curvature of the shell-panel increased, the natural 

frequency becomes higher and softening feature becomes predominant.  

 

 

Figure 1. Analytical model of a thin shell-panel. 

 

 
Figure 2. Backbone curves of the thin shell-panel (SSSS). 

 

 
Figure 3. Characteristics of restoring force and nonlinear frequency response curves  

of the thin shell-panel (SSSC). 
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Summary 

The natural frequencies of a plate having multi-cracks with a roving mass were computed using 

the Rayleigh-Ritz Method. It is observed that there sudden shifts in the natrual frequencies as 

a roving body crosses cracks. Identifying cracks through frequency measurements attract many 

researchers for decades for decades but it still remains a challenge due to two main reasons. 

The frequency changes due to cracks are usually very small and the inverse problem of 

identifying cracks is further complicated by the fact that the frequencies depend on the number, 

severity and locations of cracks. However, recently it is shown that for a beam, a roving body 

that has a rotary inertia causes a sudden shift in frequencies as it passes a crack. In this 

peresentaion, we discuss this phenomena for a plate with a roving body and show that the 

frequencies of a plate with a crack will change abruptly as a mass attached to the plate is moved 

from one side of the crack to the other. This is potentially useful in detecting cracks in 

structures, as it is possible to track the changes in the natural frequencies of a structure as a test 

body (e.g. a vehicle on a bridge) moves and identify points where sudden frequency changes 

occur. These would then correspond to potential crack locations irrespective of the number and 

severity of the cracks. To identify a crack and its location all that is needed is an observation 

of a sudden change in the natural frequencies. The location of the roving body then corresponds 

to a crack location. This sudden shift in frequency occurs in all modes with the exception of 

certain cases where the crack is at the nodal line and the use of a cumulative frequency shift 

parameter also helps to address the difficulty due to frequency changes being too small. 

 

In order to find the natural frequencies of rectangular plates with cracks and a roving body 

(Figure 1), the Rayleigh-Ritz Method is used. The type of crack considered is that there is a 

discontinuity in flexural rotation but the translation is continuous such as those considered in 

beams [1]. The differential rotation is related to the bending moment at the crack and a 

rotational spring stiffness representing the effective stiffness of the joint. In plates, the crack 

can also go through the full thickness and in this case, both translation and rotation are 

discontinuous. The plate is also subject to a roving body, that is, a body whose location is 

changed to track any change in the frequencies but the body has no velocity relative to the plate. 

The results are plotted against the location of the roving body.  

 

The crack is modelled in the following way. The plate is formed by assembling several 

rectangular plates and the coupling between the plates is enforced through distributed penalty 

stiffness that control the relative translations and rotations between the plate components. A 

length along which a crack is present is subject to zero or low penalty stiffness but elsewhere 

along the joint sufficiently high penalty stiffness is applied. To represent a complete (through 
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thickness) crack both translational and rotational penalty stiffness are set to zero while for 

flexural cracks, the translational stiffness is set to a high value but rotational stiffness is set to 

a smaller value. Suitable magnitude of penalty stiffness can be determined by using positive 

and negative stiffness values [2] which help to ensure that any error due to violation of the 

continuity is kept within the required accuracy.  

 

 

Figure 1. A multi-cracked plate with a roving mass. 

 

The plate was subdivided into two rectangular segments (Segment 1, 2, 3) that have the separate 

coordinates (x1, y) and (x2, y), and so on, and for each segment the admissible functions in x, y 

directions consisted of a constant, a linear function, a quadratic function and a cosine series [3]. 

The out-plane displacement plate of a segment of a completely free plate, Wk (k = 1, 2, 3) can be 

defined by the following equations.  

 𝑤𝑘(𝑥𝑘, 𝑦, 𝑡) = 𝑊𝑘(𝑥𝑘 , 𝑦 ) sin 𝜔𝑡                                          (1) 

with 𝑊𝑘(𝑥𝑘, 𝑦 ) = ∑ ∑ 𝐺𝑖𝑗𝜙𝑖(𝑥𝑘)𝜙𝑗(𝑦)𝑁
𝑗=1

𝑁
𝑖=1                                 (2) 

and 𝜙𝑖(𝑥𝑘) = (𝑥𝑘𝑎𝑘)𝑖−1                      for 𝑖 = 1,2 and 3 𝜙𝑖(𝑥𝑘) = cos ((𝑖 − 3)𝜋𝑥𝑘𝑎𝑘 )              for 𝑖 ≥ 4 

 

where ω is the circular frequency and t is time. Gi,j are undetermined weighting coefficients. The 

above equations are used to find the strain energy expression and kinetic energy expression, from 

which the stiffness matrix and mass matrix used in the Rayleigh – Ritz analysis are derived  

 

Figure 2 shows the variation of a non-dimensional first frequency parameter Ω=ωa2(ρh/D)0.5 for 

a completely free square plate with sigle crack against the location (xm/a) of a roving body with 

(continuous line) and without (dotted line) rotary inertia, for ym = 0.3b. With the roving mass 
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having rotary inertia, it can be seen that there is a sudden change in the frequency parameter when 

the roving mass passes the crack [4]. The results for other boundary conditions and with multiple 

cracks will also be presented at the symposium.  

 

 
 

The natural frequencies of a plate with cracks parallel to an edge were computed using the 

Rayleigh-Ritz Method. The obatined frequencies exhibit a sudden shift as a roving body crosses 

a crack. If the crack is only partial and continuity of translation is maintained, then the frequency 

shift occurs only when the body possesses a rotary inertia, as has been observed in beams. If the 

crack is complete (through thickness), which permits differential translation to occur on either 

side of the crack, a particle having mass only (translatory inertia) is sufficient to cause a sudden 

shift. Future work would be to study the effect of cracks that are not parallel to an edge, and non-

straight cracks. The body used in this study was assumed to possess mass and rotary inertia at a 

point. The effect of a body of small but finite dimensions also would be investigated. 
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1. Introduction 

The target of research on plate vibration is mainly directed toward bending (out-of-plane) 
vibration due to practical concern in low frequency range. A vast literature has resulted since 
1960’s and the famous monograph was compiled by Leissa [1]. It is known, however, that 
addition of slight curvature to plates causes the coupling between bending and in-plane 
vibrations, and acoustic noises are often transmitted through inplane vibration of plates 
embedded in the structure. Considering these, it is meaningful to develop analytical methods for 
the in-plane vibration of plates. In the past literature, the problem of in-plane vibration has been 
studied for isotropic plates [2-6] and anisotropic plates [7-11], but comprehensve anaytical 
methods have not been fully developed to cover the laminated rectangular plates under arbitrary 
boundary conditions. This paper deals with such problem under any sets of free, supported (two 
types) and clamped edges. The optimization and counting problems are also mentioned. 

2. Outlines of Analysis, Optimization and Combination 

2.1 Ritz method     
Consider a symmetrically laminated rectangular plate with dimension of a×b and thickness h. 
The strain energy and kinetic energy are formulated by 

     1
2

T
V A dArea     ,       

2 21
2

u vT dArea
t t


                

                            (1) 

where {ε} is a strain vector, [A] is a 3×3 matrix composed of stretching stiffness Aij and ρ is 
mass per unit area. Two in-plane displacements u and v in x and y directions, respectively, are 
introduced and written by using non-dimensional coordinates of ξ=2x/a, η=2y/b as                          

     
1 1

0 0

M N

ij i j
i j

u , ,t P X Y sin t    
 

 

    ,         
1 1

0 0

M N

kl k l
k l

v , ,t Q X Y sin t    
 

 

              (2) 

where Pij and Qkl are unknown coefficients, and Xi(ξ), Yi(η), Xk(ξ) and Yl(η) are the functions 
where geometrical boundary conditions are adjustable [12]. The kinematical boundary 
conditions for in-plane problem are 

 u≠0,v≠0 (Bu1= Bv1=0):   a free edge (denoted by F)                                               (3a) 
u≠0,v=0 (Bu1=0, Bv1=1): a supported edge, (by S1)                                               (3b)    
u=0,v≠0 (Bu1=1, Bv1=0): a supported edge (by S2)                                                (3c) 
u=v=0  (Bu1= Bv1=1):     a clamped edge (by C)                                                    (3d) 

which are presented along the left-hand edge of x=ʷa/2 and Bu1, Bv1,.. are boundary index [12].   
A frequency parameter Ω=ωa[ρ(1-νLTνTL)/ET]1/2  is obtained by minimizing the functional as  

  0max max ijT V / P    ,    0max max klT V / Q       (    0 1 2 1 0 1 2 1i,k , , ,.., M ; j ,l , , ,..., N    )     (4)  
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2.2 The finite element method    
This problem may also be solved by using the finite element method, and the energy 
expressions used are the same as Eq.(1). Two displacements u and v are formulated in the x and 
y directions, respectively, for a rectangular element with four nodes labeled as  i,j,k,l.  

  
   1 0 0 0 0

0 1 0 0 0
u x, y x y xy
v x, y x y xy


        
    

     with    0 0 1 1 2 2 3 3
T, , , , , , ,               (5) 

with the four coordinates    i , i l , lx y ,.., x y  and coefficients β and γ for interpolation, the nodal 
displacement vector {de} and the strain vector {ε} become  

               1i.e.,
T

e i i j j k k l l ed u ,v ,u ,v ,u ,v ,u ,v C , C d                            (6) 

         1
eQ Q C d                                                        (7) 

respectively, where [Q] is derived from Eq.(5). Substitution of Eq.(7) into (1) yields the strain 
energy in terms of nodal displacements, and the element strain energy and the element stiffness 
matrix are given, respectively, by  

     1
2

T
e e e eV d K d      ,           1 1T T

e
Area

K C Q A Q dA C    ・ ・                         (8) 

Similarly, the element kinematic energy and element mass matrix are derived as  

    21
2

T
e e e eT d M d       ,         1 12 2

T

e
Area

M C u v dA C     ・ ・               (9) 

By using Eqs.(8)(9), the frequency equation for total system is constructed for eigenvalues. 
 
2.3 Optimization 
The frequency parameters calculated from the Ritz nd FEM solutions can be utilized in the 
optimization, for such purposes as maximizing fundamental frequencies. Since these solution 
processes are independent from optimization process, any general purpose optimization 
schemes are applicable, typically the genetic algorithm (GA). Unlike the bending problem 
where distance of each layer from the midddle plane counts, the number of different stacking 
cases is reduced, for example, the laminates of  [10°/30°]s and [30°/10°]s (s: symmetric)(first 
fiber angle being for the outer-most layer) give the identical in-plane stiffness. Because the Ritz 
method is computationally efficient, search of all combinations for relatively small number of 
layer is feasible by directly comparing the frequencies of all the combinations. 
 
2.4 Combination of boundary conditions 
One of the authors has been interested in clarifying the total number of combinations with the 
same vibration frequencies for all possible sets of boundary conditions along four edges. In 
bending vibration [12], such counting problem was solved by using Polya couting theory. The 
same combinatorics approach is used for in-plane vibration of plates. 

3. Results and Discussion 

In numerical examples, the material constants are used that are averaged among three 
typical sets of constants [13]:  EL=150.0 GPa, ET=10.0 GPa, GLT=5.0 GPa, ν=0.3. Table 1(a) 
presents convergence characteristics of Ritz method by changing number of term in 
displacement functions (2) from six terms to twelve in one direction (the resulting matrix sizes 
are 72×72,..,288×288). The boundary conditions are denoted, for example, by  C-S1-S2-F (in 
counter-clockwise starting from  the left edge with x=-a/2. In the table, a solution of 10×10 
terms generates frequency in well converged values, although the convergence speeds are 
different depending upon order of modes.  
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In Table 1(b), the number of elements in the finite element calculation (FEM) is varied from 
12×12 to 20×20 in the x, y directions.  Except for the third modes, Ritz solution agree well with 
values of FEM. The differences are within one percent. It is also noted in Table 1(b) that the all 
FEM solutions give values monotonically decreasing, thereby showing the solution being upper-
bounds. This means that the present two-dimensional elelment resulted in conforming element 
in the in-plane vibration problem, while the resulting element derived from similar simple 
polynomials for the bending is non-conforming element [14] with the slope not being 
continuous along boundaries of adjoining elelments. 
 
Table 2 presents the maximum and minimum frequncy parameters Ω1 by Ritz 10×10 solution 
for symmetrically laminated, balanced eight-layer square plates [(θ1/-θ1)/(θ2/-θ2)]s. The search 
was made for all combinations of 36×36=1296 times (Δθ=5°), and therefore they are exact 
optimum solutions. One see an idex value <Ω1,max /Ω1,min> to evaluate the effect of optimi-zation. 
For five different sets of boundary conditions, the ratios were almost same, being about 2.5. 
 
Table 1. Convergence of solutions for sym-           Table 2. Optimum design for maximum and 
 metric 8-layer square plates with [(30°/-30°)2]s,     minimum frequencies of 8-layer square plate 
(BC: C-S1-S2-F, b/a=1).                                          with balanced sequence of  [(θ1/-θ1)/(θ2/-θ2)]s. 

(a) Ritz solution B.C.
m×n Ω1 Ω2 Ω3 Ω4 Ω5 Ω1,max θ1 θ2 Ω1,min Ω1,max/Ω1,min

6x6 2.439 4.183 6.271 6.509 7.560 S1S1S1S1 5.199 65 30 2.215 2.35
8x8 2.436 4.183 6.248 6.501 7.553 S2S2S2S2 8.718 0 90 3.132 2.78

10x10 2.434 4.183 6.242 6.501 7.553 CFFF 1.753 35 15 0.690 2.54
12x12 2.434 4.183 6.240 6.501 7.553 CS1S2F 2.554 40 40 0.991 2.58

(b) FEM solution CCCC 9.149 0 90 3.835 2.39
(div.x)×(div.y) Ω1 Ω2 Ω3 Ω4 Ω5

12x12 2.450 4.219 6.502 6.642 7.642
16x16 2.444 4.203 6.396 6.579 7.603
20x20 2.441 4.196 6.343 6.550 7.585

dif.(％)* 0.3 0.3 1.7 0.8 0.4
*Difference with Ritz(12x12) solution.

Number of elements

Number of term
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Summary

Highly flexible composite thin-walled booms and plates are constantly employed in spacecraft

science; applications include, but are not limited to, deployable satellites’ instrumentation, anten-

nas, and solar arrays. Generally subjected to large displacements and rotations, these composite

structures are prone to suffering vibration and instability phenomena as a consequence of external

excitations and operational loadings [1, 2]. Thus, predicting accurately the in-service nonlinear

response and the modal characteristics around non-trivial equilibrium states of these thin-walled

composite flexible structures is of great importance for design and verification.

In this work, the governing nonlinear equations of lower- to higher-order 1D (beam) and 2D

(plate) structural theories for composite laminates are derived as degenerated cases of the three-

dimensional elasticity equilibrium via an appropriate index notation and by employing the Carrera

unified formulation (CUF), see Ref. [3]. According to CUF, 1D beam theories, for example, can

be formulated from the three-dimensional displacement field (u) as an arbitrary expansion of the

generalized unknowns (uτ); i.e.,

u(x,y,z) = F1D
τ (x,z) uτ(y), τ = 1,2, ....,M (1)

where Fτ are generic functions on the beam cross-section domain, M is the number of expansion

terms, and τ denotes summation. In contrast, the generalized displacements are functions of the

(x,y) in-plane coordinates in the case of plate models and Fτ represent thickness functions to give:

u(x,y,z) = F2D
τ (z) uτ(x,y), τ = 1,2, ....,M (2)

Depending on the choice of Fτ and the number of expansion terms M, different classes of beam and

plate structural theories can be formulated and, thus, implemented in a straightforward manner [4].

Regardless of the use of 1D or 2D formulations, quasi-static and eventually nonlinear equilibrium

states of elastic structures can be found by using the principle of virtual work, which states that

the sum of the virtual variation of the internal strain energy and the virtual variation of the work of

external loadings is null. As a consequence, small-amplitude vibration of beams and plates sub-

jected to initial pre-stress states and undergoing large displacements and rotations can be analysed

by linearizing the virtual variation of the internal work, which – by using CUF, standard finite

elements (FEs), the constitutive relations, and the Green-Lagrange strains – reads [5]

δ (δLint) = < δ (δεεεT σσσ)>
= < δεεεT δσσσ >+< δ (δεεεT )σσσ >

= δuT
τi(K

i jτs
0 +K

i jτs
T1

+K
i jτs
σ )δus j

= δuT
τiK

i jτs
T δus j

(3)
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In Eq. (3), < (·)>=
∫

V (·) dV , εεε and σσσ are respectively the strain and stress vectors, uτi is the vector

of the FE nodal unknowns, and K
i jτs
T is the tangent stiffness matrix in the form of 3×3 fundamental

nucleus. Note that K
i jτs
T is the sum of K

i jτs
0 , which represent the linear stiffness matrix, K

i jτs
T1

,

which is the nonlinear contribution due to the linearization of the Hooke’s law, and Kσ , which

comes from the linearization of the nonlinear form of the strain-displacement equations and is

often called the geometric stiffness. Given the theory approximation order, these fundamental

nuclei can be opportunely expanded in order to obtain the element tangent stiffness matrices of

any arbitrarily refined beam and plate models. In other words, by opportunely choosing the theory

kinematics (Eqs. (1) and (2)), classical to higher-order FE stiffness arrays can be implemented

in an automatic manner by exploiting the index notation of CUF. The explicit derivation of the

tangent stiffness matrix is not provided here for the sake of brevity, but it can be found in [6].

Once the global tangent stiffness matrix KT is known, the natural frequencies and mode shapes of

the structure can be evaluated by solving the usual eigenvalue problem, which holds:
(

KT −ω
2M

)

u = 0 (4)

where M is the FE mass matrix, assumed linear in the present study.

(a) Equilibrium curve (b) Effect of in-plane loading on natural frequencies

Figure 1: Vibration of simply-supported plate under uni-axial compression.

For representative purposes, Fig. 1 shows the mode aberration of a metallic simply-supported

rectangular plate subjected to uni-axial in-plane compression. In particular, Fig. 1(a) shows the

static equilibrium curve of the elastic structure under consideration. Note that a small defect

pressure is applied to avoid singularities close to the buckling load. Important natural frequencies

are thus analysed all along the equilibrium path and shown in Fig. 1(b). It is clear that instabilities,

veering phenomena as well as crossing frequencies may arise as a consequence of the operational

loadings. Some further considerations can be done:

• The accuracy of the proposed methodology, of course, depends on the capability of the

structural theory to describe nonlinear analysis in an accurate manner, which is the case of

the present CUF methodology.

• In fact, internal stress distributions are accurate and large-displacement states are described

by 3D Green-Lagrange relations.

• The nonlinear vibrations have low amplitudes, so the linearization around discrete states of

the equilibrium path and the assumption of harmonic oscillations are legit.
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• Inertial work is neglected in the evaluation of the equilibrium path. In other words, vibra-

tions are evaluated around quasi-static equilibrium states.

• The proposed method is able to identify bifurcations, elastic instabilities or buckling phe-

nomena as those conditions which render the tangent stiffness matrix singular.

References

[1] Virgin, L. N.: Vibration of Axially Loaded Structures. Cambridge University Press, 2007.

[2] Leissa, A.W.: Looking Back at Curve Veering. ISVCS9 - Proceedings of 9th International

Symposium on Vibrations of Continuous Systems, pp. 46–48, 2013.

[3] Carrera, E.; Cinefra, M.; Petrolo, M.; Zappino, E.: Finite Element Analysis of Structures

through Unified Formulation. John Wiley & Sons, 2014.

[4] Carrera, E.; Petrolo, M.: Preliminary assessments on the development of refined shell mod-

els for free vibrations via machine learning. ISVCS 2019 - Proceedings of 12th Interna-

tional Symposium on Vibrations of Continuous Systems, 2019.

[5] Pagani, A.; Augello, R.; Carrera, E.: Frequency and mode change in the large deflection

and post-buckling of compact and thin-walled beams. Journal of Sound and Vibration,

Vol. 432, pp. 88–104, 2018.

[6] Pagani, A.; Carrera, E.: Unified formulation of geometrically nonlinear refined beam theo-

ries. Mechanics of Advanced Materials and Structures, Vol. 25, no. 1, pp. 15–31, 2018.

ISVCS12 - Page 89 of 146



ISVCS12 - Page 90 of 146



ISVCS12th International Symposium on Vibrations of Continuous Systems 

Sporthotel Panorama, Str. Sciuz, 1, 39033 Corvara In Badia BZ – Italy, July 28 - August 2, 2019 

 

 

 

Complex Dynamics of Shells under Different Thermal Conditions 

Francesco Pellicano*, Antonio Zippo#, Giovanni Iarriccio†, Marco Barbieri‡ 

Dept. of Engineering Enzo Ferrari 

University of Modena and Reggio Emilia 

V. Pietro Vivarelli, 10, 41125 Modena, Italy 

* francesco.pellicano@unimore.it  # antonio.zippo@unimore.it  
† giovanni.iarriccio@unimore.it  ‡ mark@unimore.it  

Summary 

Thin walled structures play a key role in different fields of structural engineering thanks to the 

high strength-to-weight ratio. For example: in aerospace industry, shells and plates are 

commonly used in the structural part of fuselages and wings of aircrafts; in energy production 

industry, pipes and heat exchangers are made of thin structures subjected to strong temperature 

gradients. Despite the simplicity of plates and shells, the dynamics of these components exhibit 

a great complexity.  

In 1992, Noor and Burton [1] published an extensive review on computational models applied 

to thermomechanical problems of plates and shells made of composite material. 

Alijani and Amabili [2] on the subject of the nonlinear vibrations of shells. 

Zippo et al [32] investigated the dynamics of pre-compressed circular cylindrical shells by 

experiments, both in linear and nonlinear fields. 

The aim of the present work is to investigate the dynamic scenario of shells under mechanical 

and thermal loads. The nonlinear dynamics of polymeric circular cylindrical shells with top 

mass subjected to axial harmonic excitation has been investigated. The present work is fully 

experimental. 

Test description 

A thin circular cylindrical shell made of polyethylene terephthalate (PET) is tested. The position 

of the shell is vertical and the base is vibrating. A cylindrical mass made of aluminum alloy is 

glued to the top edge of the shell. The bottom side of the structure is clamped to a vibration 

table adapter (VTA) by means of a steel bolted ring. 

a) 

 

b) 

 

Figure. 1 - Experimental setup: (1) shaker, (2) VTA, (3) shell, (4) top mass, (5) periscope, (6) 

climatic chamber, (7) laser telemeter, (8) laser vibrometer, (9) control and data acquisition. 
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A stepped sine vibration is imposed to the seismic base with the aim of exciting the first 

axisymmetric mode of vibration of the shell. 

Several homogeneous temperature conditions are considered (–5 °C, 10°C, 25°C, 45°C) as well 

as different drive excitation levels (0.1 V, 0.2 V, 0.3 V, 0.4 V). 

Fig. 2 shows amplitude-frequency curves at 0.4 V of drive excitation amplitude with upward 

frequency variations. The voltage input amplitude is related to the vibration level of the shaker 

base. For example, the base acceleration amplitude varies from 210 m/s2 to 110 m/s2 at 25°C. 

 

a) 

 

b) 

 
                                       c) 

 
Figure. 2 – Amplitude-frequency: a) Top, b) Shell, c) Base 

 

The top mass acceleration amplitude shows the resonance of the first axisymmetric mode (at 

about 473 Hz at 25°C); far from the exact resonance, the amplitude frequency curves of the 

three top accelerometers (vertical direction) follow the expected behavior of a linear resonance; 

conversely, there is a region close to the resonance where the response does not present the 

standard aspect and a saturation phenomenon takes place.  

In order to complete the analysis of the dynamic scenario, in this section the bifurcation 

diagrams of the Poincaré maps are presented. 

 

a) 

 

b) 

 
Figure. 3 – Bifurcation diagrams: a) Top, 2) Shell, 
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Fig. 3 shows the bifurcation diagrams and the spectrograms carried out with 0.4 V of drive 

amplitude at T=-5°C. Upward frequency variation is considered. The top mass motion is 

periodic up to 430Hz; when the saturation/instability occurs, a non-stationary motion takes 

place from 430 to 570Hz, at higher frequencies the top mass vibration becomes regular, i.e. 

periodic. This is in perfect agreement with the analysis of the amplitude-frequency diagrams and 

the instability region identified in the previous section. 

Table 1 shows details of the dynamic scenario for the most interesting regimes, in particular: i) 

1/3 sub-harmonic response, three point on the Poincaré map and a spike in the spectrum at 1/3 

the excitation frequency; ii) a quasi-periodic response characterized by a continuous closed 

trajectory on the Poicaré map and sidebands on the spectrum. 

Tab. 1- Poincarè maps , Phase portraits, Fourier spectra, Time histories, - 0.4 V - T = -5 °C –  

Poincaré map Phase portrait Spectrum Time history 

    

    

Conclusions 

The effects of extreme homogeneous temperature conditions on nonlinear dynamics of 

polymeric shell, interacting with a top mass, have been experimentally analyzed. Tests are 

carried out in controlled environmental conditions. 

A parametric excitation is induced by the base motion and a saturation of the top mass vibration 

takes place the first axisymmetric vibration mode is resonant. 

Through the bifurcation analysis, it was possible to obtain deeper information. Within the 

saturation region, shell nonlinear dynamics is emphasized by high temperature. For low 

temperatures, the response is periodic or quasi-periodic with the spectra dominated by the 

fundamental harmonics. On the other hand, high temperatures lead to a less stable behavior of 

the structure, i.e. a tendentially more chaotic response, with broad spectra. 
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Impacting rods are used in several applications of every day life tools. In this contribution a the-

oretical model to calculate the stress wave propagation of two impacting rods of arbitrary cross

section and arbitrary material properties is presented. Finally, the semi-analytical results are com-

pared with experimental results which yields good agreement.

Theoretical model

The theoretical model presented is based on traveling waves in rods. The geometries of the rods

are approximated by a large number of elements with different lengths ℓ j. The material properties

density ρ , Young’s modulus E and the geometry A can vary from element to element but are

constant within each element. On an element with constant material parameters the solution of

the governing partial differential equation for the displacements of the rods simplifies to the well-

known wave equation which can be solved analytically [1]. The element lengths are determined

so that all wave fronts of the elements arrive after the time step ∆t at the end of the element

ℓ j =

√

E j

ρ j

∆t = c j∆t, (1)

where c j is the constant wave propagation speed in element j.

At the beginning of each timestep at t = t− the rods are in equilibrium, which means that both the

stress σ and the velocity v is constant within the elements (Figure 1 a)). The superscripts +/−
relate to the right/left element border. In case of the time t the superscripts refer to the time imme-

diately after (superscript +) or just before (superscript −) t. If σ j−1,t− 6= σ j,t− stress waves start to

Figure 1: Elements in equilibrium at time t = t− a) and straight after at t = t+ b).

propagate into the elements at time t+. By claiming force and displacement/velocity equilibrium
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at the transition zones

F+
j−1,t+ +F−

j,t+ = Fext,t+ (2)

v+
j−1,t+ = v j,t+ = v−

j,t+ (3)

and applying the momentum conservation formula [2]

F−
j,t+ =−Fj,t− +ρ jA jc j(v

−
j,t+ − v j,t−) (4)

F+
j−1,t+ = Fj−1,t− +ρ j−1A j−1c j−1(v

+
j−1,t+ − v j−1,t−) (5)

the velocities v−
j,t+ ,v

+
j−1,t+ and the forces F−

j,t+ ,F
+
j−1,t+ at t+ can be calculated. Applying the mo-

mentum conservation formula within each element leads to

Fj,t+∆t− = F+
j,t+ −F−

j,t+ −Fj,t− (6)

v j,t+∆t− = v+
j,t+ + v−

j,t+ − v j,t− (7)

the new forces Fj,t+∆t− and velocities v j,t+∆t− in equilibrium at time t +∆t−. Finally, the external

forces Fext are updated and a new timestep begins.

Setup of the test rig

In Figure 2 the schematic sketch of the setup of the single hit test rig is depicted. The gun pneu-

matically accelerates a piston that hits a rod which is at rest. At the exit of the gun channel the

impact velocity is measured by a photoelectronic fork sensor.

On the rod, several strain gauges are attached. Its signals are amplified and filtered by a low pass

filter with cutoff frequency 40kHz. In order to get a better insight during the impact, i.e. to de-

tect the impact time, a high speed camera which is illuminated by an LED light records the impact.

Rod

Figure 2: Schematic sketch of the test rig.

Results and discussion

The PE rod is mounted freely at its other end. The dimensions of both steel piston and PE rod

and the position of the strain gauges (SG) are depicted in Figure 3. In Figure 4 the results yielded

by the strain gauge measurements are compared with the semi-analytical results. After a short

dead time the wave front arrives at the first strain gauge (Figure 4 a)) with a compression stress
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Figure 3: Dimensions in mm of piston (left) and rod (right) and position of the strain gauges (SG).

jump. The wave propagation speed of the piston is faster and the length is smaller compared to

the rod. Therefore, the incident waves of the piston are reflected several times at its free end and

transmitted into the rod at the impact zone before the wave front of the rod first reaches its free

end. Thus, the absolute value of the compression stress decreases continuously. At t ≈ 3.6ms the

reflected tensile stress arrives at the first strain gauge which leads to a positive stress jump. Shortly

after, when the tensile stress wave reaches the transition zone, rod and piston separate.

After t ≈ 1.3ms the wave front reaches the second strain gauge and leads to a smaller compression

Figure 4: Comparison of semi-analytical and experimental results at first a) and second b) strain

gauge.

stress jump. Since the position of the second strain gauge is close to the free end, the width of the

stress pulse is much smaller compared to the first strain gauge as the reflected tensile stress arrives

shortly after the compression stress wave arrived.

Comparing the semi-analytical with the experimental results yields good qualitative accordance.

However, the quantitative behavior does not match perfectly, especially for the second strain gauge.

A possible reason is that the internal damping is not yet considered in the semi-analytical model.
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Summary 

Gyroscopic effects on the stability of parametrically excited continuous rotor systems are clarified 
with respect to incomplete and/or incorrect conclusions found in the literature, presenting novel 
theoretical developments and computational results. 
Stability analysis of continuous parametrically excited rotor systems is a topic of both relevant 
theoretical interest and practical importance. Several studies can be found in the literature, dealing 
on stability analysis of continuous rotating shafts [1, 2] or continuous cylindrical shells [3, 4] 
under periodic axial forces, or more in general on conditions for rotordynamic stability under 
combined axial forces and torques. In all the mentioned works (and in many others, as reported in 
[5]), however, an improper application of Bolotin’s method [6] led to wrong conclusions (single 
and double period critical solutions with apparent destabilizing effects due to gyroscopic terms).  
As case–study including all features of interest, a continuous perfectly balanced shaft is herein 
considered, modelled as a spinning Timoshenko beam loaded by axial end thrust and twisting 
moment oscillating at the same period. The equations of motion of this parametrically excited 
continuous system, in the form of a set of coupled partial differential Mathieu–Hill equations with 
gyroscopic terms, read: 

II I I

II I I

I II I
0
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( ) 0                                     
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




    J J

                                                                  (1) 

where (according to Fig. 1 left and adopting dots and roman numbers for differentiation with respect to 
time t and to the spatial variable x), v and w are the displacements in the y, z directions, Jy and Jz are 
the angular displacements about the y, z axes, r is the density of the shaft, A is its cross–section 
area, J its moment of inertia, E is the Young’s modulus, G is the shear elasticity modulus, k is the 
transverse shear factor, w is the angular speed, N is the time–dependent (harmonic) external end 
thrust (positive if tensile), T is the time–dependent (harmonic) external twisting moment (positive 
if counterclockwise) [7]. Damping terms can be added to Eqs. (1), for modelling either external 
(non rotating) and/or internal (rotating) damping distributions. 
Since in this kind of problem the classical Bolotin method cannot be applied (due to the presence of 
gyroscopic terms), and the computation of the transition matrix within Floquet analysis would carry 
overwhelming difficulties, a different approach is herein adopted: after Galerkin discretization of the 
equations of motion, stability of Floquet solutions is studied via eigenproblem formulation, obtained 
by applying the harmonic balance method. A numerical algorithm is then developed to compute 
global stability thresholds for the whole continuous system in presence of both gyroscopic and 
damping terms. Stability charts are represented as Ince–Strutt diagrams, with a frequency parameter 
 and an amplitude parameter  defined as for the single degree of freedom Mathieu–Hill 
equation: 
                                             2 2 2 2/ , ( / )L LL L       W w W w                                                (2)                                
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In Eq. (2) Lw is the angular frequency of the external load harmonic component, L  its 
amplitude, and W a characteristic angular frequency defined by the mechanical properties of the 
shaft, replacing the natural angular frequency of the single degree of freedom system. 
Gyroscopic effects on stability are first investigated in the undamped case, considering the angular 
speed (in dimensionless form ˆ /w w W ) as independent from the frequency parameter , and 
noticing that the associated time–invariant system (at  = 0) is merely stable [8].  
As a first result, in this study it has been demonstrated that due to gyroscopic terms in the 
continuous system, the single–period and double–period solutions are not critical solutions 
anymore, meaning that the collision points of the Floquet multipliers [9] (laying on the unit–circle, 
in absence of damping) are no longer the two points on the real axis (+1, 0) and (–1, 0), as shown 
in Fig. 1 right. In fact, when ˆ 0w  each pair of coincident values of natural frequency wn 
separate into two distinct values wnf  > wnb (forward and backward values), and consequently also 
the Floquet multipliers for each eigenvalue separate into two pairs of counter–rotating points on 
the unit circle. In addition, simple analytical expressions have been found for the critical values of 
 at  = 0 (points on the  axis of the stability chart from which the instability regions originate, as 
shown Fig. 2 left) and for the related critical eigenvalues  (which on the unit circle form 
quadruplets of points out of the real axis, as shown in Fig. 1 right), in both cases as functions of 
the n–th forward and backward eigenfrequencies: 
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in which k is an integer index defining the sequence. 
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Figure 1. Left: Schematic of the continuous rotating shaft. 
Right: Floquet multipliers on the unit circle in presence of gyroscopic effects. 

 

Figure 2. Left: Ince–Strutt stability map with undamped gyroscopic effects for egenvalue 1. 
Right: gyroscopic effects with external damping for the continuous shaft ( 0 0.01z ). 
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Figure 2 left displays the sequence of stability thresholds obtained for the first eigenvalue of the 
continuous shaft: the black curve with downward spikes represents the actual threshold, while the 
lateral grey and black curves lay in the stable domain (the whole areas between each pair of grey 
curves, due to single and double period solutions, were erroneously identified as instability regions 
in several studies). 
Another result comes from considering the effect of continuous damping distributions. They play 
an essential role in making stability charts readable for practical purposes, producing substantial 
clearing of high–order mode contributions to global stability regions, with great advantage in 
terms of reduction of computational load, which would otherwise become prohibitive. 
On stability charts, external damping affects mainly the downward spikes of modal instability 
regions (producing smoothing and contractions, with stabilizing effects, as in Fig. 2 right), while 
it has been found that internal damping (even in very small amount) acts significantly on their 
lateral borders (producing merging, with potential destabilizing effects induced by angular speed). 
In Fig. 2 right a superposition of modal sequences of instability regions is displayed (grey curves), 
and the black curve identifies the stability threshold (global stability region in the lower part of the 
map, given by the complement area with respect to the union of all sequences of modal instability 
regions). Modal interactions grow with L , due to coupling of the equations of motion, showing 
that the stability charts for the continuous system cannot be represented by mere superpositions of 
scaled single degree of freedom Ince–Strutt diagrams. 
Regarding the external load components, the effects of harmonic axial end thrusts are dominant, 
while those of harmonic twisting moments are practically negligible. It is also worth pointing out 
that in all cases considered the operation lines ( L    ) related to equivalent first Euler’s critical 
loads are well into the unstable regions, which clearly means that critical load analysis is generally 
not sufficient for assessing the stability of parametrically excited continuous rotors. 
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Summary 

Curved beams are frequently used in modern structures of civil and mechanical engineering as 

typical loading resistance elements and the latest use of curved beams is directly related to the 

3D-printing technology for the rapid generation of periodic patterns and their combinations to 

form structures of novel configurations. To satisfy the needs of conceptual initiation and 

evaluation of structural properties, the vibration characteristics of curved periodic beams are 

studied. With existing knowledge of curved beams, the analysis can only be done with numerical 

methods for the considerations of arbitrary configurations. In our study, we choose the Rayleigh-

Ritz method as the analytical procedure with accuracy and efficiency. By using the simple 

functions for displacement approximation, accurate results of vibration frequencies and mode 

shapes are obtained. The approximate results have also been validated with finite element 

analysis.  

 

With the successful analysis of vibrations of curved plane beams, the curved periodic beams and 

the combinations of beam elements can also be analyzed. We shall present the analytical results 

with the comparison from finite element analysis to establish a complete procedure. In the future 

study, the higher-order theory of curved beams can be established and more vibration modes 

including torsion will be included. It is expected that our analytical method and procedure will be 

able to calculate all vibration modes of 

curved beams and combinations for accurate 

design of curved beam elements in 

association with the 3D-printing technology. 

Eventually, we should be able to analyze 

vibrations of curved beams with an efficient 

analytical method. This study will 

concentrate on beam theories and the 

analytical procedure which is further 

complicated due to the introduction of 

additional deformation in curved beams. 

 

For a generalized plane curved beam shown in Fig 1, the popular Euler-Bernoulli beam theory 

can be used for the analysis of vibrations for the frequency and mode shapes with known functions 

of the axial curve and boundary conditions. However, generally speaking, the analytical solutions 

are only available with special cases of the axial curve and boundary conditions. In most cases, 

numerical methods including the Rayleigh-Ritz and finite element methods have to be employed 

for accurate solutions. 

 

Fig 1. The geometry of a curved beam 
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If a curved beam has a smaller length and large area of cross-section, or the shear deformation 

cannot be neglected, the Timoshenko variational equation of vibrations of a curved beam will 

have the form of 

 δ ∫ [12 ∫(𝛾𝐴𝑤,𝑡2 + 𝛾𝐼𝜓,𝑡2 + 𝛾𝐴𝑢,𝑡2)𝑑𝑠𝐿 − 12 ∫(𝐸𝐼𝜓,𝑠2 + 𝑘𝑞𝐺𝐴𝛽2 + 𝐸𝐴𝑢𝑇,𝑠2  )𝑑𝑠𝐿 ] 𝑑𝑡 = 0𝑡2𝑡1  (1) 

 

where 𝐿, 𝛾, 𝐴, 𝐸, 𝐼, 𝑘𝑞 , 𝐺, 𝛽, 𝑤, 𝑢, 𝜓 and 𝑢𝑇 (𝑑𝑢𝑇(𝑠)/𝑑𝑠 = 𝑑𝑢(𝑠)/𝑑𝑠 + 𝑤(𝑠)/𝜌(𝑠)) are the 

full length of curved beam, material density, cross-sectional area, the Young’s modulus, the area 

moment of inertia, the shear correction factor, shear modulus, the rotation due to shear, the radial 

displacement, the tangential displacement, the rotation due to bending along the tangential 

direction, and the total tangential displacement, respectively. Equation (1) now includes the 

flexural, shear, and extensional displacements. With the increase of numbers of displacements 

and couplings of vibration modes, the analytical solutions will be more difficult and only the 

numerical solutions can be expected in general cases. 

 

With the objective of accurate analysis of in-plane vibrations of curved beams, the actual models 

are typically curved elements we frequently encounter from the 3D-printing technology. In 

addition to the rare configuration we are not familiar with from traditional manufacturing process, 

there are also periodic beam elements with large number of unit cells from today’s manufacturing 

technology. As mentioned earlier, we choose the Rayleigh-Ritz method to calculate natural 

frequencies and modes. The formulation of the solution procedure with the Rayleigh-Ritz method 

is straightforward with displacement solutions satisfying boundary conditions. The differences in 

the beam theories require the different displacements in the calculation of strain and kinetic 

energies. Our analysis has been shown that with the increase of independent displacements, the 

resulted eigenvalue problem will also be larger, and the numerical procedure will then be 

challenging because of a much larger matrix problem which is also sensitive in numerical 

calculations. To provide accurate solutions to the benchmark problems, the simplest approach is 

the finite element solutions with COMSOL. The results from this study and earlier publications 

have been validated with examples [2]. Table 1 shows nondimensional frequency parameters for 

circular curved beams by the Euler-Bernoulli beam theory.It is shown that the larger length to 

radius ratio will require more computing time and the 

 

Table 1. Nondimensional Frequency 𝜴 = 𝝎𝑳𝟐√𝜸𝑨/𝑬𝑰 for Circularly Curved Beams 

with Simply Supported Ends 

L/R 
m=1 m=2 m=3 

FEM Ref. [2] Present FEM Ref. [2] Present FEM Ref. [2] Present 

-- 9.8685 9.8696 9.8696 39.478 39.478 39.478 88.825 88.827 88.826 

0.01 10.352 10.351 10.351 39.478 39.478 39.478 88.834 88.832 88.832 

0.1 32.466 32.467 32.467 39.452 39.453 39.453 89.500 89.501 89.501 

1 37.093 37.092 37.092 82.191 82.184 82.184 155.47 155.48 155.47 𝜋 22.371 22.367 22.367 68.296 68.288 68.287 137.89 137.92 137.87 

 

convergence is also not uniformly stable. Table 2 shows nondimensional frequency parameters 

for sinusoidally shaped curved beams formulated and calculated by the Timoshenko beam theory 

with the inclusion of extensional deformation. And the value of ratio of arc height to span of 

sinusoidal-shaped curved beams is 0.0318, which is a relatively small number. It is found that the 

convergence is quite sensitive to this ratio. We presented the validated results for small arc height 
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to span ratios, and further investigation is being performed to find limitations and remedies for 

beams with larger ratios. Since the vibration frequencies of curved beams are normalized with the 

nondimensional frequency Ω = ω𝐿2√𝛾𝐴/𝐸𝐼 , the actual frequencies in Table 2 are to be 

calculated for different length. 

Table 2. Nondimensional Frequency 𝜴 = 𝝎𝑳𝟐√𝜸𝑨/𝑬𝑰 for Sinusoidally Curved Beams 

with Simply Supported Ends 

Order 

One half  

wavelength 

Two half  

wavelengths 

Three half  

wavelengths 

Four half  

wavelengths 

FEM Present FEM Present FEM Present FEM Present 

1 57.910  57.906  14.537  14.537  14.552  14.552  14.555  14.555  

2 130.56  130.54  129.51  129.51  57.930  57.929  58.150  58.150  

3 232.22  232.16  231.64  231.62  228.35  228.34  129.53  129.53  

4 356.08  356.11  362.45  362.41  360.96  360.94  353.21  353.17  

5 362.92  362.76  522.24  522.16  521.19  521.15  518.07  518.03  

6 522.66  522.33  711.05  710.90  710.18  710.11  708.18  708.12  

7 711.44  710.84  928.89  928.63  928.12  928.00  926.57  926.49  

8 929.26  928.24  1175.8  1175.4  1175.0  1174.9  1173.7  1173.6  

 

Expectedly, the validation of the procedure and results has been successful and the method and 

procedure have been proven to be accurate. After the validation of beam equations with their 

implementation by the Rayleigh-Ritz method, we turn to the typical structures with periodic 

patterns for the first two vibration modes of a beam with up to four half sinusoidal waves as shown 

in Fig 2. The results, again, are exactly the same with COMSOL. Our current results prove that 

the Rayleigh-Ritz method for the free vibrations of general curved beams has been successful and 

it can be further extended to combinations of periodic elements for the needed analysis. 

 
Fig 2. The first two vibration modes of a sinusoidally curved beam of two full sinusoidal 

waves.  

 

From vibrations of beams of sinusoidal cells, it is found the convergence of the Rayleigh-Ritz 

method needs to be improved with larger number functions of deformation.  Although we have 

obtained validated results in this study, careful study of the slow convergence and improving 

strategies is needed.  
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Introduction

The body of this paper considers a pinned-pinned Bernoulli-Euler beam, from which the core nat-

ural frequencies and critical buckling loads corresponding to in-plane flexure, can be determined

easily. The theory is then developed to yield an exact relationship between the static axial load in

the beam and the frequency of vibration. This enables the core eigenvalues to be related exactly to

their counterparts when the beam is additionally supported on a two parameter elastic foundation.

The relationship is simple, exact and obviates the complex problems involved in solving the foun-

dation problem using more traditional techniques. A number of illustrative problems are solved to

confirm the accuracy and efficacy of the approach.

Theory

Consider first the exact, fourth order differential equation governing the harmonic motion of an

axially loaded Bernoulli-Euler beam of length, L, that is supported on a two parameter, distributed

foundation, whose transverse and rotational restraining stiffnesses per unit length are ky and kθ ,

respectively. The resulting equation is well known, can be deduced easily from Howson and

Watson [1] and can be written in the following non-dimensional form

[D4 + p∗2D2
−b∗2]V = 0 (1)

where D = d/dξ , ξ = x/L is the non-dimensional length parameter and V is the amplitude of the

transverse displacement

p∗
2 = p2

− k∗θ b∗
2 = b2

− k∗y (2)

p2 = PL2/EI k∗θ = kθ L2/EI b2 = ρAL4ω2/EI k∗y = kyL4/EI (3)

ρ and E are the density and Young’s modulus of the member material respectively, A and I are the

area and second moment of area of the cross-section, ω is the radian frequency of vibration and

P is the static axial load in the member, which is positive for compression, zero, or negative for

tension.

Equations (2) and (3) establish the non-dimensional member parameters p2 and b2, which uniquely

define the member effects of static axial load and frequency, respectively [2,3], together with p∗2

and b∗2 which define their interaction with the non-dimensional foundation parameters.

Imposing pinned-pinned boundary conditions enables Equation (1) to be solved by assuming a

general solution of the form

V =C sin(iπξ ) i = 1,2, . . . ,∞ (4)
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where C is an arbitrary constant, V defines the modal (displaced) shape, which also satisfies the

boundary conditions. Substituting for V in Equation (1) then yields

(iπ)4
− p∗

2(iπ)2
−b∗

2 = 0 (5)

or
b∗

2/(iπ)4 + p∗
2/(iπ)2 = 1 (6)

It is now helpful to introduce the notion of ‘member environment’ which, for the remainder of

this paper, will be defined as follows. An environment will relate to either vibration or buckling

and can be established by allocating constant values to the appropriate independent parameters in

Equation (6). The core vibration environment will be defined by p2 = k∗y = k∗θ = 0 and will yield

the classical natural frequency parameters

bc,i = (iπ)2
i = 1,2, . . . ,∞ (7)

In similar fashion, the core buckling environment will be defined by b2 = k∗y = k∗θ = 0 and will

yield the classical buckling parameters

pc,i = (iπ) i = 1,2, . . . ,∞ (8)

and hence that

bc,i = p2
c,i i = 1,2, . . . ,∞ (9)

A further result of this is to enable Equation (6) to be written as

b∗
2/b2

c,i + p∗
2/p2

c,i = 1 (10)

It is interesting to note in passing that solutions to Equation (10) will lie on the arc of an ellipse

when b∗2 and p∗2 are both positive and on the arc of the adjoining hyperbola when they are of

opposite sign. Equation (10) can now be used to model a range of vibration or buckling problems

in which any appropriate combination of the non-dimensional effects can be neglected by setting

the relevant parameter to zero.

Discussion and numerical examples

The remainder of this paper now seeks to highlight aspects of Equation (10) while demonstrating

its simplicity and effectiveness when applied to practical structures. This is best achieved by

expanding it out in symbolic form to its most general vibration and buckling environments, as

given in Equations (11a) and (11b), respectively, i.e.

b2
i = b2

c,i[1− (p2/p2
c,i)]+ [(b2

c,i/p2
c,i)k

∗
θ + k∗y ] i = 1,2, . . . ,∞ (11a)

and

p2
i = p2

c,i[1− (b2/b2
c,i)]+ [(p2

c,i/b2
c,i)k

∗
y + k∗θ ] i = 1,2, . . . ,∞ (11b)

where the subscript i has now been introduced on the dependent variable to denote modal rank,

since there will be an infinite number of solutions for each new environment created.

Consider first the asymmetric relationship between Equations (11a) and (11b), which can be put

into context as follows. Assume a vibration environment in which ky = kθ = 0 and p2 = 0.4p2
c,1.

Then from Equation (11a) the frequency of vibration that would reduce the member stiffness

to zero would correspond to b2
1 = 0.6b2

c,1. A similar buckling environment could be written as

ky = kθ = 0 and b2 = 0.6b2
c,1 then from Equation (11b) the compressive axial load that would
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reduce the member stiffness to zero would correspond to p2
1 = 0.4p2

c,1. The same problem is thus

solved both through a vibration and a buckling context. Closer inspection of Equations (11a) and

(11b) enable a number of helpful points to be made. Firstly, it is clear that b2
i and p2

i must always

be zero or positive and that the values of b2 and p2 shape their respective (constant) environments.

Hence, when k∗y = k∗θ = 0; 0 ≤ b2 ≤ b2
c,i and p2 ≤ p2

c,1. When k∗y > 0 and/or k∗θ > 0, the values

of b2(≥ 0) and p2 are only constrained by the requirement that b2
i and p2

i remain positive in their

respective environments. More generally it is clear that in both vibration and buckling problems,

the rotational stiffness becomes more influential as the modal rank increases.

The data for the remaining examples are given below so that the hand solutions developed from

Equations (11a) and (11b) and given in Table 1 can be checked by alternative means.

E = 2.0×1011 N/m2, I = 1.6×10−5 m4, ρ = 8×103 kg/m3, A = 10−2 m2, L = 4 m,

ky = 106 N/m2, kθ = 107 N and P = 2×105 N for compression and negative for tension.

The problem parameters and solutions are given in Table 1 below.

Table 1: Relationship given by Equations (11a) and (11b) between the core eigenvalues and their

counterparts in the required environment.

Environment Modal Rank Core Eigenvalues Solution

k∗y k∗θ i p2
c,i b2

c,i

Vibration p2 b2
i

80 0 0 1 9.86960 97.4091 177.409

80 0 0 3 88.8264 7890.14 7970.14

0 50 −1 2 39.4784 1558.55 3571.94

80 50 −1 1 9.86960 97.4091 680.759

Buckling b2 p2
i

80 0 0 1 9.86960 97.4091 17.9753

0 50 0 2 39.4784 1558.55 89.4784

80 50 0 4 157.914 24936.7 208.420

Conclusions

A simple formula that can be manipulated easily by hand and which can predict exactly the change

in core eigenvalues of a simple pinned-pinned beam to their counterparts in any other allowable

environment has been presented and its efficacy demonstrated.
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Summary 

  

Introduction. For thick plates, it is necessary to include the effects of transverse shear and 

rotary inertia.  In this paper, Gorman’s superposition method (Gorman 1982) is extended in 

connection with Mindlin’s first order shear deformation plate theory to obtain a general 

analytical solution for free flexural vibration of moderately thick isotropic rectangular plates 

with arbitrary boundary conditions (BCs) by means of a two building block scheme.  

 

Background and Motivation. The proposed scheme overcomes the deficiencies of the 

traditional superposition method in that there is one unified set of general solution for 

rectangular plates having arbitrary BCs on all four edges. This eliminates the need for 

constructing ad-hoc BCs-dependent building blocks. Only the unknown coefficients in the 

general analytical solution need to be determined for the desired BCs. The scheme has been 

successfully employed by Yu and Yin (2019) to obtain a general analytical solution for free 

vibration of thin rectangular plates and plate assemblies with arbitrary classical BC’s.    

    

Governing Equations. The governing differential equations for flexural vibration of a 

moderately thick plate may be written in the Cartesian coordinates as    
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(1) 

 where W is the lateral displacement amplitude of a material point ),( yx on the plate midplane; 

x  and y are the amplitudes of bending angles;  h  is the plate thickness;   is the plate 

density; ijD are the plate flexural rigidity parameters; kkA  are the plate extensional rigidity 

parameter;   is the natural frequency of flexural vibration; 2 is the shear correction factor.    

 

Mathematical Formulations. The basis of the success in accomplishing the task lies in that 

(i) the availability of the Levy solution for rectangular plates having a pair of edges subjected 

to roller-supports, (ii) any continuous function can be expanded into orthogonal half-cosine 
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series in a closed interval along a 

rectilinear edge. The solution for free 

vibration of a rectangular plate with 

arbitrary BCs on its four edges is the 

superposition of the solutions for the two 

building blocks (BBs) shown in Fig. 1.    

  

 

The first BB is subjected to the guided 

roller support on edges 1,0 .  The 

second BB is subjected to the guided 

roller support on edges 1,0 .  Along an 

R edge const. , the following three 

quantities vanish  
yyxy QM ,, . Along an 

R-edge const. ,  xxyx QM ,,  vanish.   

The Levy solutions for the two BBs are 
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(3) 

Substituting Eq. (2) into Eq. (1), we obtain four sets of ordinary differential equations (ODEs) 

for   00 , ZX ,  nnn ZYX ,, ,  00
ˆ,ˆ ZY , and  mmm ZYX ˆ,ˆ,ˆ . Solving these ODEs, a unified 

analytical solution may be written as 
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where  
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Kkkkkdiag ,...,1,0ˆ,ˆcosˆcosˆsin)(ˆ  ; and  IG  is a vector containing 

26 nK  unknown constants;  IIĜ is a vector containing 26 mK unknowns.    

The unknown constants are to be determined by enforcing the boundary conditions (BCs) on 

the four edges. The enforcement of the BC’s lead to a set of homogeneous algebraic equations 

from which the eigenvalues and eigenvectors can be extracted.   

Numerical Results. The proposed scheme is applied to obtain natural frequencies or non-

dimensional eigenvalues of a fully clamped plate.  Eigenvalues of the first ten modes were 
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Fig. 1  Illustration of solution scheme for free 

vibration of a rectangular plate 
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determined using different terms in the Levy solutions and are shown in  Table 1.   

 

Table 1 Eigenvalues 
2

G  of a fully clamped moderately thick rectangular plate  

 

 

Modes 

This paper KKK mn   

m 1.0h  

This paper KKK mn   

m 08.0h  

CPT  

(Gorman 1982) 

6K  8K  10K  6K  8K  10K   

1 6.242 6.242 6.242 6.409 6.409 6.409 6.736 (SS-1) 

2 9.394 9.394 9.394 9.720 9.720 9.720 10.43 (AS-1) 

3 14.207 14.207 14.207 14.915 14.915 14.915 16.53 (SA-1) 

4 14.429 14.429 14.429 15.097 15.097 15.097 16.63 (SS-2) 

5 16.816 16.817 16.817 17.738 17.739 17.739 19.95 (AA-1) 

6 20.869 20.873 20.874 22.121 21.202 22.124 25.20 (AS-2) 

7 21.102 21.104 21.104 22.423 22.124 22.425 25.78 (SA-2) 

8 24.790 24.791 24.791 26.604 22.425 26.604 31.32 (SS-3) 

9 27.015 27.021 27.022 28.739 26.604 28.769 34.02 (AA-2) 

10 28.350 28.355 28.355 29.081 28.767 29.087 34.66 (AS-3) 

- Geo-material properties: m 5.1m, 1  ba , 3kg/m 7800,3.0GPa,201 E  

-  The shear correction factor used 8601.02   

- For direct comparison, eigenvalue hEa //22   of the current paper is related to that of 

Gorman (1982), DhaG /22  ,  for a one-quarter plate model by 4/)1(12 222 G .     

 

Conclusion. The proposed analytical method is general and rapidly convergent. The classical 

plate theory (CPT) over-predicts the natural frequencies appreciably because of the neglect of 

the transverse shear and rotary inertia.  This hopefully will help attract the use of the powerful 

analytical method pioneered by Gorman.   
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• enhancements of the wave and finite element approach;  

• use of machine learning for the identification of vibroacoustic systems and the assistance in the 
numerical predictions and experimental data analyses. 
 

I was one of the founders of the FLINOVIA community, symposia and books: www.flinovia.org.  
I have co-authored more than 150 papers, 50 of them in peer reviewed Journals and belong to the following 
boards: 

• Associate Editor: 

o Advances in Aircraft and Spacecraft Science, An International Journal (TECHNOPRESS).  

o Proc. of the Inst. of Mech. Eng., Part C, Journal of Mechanical Engineering Science (SAGE). 

o Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems (SPRINGER). 

• Editor: Mechanical Systems and Signal Processing (ELSEVIER). 
 
 

 

ISVCS12 - Page 125 of 146



Lorenzo Dozio

Department of Aerospace Science and Technology, Politecnico di Milano, Italy

Lorenzo Dozio was born near Milan, Italy, on 1972. He received a M.S. degree
in Aerospace Engineering in 1998 and a Ph.D. in Aerospace Engineering in
2002, both at the Politecnico di Milano. After two years as a post-doc, he
won a position as Assistant Professor at the same University in 2004. In
June 2015 he became Associate Professor at Department of Aerospace Science
and Technology, Politecnico di Milano. He is now Chair of the BSc and MSc
Programs on Aerospace Engineering.

Since 2002 he has been involved in teaching activities concerning servosys-
tems for aerospace applications, introduction to engineering experimentation,
dynamics and control of aerospace structures and fundamentals of aeroelastic-
ity.

His main research interests are vibration of structures, composite and smart
materials, active and shunt piezoelectric control, coupled structural-acoustic
and real-time control systems. He has been involved in many research projects
in collaboration with industries on active noise reduction inside helicopter
cabins, active control of instabilities in combustion chambers and design and
implementation of real-time operating systems. He is currently working on re-
fined computational and analytical models for bending, vibration and buckling
analysis of multilayered plates and shells.

He has co-authored more than 40 papers in international journals and over 50
conference papers. He has advised more than 30 graduate students at Politec-
nico of Milano. He served as a reviewer for, among others, Journal of Sound
and Vibration, Journal of Vibration and Acoustics, Composite Structures and
International Journal of Mechanical Sciences.

He is married to Letizia, and they have four children, two sons Paolo (17) and
Tommaso (15), and two twin daughters Anna and Matilde (11). In his spare
time, he loves playing acoustic and electric guitar.
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Technion - Israel Inst. of Technology Faculty of Civil Engineering

Moshe Eisenberger

June 2019

Degrees

B.Sc. Civil Engineering, Technion, Haifa 1977

M.Sc. Civil Engineering, Stanford University, USA 1978

Engineer Civil Engineering, Stanford University, USA 1979

Ph.D. Civil Engineering, Stanford University, USA 1980

Academic Appointments

Lecturer Civil Engineering, Technion, Haifa 1980

Senior Lecturer Civil Engineering, Technion, Haifa 1985

Tenure Senior Lecturer Civil Engineering, Technion, Haifa 1987

Associate Professor Civil Engineering, Technion, Haifa 1993

Professor Civil Engineering, Technion, Haifa 2003

Publications and Supervision of Graduate Students

Published over 80 Journal papers and 80 Conference papers

Supervised 30 Ph.D. and MSc. Students

Research Interests

Main area are applied and computationl mechanics including

static, dynamic, and stability analysis of structures. In the last

10 years I have been working on Dynamic Stiffness Analysis of var-

ious elements. Recent years were devoted to the exact solution for

plates.

Personal Interests

I am an active cyclist both road and mountain, and hicker. Last

year I was on sabbatical leave in Argentina and loved it! Next

semester I shall spend in Brazil.

1
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Peter Hagedorn 

Peter Hagedorn was born in Berlin, Germany. He grew up in Brazil, where he gra
degree) in mechanical engineering in 1964 at EPUSP and in 1966 earned his doctoral degree at the 
same University. He then worked as a research assistant and la at
the University of Karlsruhe, Germany. In  at 
Karlsruhe. From 1973 to 1974 he was a visiting Research Fellow at the Department of Aeronautics 
and Astronautics, Stanford University. Since October 1974 he is full professor of mechanics at the 
Technische Universität Darmstadt and head of the Dynamics and Vibrations group. He also has 
served as visiting professor at Rio de Janeiro (Brazil), Berkeley, Paris, Irbid (Jordan) and 
Christchurch (New Zealand), where he also holds an Adjunct Professorship at UCC. He has served 
as Head of Department and Vice-President to his home University in Darmstadt and he is serving in 
a number of professional and editorial committees. He is author of over 200 papers and several 
books on a variety of topics in the general field of dynamics and vibrations and analytical 
mechanics. He is officially retired since 2009 but still quite active and heads the Dynamics and 
Vibrations Group, presently affiliated to the chair of professor Michael Schäfer, at the graduate 
school of computational engineering of TU Darmstadt.
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BIOGRAPHICAL SKETCH

Dr. Paul R. Heyliger was awarded a B.S degree in Civil Engineering from Colorado
State University in 1981, and also received his M.S. degree from CSU in the Structural
Engineering and Solid Mechanics Program in 1983. He also holds a Ph.D. degree in
Engineering Mechanics from Virginia Polytechnic Institute and State University in
1986.

Following his doctoral studies, Dr. Heyliger was awarded a two-year post-doctoral
research position in the Fracture and Deformation Division of the National Bureau
of Standards (now the National Institute of Standards and Technology) in Boulder,
Colorado. Dr. Heyliger accepted a position of Assistant Professor in the Structural
Engineering and Solid Mechanics program at Colorado State University in the Fall of
1988 and was promoted to Full Professor in 1999. He has taught courses in dynamics,
mechanics of solids, structural analysis, mechanics of composite materials, the finite
element method, advanced structural analysis, vibrations, boundary element meth-
ods, and advanced solid mechanics. He has been honored with numerous teaching
awards, including the Golden Key award for teaching excellence by the Chi Epsilon
Honor Society and the Best Professor Award by the Engineering Legislature at CSU.
He has been a visiting researcher at NASA-Lewis Research Center, the University
of California at Santa Barbara, the University of Stuttgart, and the University of
Hamburg-Harburg. He has published over 100 articles in refereed journals, and has
completed scientific studies for NASA, NIST, USDA, NSF, ARO, and the Advanced
Materials Institute. Dr. Heyliger holds membership in the American Society of Civil
Engineers (ASCE).

1
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Shinya Honda 

Hokkaido University, Sapporo, Japan 

 

I am an associate professor of the Department of Human Mechanical Systems & Design in 

Faculty of Engineering, Hokkaido University. I graduated the Department of Mechanical 

Engineering in 2005, and obtained Master of Engineering in 2007 from Hokkaido University. In 

2009, I also obtained a PhD from Hokkaido University in the area of optimization of composite 

plates under supervision of Prof. Yoshihiro Narita. The title of my doctor thesis is “Study on 

vibration design of fibrous composite plates with locally anisotropic structure”.  

 

From 2009 to 2013, I worked with Prof. Narita as an assistant professor in the same laboratory.  

 

From 2013 to 2014, I was a visiting researcher of ETH Zurich and worked with Dr. Gerald 

Kress and Prof. Paolo Ermanni about corrugate laminate shell structures. During stay in 

Switzerland, I promoted to the associate professor.  

 

From 2017, after retirement of Prof. Narita, I am working with Prof. Katsuhiko Sasaki who is 

also my sub-supervisor and associate prof. Ryo Takeda.  

 

I have still an interest in a research field of optimization of composite structures. Recently I am 

taking part in the Cross-ministerial Strategic Innovation Promotion Program (SIP) by Japan 

cabinet office, and we are trying to develop a new design approach of aerospace structures with 

other research groups. Some other collaborative works with companies and research institute 

ranging from smart phone structures to concrete buildings are in progress.  

 

I was born and had grown up in Sapporo where I live in now with my wife and two sons who 

are seven and two years old.  
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Sinniah Ilanko, The University of Waikato/Te Whare Wananga o Waikato 

 
Ilanko was born in the north of Sri Lanka (Jaffna), and according to the common Tamil 

practice, he does not have/use a family name. Ilanko is his given name and Sinniah is his 

late father’s given name and conveniently remains informal. 

 

He graduated from the University of Manchester (U.K) with a BSc in civil engineering 

and also obtained an MSc from the same university under the supervision of late Dr S.C. 

Tillman, investigating the effect of initial imperfections on in-plane loaded rectangular 

plates. He commenced doctoral studies at the University of Western Ontario under the 

supervision of Professor S.M. Dickinson, continuing on the same topic. Soon after 

completing his PhD, he worked as a postdoctoral fellow at the UWO briefly before 

joining the University of Canterbury (NZ) in 1986. He continued his academic career at 

Canterbury for nearly 20 years, in various positions, as lecturer, senior lecturer and 

associate professor until he joined the University of Waikato in 2006. In 2012 he became 

a full professor. He has served as the Chairperson and later the Head of School of 

Engineering from January 2013 to December 2015. He has also previously served as the 

Head of Mechanical Engineering Department at Canterbury (2001-2202). 

 

His research areas include vibration and stability of continuous systems, numerical 

modelling and adaptive mechanisms. His most recent research projects include active 

control for adaptive stiffness foundations for earthquake isolation and crack detection 

using frequency measurements in structures with roving test bodies possessing rotary 

inertia. He has published 43 journal papers and in 2014 authored a book “The Rayleigh-

Ritz Method for Structural Analysis” jointly with Dr Luis Monterrubio and Dr Yusuke 

Mochida. Since January 2009, he is serving as the Subject Editor for Journal of Sound 

and Vibration, for analytical methods for linear vibration. He has secured two major grants, 

a Marsden grant for research into vibration analysis of complex structures and more recently a 

grant by the New Zealand government’s Ministry of Business Innovation and Employment 
(Category Smart Ideas) to conduct research on the development of an omnidirectional base 

isolator. 

 

His current research topics include adaptive vibration isolation from vertical seismic 

excitation and crack detection. He is also interested in computer-aided learning and has 

developed and used several interactive lectures and tutorials for teaching Mechanics of 

Materials and Vibration, as well as computer based tutorials and games for 

learning/teaching Tamil language.  

 

He is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka.  
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Short Curriculum Vitae 

Dr. ir. Eelco Jansen 

Gottfried Wilhelm Leibniz Universität Hannover, Institute of Structural Analysis 
Appelstrasse 9A, 30167 Hannover, Germany 
 
Dr. ir. Eelco Jansen is a senior faculty member, head of the Section “Composites” at the 
Institute of Structural Analysis of Leibniz Universität Hannover since 2009. Formerly (2000 – 
2009) he was an assistant professor at Delft University of Technology, Faculty of Aerospace 
Engineering, Aerospace Structures Group, where he also obtained his PhD in 2001. He 
coordinates a wide range of research topics in the area of composite and layered structures and 
has a specific expertise and long-time experience in the field of nonlinear stability and dynamic 
analysis of thin-walled structures.   
 
Professional career 

From November 2009:  Senior faculty member (head of section “Composites”) at Leibniz 
Universität Hannover (Germany), Faculty of Civil Engineering and 
Geodetic Science, Institute of Structural Analysis  

2000 – 2009: Assistant professor at Delft University of Technology 
(Netherlands), Faculty of Aerospace Engineering,  Aerospace 
Structures Group   

December 2001: PhD from Delft University of Technology (Netherlands), on the 
topic of nonlinear shell vibrations (supervisor: Prof. Dr. J. Arbocz) 

1998 – 2000: Research associate at Delft University of Technology 
(Netherlands), Faculty of Aerospace Engineering, Aerospace 
Materials Group   

  
Functions in university, foundations and in associations 

 Member of Editorial Board of journal “Composite Structures”, since 2016 

 Reviewer for various international journals (International Journal of Nonlinear Mechanics, 

Nonlinear Dynamics) 

 Member of European Cooperation for Space Standardization (ECSS) Working Group E-HB-

32-24 Buckling Handbook, 2005 – 2009 

 

Selected publications 

T. Rahman and E.L. Jansen. Computational aspects for stability and vibrations of thin-walled 
composite structures. In Stability and Vibrations of Thin Walled Composite Structures, pp. 
693–734.  H. Abramovich, ed., Woodhead Publishing, 2017. 

T. Rahman, E.L. Jansen, and Z. Gürdal: Dynamic buckling analysis of composite cylindrical 
shells using a finite element based perturbation method. Nonlinear Dynamics; 66(3): pp. 
389-401, 2011.  

E.L. Jansen: A perturbation method for nonlinear vibrations of imperfect structures: Application 
to cylindrical shell vibrations. International Journal of Solids and Structures; 45(3): pp. 
1124-1145, 2008.  

E.L. Jansen: Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis. 
Nonlinear Dynamics; 39(4): pp. 349-367, 2005.  

E.L. Jansen: Non-stationary flexural vibration behaviour of a cylindrical shell. International 
Journal of Non-Linear Mechanics; 37(4-5-37): pp. 937-949, 2002.  
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David Kennedy 

Professor of Structural Engineering 

School of Engineering, Cardiff University, United Kingdom 
 
David Kennedy obtained a First Class Honours degree at the University of Cambridge in 1978 
and a PhD in the area of efficient transcendental eigenvalue computation from the University of 
Wales, Cardiff in 1994. 
 
From 1978 to 1983 he was employed as an Analyst/Programmer for the computer services 
company Scicon Ltd, where he worked on the development of the Mathematical Programming 
software SCICONIC/VM.  In 1981 he was awarded a 2-year BP Venture Research Fellowship in 
Non-linear Optimization, supervised by the late Professor Martin Beale. 
 
In 1983 he was appointed as a Research Associate in the University of Wales Institute of Science 
and Technology, which was merged into Cardiff University in 1988.  Working under the 
supervision of Professor Fred Williams and funded under a collaborative agreement with NASA, 
he co-ordinated the development of the space frame analysis software BUNVIS-RG which was 
released by NASA to US users in 1986/87.  Further collaboration with NASA and British 
Aerospace (now BAE Systems) led to the development and successive releases, starting in 
1990/91, of VICONOPT, a buckling and vibration analysis and optimum design program for 
prismatic plate assemblies.  Both of these programs use analysis methods based on the Wittrick-
Williams algorithm. 
 
He was appointed to a Lectureship in the School of Engineering in 1991, promoted to Senior 
Lecturer in 2000, Reader in 2005 and Professor in 2009.  He has continued to manage the 
collaborative development of VICONOPT, successfully supervising 20 PhD students and 
holding Research Council grants on parallel computing, aerospace panel optimization, local 
postbuckling and mode finding.  He has visited NASA Langley Research Center several times, 
and in 2007 he undertook a 6-month secondment to Airbus UK, funded by a Royal Society 
Industry Fellowship.  A former Deputy Head of the School of Engineering with responsibility for 
staff matters, he now co-chairs the School’s Equality, Diversity and Inclusivity Committee. 
 
Through the Cardiff Advanced Chinese Engineering Centre, Professor Kennedy has participated 
for over 25 years in collaborative research projects with leading Chinese universities, including 
Tsinghua University, Dalian University of Technology and Shanghai Jiao Tong University.   
 
Professor Kennedy is the author of over 200 publications of which approximately 50% are in 
refereed journals of international standing. 
 
He lives with his wife Helen in a village near Cardiff, where he plays the church organ and sings 
in a community choir.  In 2017 he walked the length of Hadrian’s Wall and an ambition for 
retirement is to complete the Pennine Way in northern England. 
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Xiang Liu, PhD 

 

Dr Xiang Liu, is now working as a Professor in High-speed Train Research Center, School 

of Traffic & Transportation Engineering at Central South University, China. His research 

interests include elastodynamics, vibro-acoustics, structural instabilities, aeroelasticity, 

composite structures. 

 

XL received his Bachelor’s and Master’s degrees with First Class in Civil and 

Geotechnical Engineering respectively. Then he joined University of Glasgow in 2010 

to work for his PhD in Applied Mathematics working on surface instabilities of 

membranes, plates and solids. After completing his PhD, XL joined City, University of 

London in 2013. He worked as a Research Fellow with Prof. J. Ranjan Banerjee. To this 

end, a novel method called the spectral dynamic stiffness method (SDSM) has been 

proposed for exact free vibration analysis of isotropic and anisotropic plate assemblies 

with arbitrary boundary conditions (BCs). A set of novel related techniques have been 

developed so that the new SDSM becomes unconditionally stable with remarkable 

accuracy and computational efficiency. This theory has broadened the applicability of 

the SDSM for real life structures. 

 

In February 2017, XL received a specially-appointed professorship from Central South 

University (China). Now the main theme of his theoretical research is to remove the 

limitations of analytical methods and applied them to real engineering problems. And 

the main goal of his industrial research is to make the transportation systems more 

quiet and comfortable.  
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Brian Mace 
 

 
I am currently Professor of Mechatronics in the Department of Mechanical Engineering at the 
University of Auckland, which I re-joined in 2011. Prior to that I was Professor of Structural 
Dynamics at the Institute of Sound and Vibration Research (ISVR), University of Southampton.  
 
I graduated MA (Hons) in Engineering Science and subsequently DPhil (1977) from the 
University of Oxford. Following that I was Research Fellow at the ISVR (1977-1980), Lecturer 
in the Department of Civil and Structural Engineering, University College, Cardiff, Wales 
(1980-1983) and then moved to the University of Auckland, returning in 2000 to the ISVR.  
 
My general research interests concern structural dynamics, vibrations, acoustics, smart 
structures and dynamics. More specifically they include uncertainty modelling and wave-based 
approaches, particularly regarding noise and vibration behaviour at higher frequencies. A strong 
interest concerns wave motion in structures. A significant amount of current work concerns a 
hybrid wave and finite element (WFE) method for structural dynamic and acoustic analysis and 
a hybrid FE/WFE method for prediction of transmission through joints. Applications include 
noise and vibration in buildings, tyre noise and vibration, composites, rail vehicles etc. Recent 
activity also includes vibrations of complex, built-up structures such as cars, aircraft etc., when 
data uncertainty and product variability become important. Modelling the uncertainty is an 
important part of the virtual design process, but computational cost etc. is a real problem. My 
research concerns energy approaches and methods based on component mode synthesis. Other 
interests include smart structures for noise and vibration control, periodic structures and acoustic 
metamaterials and active noise and vibration control. 
 
Interests outside work include fishing, bridge, golf, walking and doing what my wife Gwyneth 
tells me to do in the garden. 
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Shinichi Maruyama 

Gunma University 

 

    Shinichi Maruyama is an associate professor of the Division of Mechanical Science 

and Technology, Graduate School of Science and Technology, Gunma University, 

Japan.  

 

    He was born in Takamatsu and had been lived in Chiba, suburb area of Tokyo, until 

he graduated university. He obtained Master of Engineering and Doctor of Engineering 

in 1999 and 2002, both from Keio University. Since 2002, he has been taking an 

academic position in Gunma University and working with Professor Ken-ichi Nagai. 

 

    His research interests include nonlinear and chaotic vibrations of mechanical systems, 

and analyses and experiments on dynamics of thin elastic structures.  

 

    He is a member of the Japan Society of Mechanical Engineers. Since 2010, He was 

the former chair of the Technical Section on Basic Theory of Vibration in the Division 

of Dynamics, Measurement and Control in JSME.  

ISVCS12 - Page 136 of 146



YUSUKE MOCHIDA 

 

University of Waikato 

Te Whare Wananga o Waikato 

Hamilton, New Zealand 

yusuke@waikato.ac.nz 

 

I am currently working at the University of Waikato in New Zealand. The overall aim of 

my current research is to develop a vibration isolator for earthquake protection. The 

method under consideration includes the use of the concept of pseudo-zero/negative 

stiffness mechanism.  

 

I was born and grew up in Japan. After I graduated with a B.E. in Mechanical Engineering 

from the Tokyo Metropolitan University (Japan) I worked for a while in Japan and went 

to New Zealand as a working holiday maker to travel around and work. Actually I was 

away from the engineering field for several years. This made me miss engineering and so 

after learning English, I enrolled in a Postgraduate Diploma programme at the University of 

Canterbury (New Zealand). During my postgraduate study I became interested in vibration and 

decided to continue towards an M.E. under the supervision of Professor Ilanko, who had at this 

time relocated to the University of Waikato. I completed my M.E. and then continued working 

towards a Ph.D at the same university. Since commencing my M.E. studies I have 

developed several codes based on the Superposition Method, the Rayleigh-Ritz Method 

and the Finite Difference Method to solve free vibration problems of plates and shells 

using MATLAB. I was also involved in research on the development of analytical 

procedure for vibration analysis of complex structures using the concept of negative 

structures, and structural health monitoring using frequency measurement. In addition to 

my research experience, I have been lecturing in Dynamics and Mechanisms, Vibration, 

Mechanics and Finite Element Analysis classes.  

 

Through my career, I hope I can contribute to the development of research relationships 

between New Zealand and other countries, especially Japan, and the advancement of 

research in New Zealand.  

 

Personally, I am also interested in snowboarding, golf, playing drums, Shorinji Kempo 

(Japanese martial arts), foreign exchange, personal development and cooking. 
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NARITA Yoshihiro 
ynarita@eng.hokudai.ac.jp 
-------------------------------- 
Current position (till December 2019) 
JICA, Expert (Academic Advisor) at Higher Education project 
Hasanuddin University, Makassar, South Sulawesi 92171, INDONESIA 
************************************************* 

1980: Dr.Eng., Hokkaido University 
1980-2004: Hokkaido Institute of Technology 

2004-2017: Hokkaido University, Professor Emeritus  
2017-present: Hasanuddin University  

---------------------------------- 
I have attended First ISVCS (1997) through Tenth ISVCS (2015), but I missed 11-th ISVCS in 
UK.  I am very happy to come back. 
 

 
 
I started my research on vibration of continuous systems when I was a PhD student under 
advisor Prof.Irie of HU in 1976, and had a chance to study one year in 1978-1979 under 
Prof.Leissa at the Ohio State University. The research outcomes under both advisors were 
summarized into my PhD dissertation in 1980 with the title “Free Vibration of Elastic 
Plates with Various Shapes and Boundary Conditions”. Even after 39 years, it is 
downloaded more than 22000 internationally from HUSCAP website: 
http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/32630.      
 
I still make computer programs and write papers.            Let’s enjoy research!            

Sapporo, Japan 

 Hokkaido University 

Makassar, Indonesia 

 Hasanuddin University 

12th ISVCS 
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Alfonso Pagani 

 

Alfonso Pagani is professor assistant at the Department of Mechanical and Aerospace Engineering, Politecnico 
di Torino. He earned a Ph.D. in Aerospace Engineering at City University of London in 2016 and, earlier, a 
Ph.D. in Fluid-dynamics at Politecnico di Torino.  He gained an MSc and a BSc in Aerospace Engineering at 
Politecnico di Torino in December 2011 and October 2009, respectively. 

In 2018, Alfonso joined California Institute of Technology as visiting associate to work on acoustics of meta-
materials. Also, he spent research periods at Purdue University in 2016, where he worked on micro-mechanics 
of fibre-reinforced composites with Prof. W. Yu; RMIT Melbourne in 2014, where he developed models for 
flutter analysis and gust response of composite lifting surfaces with Prof. E. Carrera and M. Petrolo; at 
Universidade do Porto in 2013, where he carried out investigations on the use of RBFs for the solution of 
equations of motion of higher-order beam models with Prof. A.J.M. Ferreira; at London City University in 
2012, where he formulated exact, DSM-based models for metallic and composite structures with Prof. R. 
Banerjee.  

Alfonso Pagani is the co-author of more than 100 publications, including 65 articles in International Journals, 
which have collected more than 800 citations (h-index 17, source: Scopus). He acts as a reviewer for more 
than 20 International journals and serves as assistant editor for Advances in Aircraft and Spacecraft Structures, 
an Int’l Journal edited by Techno-Press.  

 

 

  

Department of Mechanical and Aerospace Engineering  
Corso Duca degli Abruzzi, 24  
10129, Torino, Italy  
Tel: +39 - 011 090 6870  
Fax: +39 - 011 090 6899  
e-mail: alfonso.pagani@polito.it  
website: www.mul2.com 
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Biography 

of Francesco Pellicano 

 

Francesco Pellicano is Aeronautical Engineering and Ph.D. in Theoretical and Applied, he is currently Full Professor, 
vice-Head of the Centre Intermech MoRe and committee president of 2 BsC and 2 MsC programmes. He was 
coordinator of EU Regional projects: METaGEAR (Gears, Materials, Robotics), INDGEAR (condition monitoring) and 
HPGA Fortissimo (applications of high performance computing); he was coordinator of several international and national 
projects. He published 2 Books, about 60 Journal papers and more than 100 conference papers. Bibliometry: h-index 27, 
more than 2000 citations. His research activities are: gear stress and vibration modelling and testing; nonlinear vibrations 
of structures; vibration control; shell dynamics and stability; thermal effects, fluid-structure interaction; vibration of carbon 
nanotubes; non-smooth dynamics; Chaos; axially moving systems; devices for Parkinson disease mitigation. 
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Wolfgang Seemann 

Wolfgang Seemann was born on 31 March, 1961 in Keltern (Germany, Baden-Württemberg). After 

studying mechanical engineering at the University of Karlsruhe from 1980 to 1985and after civil 

service (1985-1987) he worked as a PhD-student at the Institute of Applied Mechanics at the 

University of Karlsruhe (now Karlsruhe Institute of Technology). The PhD under the supervision of 

Prof. Jörg Wauer was finished in 1991 with a thesis on 'Wave propagation in rotating or pre-stressed 

cylinders'. In 1992 he joined the group of Peter Hagedorn at Darmstadt University of Technology to 

work in a post-doc position until 1998 when he got a professorship on machine dynamics in 

Kaiserslautern. In 2003 he got an offer to go back to the University of Karlsruhe on the chair of 

Applied Mechanics. 

His previous and current research interests are in fluid bearings, ultrasonic motors, nonlinear 

vibration, multibody dynamics, vibration of continuous systems, active materials, nonlinear 

phenomena in piezoelectric materials, humanoid robots, dynamics of human motion, mechatronic 

systems, road-vehicle interaction, rotor dynamics and wave propagation. 

Besides his duties in teaching and research he is responsible for the French-German cooperations of 

the KIT. 
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Silvio Sorrentino 
Master Degree in Mechanical Engineering at the Politecnico di Torino (I). PhD in Mechanics of 
Machines at the Politecnico di Torino. Research Associate at the University of Sheffield, at the Georgia 

Institute of Technology, Atlanta (USA), and at the University of Bologna (2003-2010). Associate 
Professor in Mechanics of Machines at the University of Modena and Reggio Emilia, Department of 
Engineering Enzo Ferrari (present). 
Research topics: identification methods from vibration data (output-only methods, subspace stochastic 
methods); vibration analysis of viscoelastic models (general damping distributions, fractional derivative 
models with analytical developments and experimental validation); dynamics of oleohydraulic systems 
coupled with mechanical systems (non-newtonian fluids); dynamic behaviour of structures with 
travelling loads (deterministic, stochastic); wave propagation in solid structures (catenary-pantograph 
problem); dynamic analysis of plates (coordinate mapping, homogenization of periodic lattices);  rotor-
dynamics (distributed parameter and finite element modelling, stability analysis); vehicle dynamics 
(motorcycle stability, self-excited oscillation analysis). 
 
Selected papers on dynamics of continuous systems. 
 
S. Sorrentino, S. Marchesiello, B.A.D. Piombo, A new analytical technique for vibration analysis of non-

proportionally damped beams. Journal of Sound and Vibration 265 (2003), pp. 765-782. 
 
S. Sorrentino, A. Fasana, Finite element analysis of linear systems with fractional derivative damping models. 
Journal of Sound and Vibration 299 (4-5) (2007), pp. 839-853. 
 
S. Sorrentino, A. Fasana, S. Marchesiello, Analysis of non-homogeneous Timoshenko beams with generalized 

damping distributions. Journal of Sound and Vibration 304 (3-5) (2007), pp. 779-792. 
 
G. Catania, S. Sorrentino, Spectral modeling of vibrating plates with general shape and general boundary conditions. 
Journal of Vibration and Control 2012 18 (11), pp. 1607-1623. 
 
S. Sorrentino, D. Anastasio, A. Fasana, S. Marchesiello, Distributed parameter and finite element models for wave 

propagation in railway contact lines. Journal of Sound and Vibration 410 (2017), pp. 1-18 (published online 29 
August 2017). 
 
S. Sorrentino, Power spectral density response of bridge–like structures loaded by stochastic moving forces. 
Shock and Vibration 2019 (2019), pp. 1-10. 
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Professor Ji Wang, Ningbo University, China 
 
Professor Ji Wang has been a Qianjiang Fellow 
Professor of Zhejiang Province at Ningbo University 
since 2002.  He also served as Associate Dean for 
Research and Graduate, School of Mechanical 
Engineering and Mechanics, Ningbo University, from 
2013 to 2019.  Professor Ji Wang is the founding director 
of the Piezoelectric Device Laboratory, which is a 
designated Key Laboratory of City of Ningbo.  Professor 
Ji Wang was employed at SaRonix, Menlo Park, CA, as a senior engineer from 2001 to 
2002; NetFront Communications, Sunnyvale, CA, as senior engineer and manager from 
1999 to 2001; Epson Palo Alto Laboratory, Palo Alto, CA, as Senior Member of 
Technical Staff from 1995 to 1999.  Professor Ji Wang also held visiting positions at 
Chiba University, University of Nebraska-Lincoln, and Argonne National Laboratory.  
He received his PhD and Master degrees from Princeton University in 1996 and 1993 and 
bachelor from Gansu University of Technology in 1983.   
Professor Wang has been working on acoustic waves and high frequency vibrations of 
elastic and piezoelectric solids for resonator design and analysis with several US and 
Chinese patents, over 120 journal papers, and frequent invited, keynote, and plenary 
presentations in major conferences around world.  He has been board members, advisors, 
and consultants to many leading companies in acoustic wave device industry.  Professor 
Wang has been a member of many international conference committees and currently 
serving the IEEE UFFC Technical Program Committees of the Frequency Control and 
Ultrasonics Symposia, the IEEE MTT-S, and the IEC TC-49.  He is also the funding 
chair of Committee on Mechanics of Electronic and Magnetic Devices, CSTAM, and the 
SPAWDA.  From 2015, Profess Wang is the editor-in-chief of Structural Longevity and 
members of the editorial boards of several international journals.  
 

ISVCS12 - Page 143 of 146



Andrew Watson 

Lecturer of Aerospace Structures 

Department of Aeronautical and Automotive Engineering 

Loughborough University, United Kingdom 

 

Andrew obtained his undergraduate and higher degrees from Cardiff University.  His 

PhD looked at the stability analysis and optimisation of light weight structures.  After 

two post-doctoral appointments at Cardiff Andrew joined Loughborough University as 

a member of academic staff in 2004. 

His research includes buckling and postbuckling of aerospace panels and vibration 

of Timoshenko beams.  Buckling and vibration problems can be approached by 

using the Dynamic Stiffness Method along with the Wittrick-Williams algorithm. 

Vibrating structures can be modelled as quantum graphs and Andrew is currently 

researching higher order graphs to obtain the spectral results of tree shaped graphs 

all using the DSM.   

Outside of this research Andrew has been looking at fossil fuels and other finite 

resources.  To facilitate this he is developing analytical methods to optimise 

structures where the objective function can be mass, energy costs or environmental 

degradation.  He is the co-investigator of an externally funded research programme 

with Jaguar Land Rover researching the development of a hybrid car that produces 

smaller quantities of carbon dioxide compared to the non hybrid versions.  

In his spare time he likes to keep up with current affairs and enjoys walking and 

sailing.   
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Autobiographical Sketch 
 
Dr. Xuewen Yin is currently a senior research engineer in China Ship Scientific 
Research Center. His research activities are mainly engaged to acoustic design of ships 
and underwater vehicles, which is an increasingly tough requirement so as to ensure 
more silent, more comfortable, or more endurable products. He has made persistent 
and efficient endeavors to address novel analytical and numerical methods, especially 
for the dynamics and acoustics of plate and shell structures. Also, as an engineer, he 
laid more focus on digging the fundamentals, mechanisms, and insights to better 
understand a plenty of phenomena relating to structure-borne, airborne, and underwater 
sound.  Due to his excellence, Dr. Yin has participated in drafting the blueprints of 
several national research funds, especially in the subject of vibration and vibration 
control. 
 
Dr. Xuewen Yin has published nearly 30 papers in leading scientific journals, 10 
presentations in international conferences. Among these works, one of highlighted 
contributions lies in the dynamic stiffness method on the dynamics of built-up ship 
structures, which makes it possible to address the vibration and acoustics of real ship 
hulls at varied design period in very wide frequency range up to 10, 000 Hz. Stemming 
from this work, novel design strategies associated with vibration isolation, ship hull 
optimization, and even machinery selection are contrived in a straightforward but 
efficient way. Other remarkable contributions can be found that are dedicated to: 
acoustic radiation from composite and stiffened cylindrical shells using wavenumber 
transformation method, immersed boundary-LBM method and its application to 
microscopic biologic medium, and etc.  
 
He is an Engineering Consultant to China Ship Research Foundation, senior member of 
China Shipbuilding Association, member of China Mechanical Engineering Association, 
member of Canadian Machinery Vibration Association. He is not only a great attendant, 
but an active contributor. He has reviewed more than 10 papers for one conference in 
response to the assignments from the organizing committee. 
 
He works closely with the ship and ocean equipment industries, and as a team leader, 
he is currently conducting nearly 10 research projects ranging from computational and 
experimental methods, innovative ship design, development of novel vibration isolator, 
and etc.  
 
He and his team won many awards from our fund sponsors and even China provincial 
or ministry government.  
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Shudong Yu 

 

Shudong Yu received his bachelor’s degree 1982 from Jiangxi University of Technology (Mechanical 

Engineering), master’s degree in 1984 from Northeastern University (Applied Mechanics), and PhD 

degree in 1995 from University of Toronto (Mechanical Engineering).  He worked as a nuclear fuel 

design engineer for Atomic Energy of Canada Limited (AECL) during 1994-1997. He joined Ryerson 

University (Mechanical Engineering) in 1997, and held assistant professorship (1997-2004), associate 

professorship (2004-2009), and full professorship (2009-present).    

 

Dr.Yu’s research areas include flow induced vibration, structural dynamics, chaos and bifurcations.  

He has published over 62 papers in recognized scientific and technical journals, and presented 87 

papers at national and international conferences.  He also authored and co-authored 47 technical 

reports, resulted from various industrial projects.    

 

Dr. Yu is a fellow of Canadian Society for Mechanical Engineering (CSME). He served as a Vice 

President for CSME Ontario during 2002-09. He is an associate editor, Journal of Vibration Testing 

and Dynamics (2018-present).    
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