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Preface 
 
The International Symposium on Vibrations of Continuous Systems (ISVCS) is a forum 
for leading researchers from across the globe to meet with their colleagues and to present 
both old and new ideas in the field. Each participant has been encouraged either to present 
results of recent research or to reflect on some aspect of the vibration of continuous 
systems, which is particularly interesting, unexpected or unusual. This type of 
presentation is meant to encourage participants to draw on understanding obtained through 
many years of research in the field.  
ISVCS focuses on the vibrations of the vibrations of the fundamental structural elements: 
strings, rods, beams, membranes, plates, shells, bodies of revolution  and other solid 
bodies of simple geometry. Structures composed of assemblies of structural elements are 
also of interest, especially if such structures display interesting or unusual response.  
 
The ISVCS started 26 years ago, at Stanley Hotel, Estes Park, Colorado, USA August 11-
15, 1997. It comes every two years. Due to covid pandemic time the present 13th 
Symposium takes place  4 years later the previous one  held   in August 2019   in Corvara 
in Badia, Italy.   We are back to North America in the wonderful parks ak Alberta. Typical 
days at the Symposium will consist of morning technical presentations, afternoon hikes 
or excursions in the local area and, in the evening, further technical discussions and social 
gatherings. The various outings and social gatherings provide important opportunities for 
relaxed and informal discussion of technical and not-so-technical topics surrounded by 
the natural beauty of the Alberta. 
 
This volume of Proceedings contains 26 short summaries of the technical presentations to 
be made at the Symposium, as well as short biographical sketches of the participants. 
Unfortunately a few Scientists have experienced difficulties to get Visa and the number 
of presentation would be less than 26.  
 
The present edition is the second one without the presence of Art Leissa, founder and 
Honorary Chairman of ISVCS. We all miss Art. We have new comers and a few young 
Scientists  that could   make ISVCS going further.   
 
Last but not least we remember with pain that Wolfgang Seeman, a frequent attendee of 
past Symposia, left us unexpectedly on February  8th  2022 at the age of 61. An obituary 
by Prof Peter Hagedorn  is made in these proceedings.   
 
 
 
 



General Chairman  Erasmo Carrera 
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Obituary 

Professor Wolfgang Seeman 1961-2022 

Professor Wolfgang Seemann passed away suddenly on February 8, 2022 at age 
61. Wolfgang was a specialist on vibrations of continuous systems and for many
years an extremely active participant of many ISVCS symposia. Not only did he
always present solutions to interesting problems in his very personal, vivid and
clear style, but he was also involved in the organization of many of the ISVCS
symposia both in Europe and in the US and Canada. Wolfgang was an extremely
successful scientist and gifted teacher, able to present even complicated
situations in a succinct way. His students loved him for it. Wolfgang was at the
same time always available to students and colleagues, who would regularly
meet him in the search for advice. He served as advisor to many PhD students at
Kaiserslautern, Darmstadt and Karlsruhe.

At the same time Wolfgang was also very involved in the administration of 
mechanical engineering at different levels.  

He was above all a dedicated friend to many of us. We all will thoroughly miss 
him. 

Joerg Wauer and Peter Hagedorn 
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Free Vibration of an Axially Loaded Beam Using Frequency-

Dependent Mass, Elastic and Geometric Stiffness Matrices 

J.R. Banerjee* 
*School of Science and Technology, City, University of London 

Northampton Square, London EC1V 0HB 

Email: j.r.banerjee@city.ac.uk 

Summary 

  The frequency-dependent mass, elastic and geometric stiffness matrices of an axially loaded Bernoulli-

Euler beam are developed through extensive application of symbolic computation, and their relationship 

with the dynamic stiffness matrix is established so that an exact free vibration analysis can be carried out 

by using the dynamic stiffness method (DSM) through the application of the Wittrick-Williams algorithm. 

The results are obtained for different boundary conditions of the beam carrying both tensile and 

compressive loads. The duality between the free vibration and buckling problems is captured in that when 

the compressive load in the beam approaches the buckling load, its fundamental natural frequency tends to 

zero, hence buckling can be interpreted as free vibration at zero frequency. The investigation has opened 

the possibility of including damping in free vibration analysis of beams and frameworks by using DSM. 

  The original idea of the frequency dependency of mass and stiffness properties of structural elements for 

free vibration analysis was put forward by Przemieniecki [1] who formulated the frequency dependent mass 

and stiffness matrices of a beam and provided series expansions of the matrices by retaining two frequency 

dependent terms. Przemieniecki’s work was further developed by subsequent researchers [2-5] who also 

relied on power series expansion of the mass and stiffness matrices and truncated the series at some point. 

By contrast, explicit algebraic expressions for the elements of the frequency-dependent mass and stiffness 

matrices of a Bernoulli-Euler beam using symbolic computation were published recently [6] which 

circumvented the limitation of earlier research by including all terms of the infinite series implicitly. 

However, the presence of an axial load in a beam, which can have significant effects on the free vibration 

characteristics, was not considered in an exact sense in all of the previous publications. The current paper 

is set out to fill this gap in the literature by applying symbolic computation [7], rigorously. The resulting 

frequency-dependent mass, elastic and geometric stiffness matrices of the beam are related to its dynamic 

stiffness matrix which is finally utilised by applying the Wittrick-Williams algorithm [8] to compute the 

natural frequencies of an axially loaded beam under different boundary conditions.  

  The first step in developing the frequency-dependent mass, elastic, and geometric stiffness matrices of an 

axially loaded beam is to derive the frequency-dependent shape functions of the beam which relate the 

displacement within the beam to its nodal displacements when the beam is undergoing free natural 

vibration. Figure 1 shows the coordinate system and notations for an axially loaded Bernoulli-Euler beam 

with bending rigidity EI, mass per unit length A where  is the density of material and A is the area of 

cross-section and L is the length of the beam. Note that node 1 of the beam is located at the origin O and 

node 2 is at the other end at a distance L from the origin, as shown in Figure 1. The compressive axial load 

P shown in the figure, is assumed to be positive, acting through the centroid of the cross-section, but P can 

be negative so that tension is included in the theory. 

  The kinetic energy (T) and potential energy (V) of the beam in the usual notation can be expressed as 

𝑇 =
1

2
∫ 𝜌𝐴𝑤̇2𝑑𝑥

𝐿

0
;   𝑉 =

1

2
∫ 𝐸𝐼

𝐿

0
(𝑤′′)2𝑑𝑥 −

1

2
∫ 𝑃(𝑤′)2𝑑𝑥

𝐿

0
       (1) 

where w(x, t) is the bending or transverse deflection in the Z-direction and a prime and an over-dot represent 

differentiation with respect to the length coordinate x and time t, respectively. 

  The governing differential equation of motion of the axially loaded beam in free natural vibration can now 

be obtained from the expressions of kinetic and potential energies given by Equation (1), to give  

𝐸𝐼𝑤′′′′ + 𝑃𝑤′′ + 𝜌𝐴𝑤̈ = 0            (2)

Assuming harmonic oscillation so that 𝑤(𝑥, 𝑡) = 𝑊𝑒𝑖𝜔𝑡 where W is the amplitude of bending of flexural

vibration,  is the circular or angular frequency and 𝑖 = √−1, the above partial differential equation can 

be converted into the following ordinary differential equation. 

(𝐷4 + 𝑝2𝐷2 − 𝑏2)𝑊 = 0             (3)

where 

𝑝2 =
𝑃𝐿2

𝐸𝐼
;  𝑏2 =

𝜌𝐴𝜔2𝐿4

𝐸𝐼
;     𝐷 =

𝑑

𝑑𝜉
;      𝜉 =

𝑥

𝐿
(4)

ISVCS13 - Page 3 of 109

mailto:j.r.banerjee@city.ac.uk


1 2 X 

Z 

x 
dx 

L 

O P P 

Figure 1. Coordinate system and notation for an axially loaded Bernoulli-Euler beam. 

The solution of the governing differential equation (3) for the amplitudes of bending displacement W() 

and bending rotation 𝜃(𝜉) =
1

𝐿
𝑊′(𝜉) can be obtained as

𝑊(𝜉) = 𝐴1 cosh𝛼𝜉 +𝐴2 sinh 𝛼𝜉 + 𝐴3 cos 𝛽𝜉 + 𝐴4 sin 𝛽𝜉        (5) 

𝜃(𝜉) =
1

𝐿
(𝐴1𝛼 sinh 𝛼𝜉 + 𝐴2𝛼 cosh𝛼𝜉 − 𝐴3𝛽 cos𝛽𝜉 + 𝐴4𝛽 sin 𝛽𝜉)        (6) 

where 

𝛼2 =
1

2
(−𝑝2 + √𝑝4 + 4𝑏2);   𝛽2 =

1

2
(𝑝2 + √𝑝2 + 4𝑏2)        (7) 

  By eliminating the constants A1-A4 from Equations (5) and (6) with the help of nodal boundary conditions 

at  =0 and  = 1, respectively, the shape function N relating the displacements  within the beam element 

(i.e. W()) to its nodal displacements N (i.e. the displacements and rotations (W1, 1) at node 1 and (W2, 

2) at node 2) is given by the following relationships: 

𝛅 = 𝐍𝛅N or {𝑊(𝜉)} = [𝑁1 𝑁2 𝑁3 𝑁4] {

𝑊1

𝜃1

𝑊2

𝜃2

}           (8)

The expressions for the shape functions N1, N2, N3 and N4 were derived by extensive application of symbolic 

computation [7]. These are given by 

𝑁1 = −𝜇1𝛽 cosh𝛼𝜉 + 𝜇3𝛽 sinh 𝛼𝜉 + 𝜇2 𝛼 cos 𝛽𝜉 − 𝜇3 𝛼 sin 𝛽𝜉       (9) 

𝑁2 = 𝐿(−𝜇4 cosh 𝛼𝜉 + 𝜇2 sinh 𝛼𝜉 + 𝜇4 cos 𝛽𝜉 − 𝜇1 sin 𝛽𝜉)     (10) 

𝑁3 = −𝜇7𝛼𝛽 cosh 𝛼𝜉 − 𝜇5 𝛽 sinh 𝛼𝜉 + 𝜇7𝛼𝛽 cos 𝛽𝜉 + 𝜇5𝛼 sin 𝛽𝜉       (11) 

𝑁4 = 𝐿(𝜇6 cosh𝛼𝜉 − 𝜇7𝛽 sinh 𝛼𝜉 − 𝜇6 cos 𝛽𝜉 + 𝜇7 𝛼 sin 𝛽𝜉)  (12) 

where 

𝜇1 = (𝛼 cosh𝛼 cos𝛽 + 𝛽 sinh 𝛼 sin 𝛽 − 𝛼)/Δ      (13) 

𝜇2 = (𝛼 sinh 𝛼 sin 𝛽 − 𝛽 cosh𝛼 cos𝛽 + 𝛽)/Δ      (14) 

𝜇3 = (𝛼 sinh 𝛼 cos 𝛽 + 𝛽 cosh 𝛼 sin 𝛽)/Δ      (15) 

𝜇4 = (𝛼 cosh 𝛼 sin 𝛽 − 𝛽 sinh 𝛼 cos𝛽)/Δ      (16) 

𝜇5 = (𝛼 sinh 𝛼 + 𝛽 sin 𝛽)/Δ      (17) 

𝜇6 = (𝛼 sin 𝛽 − 𝛽 sinh 𝛼)/Δ      (18) 

𝜇7 = (cos 𝛽 − cosh 𝛼)/Δ      (19) 

with   Δ = (𝛼2 − 𝛽2) sinh 𝛼 sin 𝛽 + 2𝛼𝛽(1 − cosh𝛼 cos𝛽)      (20) 

The frequency-dependent mass (m), elastic (ke) and geometric (kg) stiffness matrices can now be 

formulated as follows. 

𝐦 = 𝜌𝐴𝐿 ∫ [

𝑁1

𝑁2

𝑁3

𝑁4

]
1

0
[𝑁1 𝑁2 𝑁3 𝑁4]𝑑𝜉 (21)
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𝐤e =
𝐸𝐼

𝐿3 ∫

[
 
 
 
𝑁1

′′

𝑁2
′′

𝑁3
′′

𝑁4
′′]

[𝑁1
′′ 𝑁2

′′ 𝑁3
′′ 𝑁4

′′]
1

0
𝑑𝜉      (22) 

𝐤g = −
𝑃

𝐿
∫

[
 
 

𝑁1
′

𝑁2
′

𝑁3
′

𝑁4
′]
 
 1

0
[𝑁1

′ 𝑁2
′ 𝑁3

′ 𝑁4
′]𝑑𝜉         (23)

where a prime now denotes differentiation with respect to . 

  The dynamic stiffness matrix kD of the axially loaded Bernoulli-Euler beam can be expressed as 

𝐤D = 𝐤e + 𝐤g − 𝜔2𝐦           (24)

  The Wittrick-Williams algorithm [8] is now applied to the dynamic stiffness matrix kD given above by 

Equation (24) to investigate the free vibration behaviour of an axially loaded Bernoulli-Euler beam. The 

natural frequencies with clamped-free (CF), pinned-pinned (PP), and clamped-clamped (CC) boundary 

conditions were computed for a range of tensile and compressive loads which were non-dimensionalised 

with respect to the corresponding critical buckling loads Pcr by using the parameter = P/Pcr noting that Pcr 

for the CF, PP and CC cases are 2EI/4L2, 2EI/L2 , 42EI/L2, respectively. If 𝜔1
𝑃 and 𝜔1

0 are the fundamental

(angular) natural frequency in rad/s in the presence and absence of the axial load P, respectively, the ratio 

𝑅 = 𝜔1
𝑃 𝜔1

0⁄  is computed and shown in Table 1 for a wide range of  values and boundary conditions. Note

that 𝜔1
0 for the CF, PP and CC cases are 3.516√𝐸𝐼/𝜌𝐴𝐿4, 𝜋2√𝐸𝐼/𝜌𝐴𝐿4 and 22.373√𝐸𝐼/𝜌𝐴𝐿4,

respectively. As expected, the natural frequency increases with tensile loads whereas it diminishes with 

compressive loads and eventually it becomes zero when critical buckling load is reached. The theory can 

be applied to frameworks with the prospects of including damping in free vibration analysis using DSM. 

Table 1. Fundamental natural frequency of an axially loaded beam for different boundary conditions. 

Boundary 

conditions 

Non-dimensional fundamental natural frequency ratio 𝑅 = 𝜔1
𝑃 𝜔1

0⁄

=P/Pcr 

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0 

CF 1.369 1.290 1.204 1.108 1.000 0.8741 0.7209 0.5152 0.0000 

PP 1.414 1.323 1.225 1.118 1.000 0.8660 0.7071 0.5000 0.0000 

CC 1.397 1.310 1.217 1.114 1.000 0.8694 0.7130 0.5066 0.0000 
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Summary 

The influence of shear deformation in the dynamics of beam-like problems can be studied by 

means of the classical Timoshenko formulation. The latter model can be enriched by means of 

the presence of discontinuities to account for the presence of multiple cracks. In fact, the effect 

of n  along axis cracks based on localised flexibility models implies the presence of 

discontinuities of the axial displacement 
,
( )

x i
u t , of the transversal displacement 

,
( )

z i
u t  and 

the rotation ( )
i

t  at damaged cross-sections 0 1, 1,
i

i n   , being   the abscissa 

normalised with respect to the beam length L . The study of free vibrations of such a 

discontinuous Timoshenko model is classically approached by means of imposition of 

continuity and discontinuity conditions at the cracked cross sections. The latter procedure 

requires the introduction of additional integration constants with regard to those related to the 

standard boundary conditions making the problem computationally disadvantageous. 

Alternatively, a widely accepted procedure aiming at treating the problem in an effective, 

although approximate, manner relies on a finite element discretisation of the undamaged and 

damaged segments of the beam. A convenient way to treat multiple cracked shear deformable 

beams by accounting for the localised shear deformability due to the presence of cracks consists 

in the application of the so-called transfer matrix method [1]. The method is based on the 

knowledge of the fundamental solution of each beam segment comprised between cracks and 

leads to the formulation of the free vibration response of the multi-cracked Timoshenko beam in 

terms of the integration constants of the first beam segment. All the above solution procedures 

share the common view of a discontinuous beam as an assemblage of continuous sub-beams 

each with its own specific governing equation and relevant integration constants. Even when 

size of the problem does not increase with the number of cracks the free vibration modes are 

expressed in a recurrence manner not suitable for explicit calculations. 

Among the latter contributions, limited to the presence of the localised bending flexibility only, 

the work proposed by Khiem and Hung [2] stands out for the formulation of an explicit closed 

form solution of the free vibration modes of the multi-cracked Timoshenko beam. However, the 

closed form expression therein proposed is always founded on the sub-division of the 

discontinuous beam into undamaged beam segments. 

In order to dismantle the governing equation fragmentation of the multi-cracked Timoshenko 

beam, in this work an original distributional model, to account for axial, flexural and shear 

concentrated flexibilities due to multiple cracks, is presented. New governing equations of the 

Timoshenko beam, enriched by suitable distributional terms, over a single integration domain 

are formulated.  

ISVCS13 - Page 6 of 109

mailto:francesco.cannizzaro@unict.it


 

 

Precisely, the axial strain ( , )t  , the shear strain ( , )t   and the curvature function ( , )t   are 

characterised by n  occurrences of Dirac’s deltas ( )
i

   , representing the distributional 

derivative of the unit step Heaviside generalised function ( )
i

U   , as follows: 

       
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

   

   
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





    (1) 

where the discontinuities are given in terms of the axial 
,x i

 , shear 
,z i

 and bending 
,i

 crack 

flexibilities as follows:  

     , , , , ,, , , , , ( , )I I I

x i x i x i z i z i z i i i i iu u t u u t L t t                   
 

  (2) 

The governing differential equations of the above distributional model formulated over a unique 

integration domain can be expressed as follows in terms of time independent spatial vibration 

modes ( ), ( ), ( )
x z

u u     by means of the introduction of additional distributional terms:  
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(3) 

where    4 2 2 4 4 2 2

1 2, 1K K          , the frequency parameter 
4 2 4 /mL EI   and 

the parameters 
2 2/I AL   and 

2 2/ ( )EI GAL   have been introduced and   is the natural 

frequency. Equations (3) can be integrated in closed form leading to the following explicit 

expressions: 

 
2 4 4

, , ,

1 1 1

( ) ( ), ( ) ( ), ( ) ( )x k x k z j z j j j

k j j

u G f u R f R f      
  

                    (4) 

where , , ,( ), ( ), ( )x k z j jf f f    are frequency dependent generalised functions accounting for the 

superposition of spatial waves influenced by the presence of cracks and 

, 1,2, , 1,...,4,k jG k R j  boundary condition dependent integration constants. 

Classical imposition of ad hoc boundary conditions at both ends of the multi-cracked beam, by 

making use of the explicit solution reported in Eq. (4) leads to the characteristic equation 

providing the natural frequencies  . The free vibration modes for each natural frequency are 

given by evaluating the integration constants and replacing in Eq. (4).  

As an example, the frequency decay with respect to the undamaged beam versus an increasing 

number of cracks propagating in the middle of a clamped-clamped beam is plotted in Fig.1. It 

has to be remarked that the minimal change in the second natural frequency is strictly dependent 

on the crack distribution in the vicinity of a position of a zero curvature causing a small 

influence of the bending flexibility (no influence at all in the case of a single crack in the middle 

zero curvature cross-section). Nevertheless, the frequency change is still influenced by the 

presence of the localised shear crack flexibility.    

Based on the closed form solution in Eq. (4) the explicit frequency dependent relationship 

between the end displacements and the related end forces for the multi-cracked beam can be 

inferred. A proper formulation of a new damaged spectral Timoshenko beam element is 

ISVCS13 - Page 7 of 109



 

 

formulated together with its dynamic stiffness matrix. The assemblage of spectral elements is 

appropriate for the analysis of damaged frames. The latter can be used either for the forced 

vibration analysis in the frequency domain as well as the evaluation of the natural frequencies 

by making use of the Wittrick and Williams algorithm. 

 

Figure 1. Clamped-clamped beam: first, second and third frequency ratio versus number of cracks for different 

slenderness ratio and schematization of the location and depth of the cracks. 

An example of evaluation of the first six natural frequencies with the proposed approach is 

reported in Tab.1 for a frame in the presence of two cracks already analysed in [3] by 

subdivision of each cracked beam into three elements. The proposed approach and that 

presented in [3] show coincident results. The relevant mode shapes are depicted in Fig.2.    

Table 1. Comparison of natural angular (Hz) for the double cracked frame analysed in [3]. 

Frequency f1 f2 f3 f4 f5 f6 

Proposed 

model [Hz] 
14,823 58,413 94,965 103,146 206,652 254,073 

Sun [3] [Hz] 14,82 58,41 94,97 103,15 206,65 254,07 

 

 

 

Figure 2. First six displacement mode shapes for the portal frame with two cracks analysed in [3]. 

The governing equations of the damaged Timoshenko beam formulated in Eq. (2) can be 

enriched by additional Dirac’s delta terms to model the action of point loads at a generic 

abscissa of the beam axis. The solution of the generalised governing equations in the presence 

of point loads provides the explicit expressions of the so-called Green’s functions. Suitable 

convolution of the Green’s functions allows the evaluation of the response to any load of the 

multi-cracked Timoshenko beam. 
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Summary 

Topological mechanics is a new research front of mechanics, which deals with the interesting 

topology-related phenomena that cannot be observed macroscopically in traditional materials 

and structures [1]. These phenomena have already been predicted by quantum mechanics theory 

for microscopic systems, but only recently were they realized in macroscopic ones. The key is 

to take advantage of the microstructure in a macroscopically homogenized material, which is 

now widely called metamaterial or metastructured material [2]. 

 

A properly designed elastic metamaterial can exhibit an unusual wave propagation behavior (e.g. 

a topologically protected, defect-immune edge or interface wave state), which is usually 

associated with the topology of the unit cells [3-6]. Breaking the time-reversible symmetry or 

spatial symmetry is the main strategy to achieve the nontrival topological phase transition, 

leading to the unusual topological edge or interface wave states. 

 

 
Figure 1. A soft dielectric plate (infinite along x3 and periodic in x1) with step-wise cross-

sections: (a) undeformed configuration; (b) deformed configuration when subjected to an axial 

force 𝐹𝑁, as well as electric voltages 𝑉(𝐴) and 𝑉(𝐵) in the thickness direction;  

(c) incremental bending waves in the deformed plate in (b). 
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The frequency range for topological edge or interface states in a fixed design of mechanical 

metamaterial is usually very narrow. Here, we report a design of an electromechanically tunable 

topological interface state in a soft dielectric elastomer plate structure, see Fig. 1. The frequency 

range of the bending waves along x1 (the axial direction) in the plate (with an infinite size in the 

x3 direction) can be adjusted by applying the axial force and the transverse electric voltages as 

indicated in the figure.  

 

Under the external mechanical and electric stimuli, the plate, which is periodic along x1, 

deforms significantly. We have to employ the nonlinear electroelastic theory (in the absence of 

damping) to predict the deformed configuration [7]. To predict the elastic waves superimosed 

on the static deformation, one needs to adopt the linear incremental theory, which can be 

derived by perturbation from the general nonlinear theory. A key point is to calculate the 

instantaneous electroelastic moduli tensors according to the following formulas: 

 
1 1

0 0 0 0

1 1

0 0

,    ,    piqj p q i j qjpi piq p q i ipq

ij i j ji

J F F F F

JF F

       

  

− −

− −

= = = =

= =
 (1)  

 

where 
pF   is the deformation gradient tensor corresponding to the deformed configuration, J is 

the volume ratio (= 1 for incompressible materials), and 

 
2 2

2

/ ( ),    / ( ),    

/ ( ).

i j i j i iF F F       

  

=     =    

=    
 (2)  

 

where  is the energy density function, and   is the Lagrangian electric displacement vector. 

As can be seen from Eqs. (1) and (2), applying the pre-deformation 
pF   as well as the biasing 

electric displacement   changes the instantaneous electroelastic properties of the deformed 

plate, which further endows it with the capability of tuning the elastic wave propagation 

behavior. 

 

We employ the spectral element method which is numerically stable to predict the bending 

wave propagation characteristics in the deformed plate, based on the classical elastic plate 

assumptions. In the following numerical simulations, we set the geometric parameters of the 

undeformed unit cell as: 𝐿(𝐴) = 𝐿(1+ 𝛿)/2 and 𝐻(𝐴) =1 cm for the length and thickness of sub-

plate 𝐴; for sub-plate 𝐵, the length is 𝐿(𝐵) = 𝐿(1−𝛿)/2 with the thickness being 𝐻(𝐵) = 3 cm, 

where 𝐿 = 15 cm is the total length of the unit cell and 𝛿 is a structural parameter ranging from 

−1 to 1. For the commercial product Fluorosilicone 730, the initial density, shear modulus and 

relative permittivity of the soft dielectric plate are 𝜌 = 1400 kg/m3, 𝜇 = 167.67 kPa and 𝜀𝑟 = 

7.11, respectively. We define the dimensionless axial force as  
( )

/
B

N NF F wH= . The 

frequency f is measured in Hz. 

 

As shown in Figs. 2(a)–(c), with a decrease in 𝛿 the second bandgap (BG) for 𝑉(𝐴) = 𝑉(𝐵) = 0 

closes at the center of the Brillouin zone, where a linear crossover, termed the Dirac cone, 

occurs and marks a topological transition point. We see that the occurrence of BG degeneracy at 

𝛿 = −0.659 corresponds to the case where sub-plates 𝐴 and 𝐵 are not equally divided in the unit 
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cell. The second BG may reopen when decreasing 𝛿 further. Hence, varying the geometrical 

parameter 𝛿 can result in the second BG being open, closed and open again. This band inversion 

process is related to the exchange of topological phase. The Zak phase of isolated passbands is 

marked in magenta in Fig. 2. According to Figs. 2(a) and (c), we see that for configurations S1 

( =−0.3) and S2 ( =−0.8), the Zak phase of the first band is 0; S1 and S2 have an overlap part 

in the second BG frequency range; and when the soft dielectric plate turns from S1 to S2, the 

Zak phase of the second passband undergos a transition from 𝜋 to 0. This indicates that the 

topological phase transition is nontrival, and we can make a mixed plate structure to support the 

topological interface state. More details can be found in our recent work [8]. 

 

 
Figure 2. Band structures of bending waves in the dielectric plate of Gent hyperelastic model 

without axial force (𝐹𝑁 = 0) for different electric voltages and initial geometrical parameter 𝛿: 

(a)–(c) topological transition process in the absence of electric voltage for three different values 

of 𝛿, respectively. k with an overbar is the dimensionless Bloch wave number . 
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Summary 

Background 

 

In particle physics experiments high-power proton beams interact with solid or liquid targets to 

produce elementary particles. The beam power is extremely high and in some presently designed 

experiments can be as high as 5 MW [1]. A proton beam interacts with the target material in 

a sequence of short pulses repeated at a given frequency. In the future experiment described in 

[1], a 5 MW beam will be split into four sub-beams, each with a power of 1.25 MW; each pulse 

will be about 1 μs long, repeated at a frequency of 14 Hz. Only part of the beam power is deposited 

in the target, which can be estimated using Monte Carlo simulations of the interaction of protons 

with the target material. Beams with nanosecond pulse lengths are also considered for some future 

experiments. 

 

Different solid target geometries have been used in the past, including rods, circular discs or 

cylinders,  as well as targets of more complex composition. In the experiment described in [1], 

the aim of which will be to study CP symmetry violation for neutrinos, it is proposed to use the 

so-called pebble-bed (or granular) target, which consists of a large number of small spheres with 

3 mm diameter, randomly packed inside a cylindrical container 3 cm in diameter and 78 cm long. 

The study of the stress levels in solids under short thermal pulses is of great importance. Some 

commercial finite element codes are available that allow for such calculations, e.g., LS-Dyna. 

However, due to a short pulse length, much care needs to be exercised in the choice of the mesh 

size and the time step in order to obtain reliable results. Since a very fine mesh and very short 

time steps need to be used, the computational time can be long, especially for three-dimensional 

geometries. This makes the study of the influence of various parameters (including the pulse 

length, the sphere diameter or the material used) burdensome. Therefore, analytical models are of 

much usefulness. Stress calculations have been done using a wave approach (d’Alembert’s 

solution) in [2], the mode superposition method in [3] for rods, discs and cylinders, and for  

a sphere in [4], by expanding dynamic stress in terms of vibration modes. In this summary some 

results of thermal shock in a sphere caused by a single proton beam pulse are discussed. More 

detailed discussion can be found in [4].    

 

Formulation of the problem 

 

Under a spherical symmetry condition the radial displacement is obtained as the solution of: 

      
𝜕2𝑢(𝑟, 𝑡)

𝜕𝑟2
+

2

𝑟

𝜕𝑢(𝑟, 𝑡)

𝜕𝑟
−

2𝑢(𝑟, 𝑡)

𝑟2
=

1 + 𝜈

1 − 𝜈
𝛼

𝜕𝑇(𝑟, 𝑡)

𝜕𝑟
+

1

𝑐1
2

𝜕2𝑢(𝑟, 𝑡)

𝜕𝑡2
 (1)  
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with boundary conditions: 

 

𝑢(0, 𝑡) = 0,         (1 − 𝜈)
𝜕𝑢(𝑅, 𝑡)

𝜕𝑟
+ 2𝜈

𝑢(𝑅, 𝑡)

𝑅
= (1 + 𝜈)𝛼𝑇(𝑅, 𝑡) (2)  

  

Here: ν is Poisson’s ratio, α – linear thermal expansion coefficient, 𝑐1 is the speed of propagation 

of the longitudinal wave, R stands for the sphere radius and T is the temperature above that of the 

neutral undeformed state. It is taken that the outer surface of the sphere is free from surface 

tractions. 

It is further assumed that the proton beam deposits energy uniformly inside the volume of  

a sphere, which is a realistic approximation for sphere sizes small compared to the beam 

transverse size. The solution to problem (1), (2) can be obtained as the sum of a quasi-static and  

a dynamic term: 

 

𝑢(𝑟, 𝑡) = 𝛼𝑇(𝑡)𝑟 + 𝑢2(𝑟, 𝑡) (3)  
 

One can verify that for a sphere which is not restrained on its surface the quasi-static term does 

not contribute to stress. The dynamic part of solution (3) satisfies: 
 

 

𝜕2𝑢2(𝑟, 𝑡)

𝜕𝑟2
+

2

𝑟

𝜕𝑢2(𝑟, 𝑡)

𝜕𝑟
−

2𝑢2(𝑟, 𝑡)

𝑟2
=

1

𝑐1
2 𝛼𝑟𝑇̈(𝑡) +

1

𝑐1
2

𝜕2𝑢2(𝑟, 𝑡)

𝜕𝑡2
 (4)  

 

The second of boundary conditions (2) is homogenous when expressed in terms of the dynamic 

displacement 𝑢2(𝑟, 𝑡), therefore the solution of Eq. (4) can be sought as a series of the vibration 

modes of a sphere [4]. The stress is then calculated using the displacement thus obtained. Since 

temperature increases linearly during the pulse, the second time derivative of temperature in  

Eq. (4) is given as follows: 
 

𝑇̈(𝑡) =
𝑇0

𝜏
[𝛿(𝑡) − 𝛿(𝑡 − 𝜏)] (5)  

 

where T0 is the temperature increase caused by a complete pulse, calculated from the known 

energy deposited by the pulse in one kilogram of  the material of the sphere, τ is the pulse duration 

and δ is Dirac’s delta. 

 

Some numerical results and discussion 

 

The response depends on the pulse duration relative to the time it takes for a stress wave to travel 

the distance equal to the sphere radius. Figure 1 shows the radial component of stress vs. time for 

a sphere of diameter 1 mm made of titanium, for a long and short pulse, respectively. The 

following material constants have been used in obtaining the plots: mass density ρ=4.5∙103 kg/m3, 

Young’s modulus E=1.06∙1011 N/m2, ν=0.34, α=8.4∙10-6 1/K. Both plots have been obtained under 

the conditions of a linear temperature rise of 100 K during the pulse length. A small amount of 

modal damping has been used, with the same modal damping ratio of each mode equal to 0.002. 

The number of terms in the series solution required to ensure convergence of the computed stress 

depends on the pulse length. For very short pulses 5000 terms have been used without 

encountering numerical instability problems.   

 

Figure 1a shows the response to a pulse 1.2 µs long. This time is 7.2 times longer that the time 

the stress wave takes to travel the distance equal to the sphere radius. Oscillations with the lowest 
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frequency are clearly visible in Fig. 1a. Higher order modes have also a significant contribution 

to the dynamic stress. The stress level is quite acceptable. Fig. 1b is for a pulse length 50 times 

shorter than that shown in Figure 1a. Stress spikes appear at the sphere core, the first of which 

corresponds to the time required for the wave to travel the distance of the sphere radius. 

Subsequent spikes occur at 3, 5 … times this time. This is because  the wave has to travel the 

distance of the radius twice to return to the sphere centre again. The magnitude of stress near the 

sphere core is prohibitively high, for the same temperature increase as for a long pulse. It can be 

seen that apart from the temperature rise, the major parameter that determines the stress level is 

the non-dimensional pulse length (pulse length relative to the time of wave propagation over  

a characteristic distance). Therefore, dynamic stress can be reduced by using spheres with  

a smaller radius. However, for the shorter of the two pulses considered in Figure 1 spheres with 

unrealistically small radii would have to be used to ensure acceptable stress levels.  

The spikes appear as a result of a constructive superposition of the contribution from many 

vibration modes. It is expected that stress focusing will be sensitive to the assumption of the 

perfect symmetry of energy deposition inside the sphere. The effect of non-symmetric energy 

deposition is under investigation.  

     

 

 
 

Figure 1: Radial stress for a titanium sphere of radius 1mm, for a pulse length 1.2 μs a) and 0.024 μs b). 

Solid line shows the stress history at the sphere core, the dashed line corresponds to r=0.75 mm. 
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Abstract 

As an essential engineering structure, high-speed fluid conveying pipes are widely used in 
various engineering fields such as aerospace engineering, petroleum engineering and nuclear 
industry. With the excitation of internal fluid and external environment, pipes in operation will 
inevitably undergo excessive vibration, which may cause structural damage. Therefore, the 
dynamic modeling and analysis of pipes conveying high-speed fluid are very necessary. In this 
work, the following questions are addressed: How to establish a dynamic model of the pipe and 
its constraints? How to analyze pipe vibration response with nonlinear boundary conditions? 
What are the differences in the effect of high-speed flow on pipe vibration? What is the 
influence of the configuration of curved pipe on its vibration? And how to control the vibration? 
A dynamic model of a curved pipe is established by means of the generalized Hamiltonian 
principle and absolute node coordinate method, respectively. Considering the width and 
thickness of the clip, a pipe dynamic model with elastic clip constraints was established. 
Nonlinear modal methods are developed to deal with pipe vibration responses with nonlinear boundaries. 
The pipe vibration characteristics at subcritical and supercritical flow velocities are studied and 
compared. In particular, the effect of the degree of curvature is investigated. Finally, several 
methods to control pipe vibration are proposed. Therefore, this work is a brief summary of 
dynamic modeling, analysis and vibration control of pipes conveying high-speed fluid. 

1. Introduction 

Pipes conveying fluids, like muscles of human body, control the attitude and maneuver of a 
mechanical system [1]. Under the influence of aero-engine excitation and hydraulic fluid 
fluctuation, pipes may have bending resonances and may fracture in flight. The fracture of pipes 
will cause the loss of hydraulic pressure, affect the movement of the control surface and 
endanger the safety of aircraft. Therefore, the research of the vibration of pipes conveying fluids 
is deemed essential. However, the study of pipe dynamics is still insufficient in many aspects. 
For example, the dynamic modeling of curved pipes, the influence of high-speed flow on pipe 
vibration, the dynamic modeling of pipe constraint, the dynamic analysis method of pipe under 
non-ideal boundary conditions, the vibration control of a pipe, etc. 

2. Equations of Motion 

Figure 1 is a schematic diagram of a pipe conveying fluid with fixed-fixed ends and restrained 
by a middle clip. Lc represents the width of the clip. L1 and L2 are, respectively, the lengths of 
the pipe on the left and right sides of the clip. The total length of the integral pipe is L. In this 
work, a rigid body with a certain width is used to model the clip and the constrained pipe, which 
is connected to the base by vertical and torsional springs at two ends. K is the vertical stiffness 
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of the retaining clip in the Y-axis direction. Kθ describes the torsional stiffness of the clip in the 
XOY plane. Two coordinate systems, namely X1O1Y1 and X2O2Y2 are chosen for the pipe on the 
left and right sides of the clip, respectively. V1(X1, T) and V2(X2, T) are the transverse vibration 
displacements of the left pipe and the right pipe in terms of the axial coordinates X1 and X2 and 
the time T, respectively. 

 

Figure 1. A pipe conveying fluid restrained by a clip in the middle. 

The natural vibration of the pipe conveying fluid is considered. According to the Euler-
Bernoulli beam theory assumption, two differential equations governing the vibrations of the 
left section  and the right section pipe can be derived as follows [1,2]: 
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The boundary conditions are [3]: 

 
       

   

1 1 2 2 1 1 2 2

c
1 1 1 1

, , , , , ,
2 2

, , , , 0
2

XXX XXX

TT XTT

K K
EIV L T EIV L T V L T V L T

L
m V L T V L T

  

    
 

. (3)  

 
         

       

θ c c
1 1 1 1 1 1 2 2 1 1

θ c c
2 2 2 2 2 2 1 1

, , , , , , , , ,
2 2 2 2

, , , , , , , 0
2 2 2 2

XX X XXX XTT

XX X XXX

K L L K
EIV L T V L T EIV L T V L T JV L T

K L L K
EIV L T V L T EIV L T V L T

   

    

. (4)  

where E is the Young’s modulus of the pipe, and I represents the area moment of inertia. ρp and 
Ap are the density and the cross-sectional area of the uniform pipe, respectively. ρf and Af stand 
for the density and the cross-sectional area of the fluid, respectively, where m is the total mass 
of the clip and the constrained pipe within the clip width. J denotes the rotational inertia of the 
clip and the constrained pipe within the clip width.    0 s πinY A LX X  is the initial curvature. 

3. Vibration of the pipe 

As shown in Figs. 2(a)-2(b), when the initial curvature is increased, the natural frequency of the 
pipe with simply supported ends decreases with the increase in the flow velocity Γ in the 
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subcritical regime. On the contrary, in the supercritical regime, the natural frequency increases 
with the increase in the velocity [1].  
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               (a) A0 = 0                                                       (b) A0 = 0.003m 

Figure 2. Natural frequencies for different initial curvature values A0 

Figure 3 illustrates the effect of the clip torsional stiffness on the natural frequencies and vibration 
modes of the integral pipe and the half pipe. The small figures depict the vibration modes of the half 
pipe and the integral pipe. It can be found that the vibration frequency of the pipe is particularly 
sensitive to the weak clip stiffness. With the increase of the clip torsional stiffness, the vibration 
frequencies of the integral pipe and the half pipe tend to be close [3]. 

       

            (a) the first order                                                   (b) the second order 

Figure 3. Effect of the clip torsional stiffness on the natural frequencies and vibration modes 
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Summary 

New analytical solutions for vibrations of shallow shells with two principal constant 

curvatures are presented in this work. The new solutions address all different cases of in-

plane and out-of-plane boundary conditions, and provide insight into the dynamics of 

such shells. The formulation is here applied to cylindrical, spherical, elliptical 

paraboloidal, and hyperbolic paraboloidal shallow shells, as illustrated in Figure 1. 

Previous works in this field have only addressed one possible set of in-plane restraints for 

such shells[1-4], simply supported out-of-plane restraints and shear diaphragm  in-plane 

restraints. 

 
Spherical Cylindrical Hyperbolic Paraboloidal 

Rx = Ry = 100 Rx = 100; Ry = 10000 Rx = 100; Ry = -150 Rx =100; Ry = 200 

    

 

Figure 1: Sample shallow shells with two principle constant curvatures 

 

The linearized equations of motion for the harmonic linear vibrations of shallow shells 

are three coupled differential equations with three unknowns, u(x,y), v(x,y), and w(x,y), 

and are given as [1,2] 
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where the origin of the coordinate system is placed at the apex in each case. The possible 

in-plane and out-of-plane boundary conditions on the four edges are summerized in Table 

1: 

Table 1: Shell Boundary Conditions 

 

Out-of-Plane Restraints In-Plane Restraints 

C- Clamped 
No Deflection, 

No Rotation 
C - Clamped 

No Displacements of 

the Edge 

S – Simply Supported 
No Delfection, 

No Moment 
N – Normal 

No Translation Normal 

to the Edge 

G - Guided 
No Rotaion, 

No Shear 
P – Parallel 

No Translation Parallel 

to the Edge 

F - Free 
No Moment, 

No Shear 
F - Free 

No Tractions on the 

Edge 

 

The proposed solution for the three displacements is 

 

𝑈(𝑥, 𝑦) = 𝑈1(x,y) + 𝑈2(x,y) = ∑ 𝑆𝑚
∞
𝑚=1,2,3 (𝑥) 𝑢1(𝑦) +  ∑ 𝐶𝑛

∞
𝑛=1,2,3 (𝑦) 𝑢2(𝑥)           (4) 

𝑉(𝑥, 𝑦) = 𝑉1(x,y) + 𝑉2(x,y) = ∑ 𝐶𝑚
∞
𝑚=1,2,3 (𝑥) 𝑣1(𝑦) +  ∑ 𝑆𝑛

∞
𝑛=1,2,3 (𝑦) 𝑣2(𝑥)           (5) 

𝑊(𝑥, 𝑦) = 𝑊1(x,y) + 𝑊2(x,y) = ∑ 𝐶𝑚
∞
𝑚=1,2,3 (𝑥) 𝑤1(𝑦) +  ∑ 𝐶𝑛

∞
𝑛=1,2,3 (𝑦) 𝑤2(𝑥)      (6) 

 

with Cm(x) = cos(Fm(x)), Sm(x) = sin(Fm(x)), Cn(y) = cos(Fn(y)), Sn(y) = sin(Fn(y)), 

and Fm(x)= mp(
x

a
−

1

2
), Fn(y)= np(

y

b
−

1

2
). 

Substitution of the components of the functions, i.e. U1 , V1 , W1 and then  U2 , V2 , W2 , 

into the set of equations of motion will result in six ordinary differential equations [5,6]. 

The solution of the resulting coupled ordinary differential equations is in the form of 

hyperbolic functions and 4 constants for each value of m and n, a total of 8 constants.  

Applying the set of boundary conditions for the four edges of the shell results in 4 

equations for every edge multiplied by the number of terms in the series in Eqs. (4-6). 

The number of terms is taken equal, m=n, as there is no advance knowledge of the 

resulting modes. All together the number of linear equations that are obtained for the 

completion of the solution is 16*m. As on each edge only two values are given by the 

restaints, the final set is obtained by choosing 8*m equations. The natural frequencies are 

found when the determinant of the coefficient matrix is zero.  

 

This solution satisfies exactly the coupled diffential equations of motion and 

approximately the boundary conditions. Increasing the number of terms m will increase 

the accuracy up to the desired value, i.e. until the frequency parameter is unchanged for 

the number of digits desired. 

 

As an example of the results a comparisson is here made with the Rayleigh-Ritz solution 

for spherical shell from reference [7] with SSSS-CCCC boundary conditions, and from 

[4] for the SSSS-PPPP case in Table 2 below. The frequency parameter is defined as λ =

 𝜔𝑎2√𝜌ℎ/𝐷 . The effect of the in-plane restraints on the frequencies, that was not examined 

in the past is added for 5 more combinations of boundary conditions. 
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Table 2: Frequency parameters for SSSS boundary conditions (a/b=1,a/h=20,n=0.3) 

 

In-Plane Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

PPPP 23.7179 51.0271 51.0271 80.0104 99.5331 99.5331 

PPPP-[4] 23.70 51.04 51.04 80.02 - - 

NNNN 27.8516 50.9644 50.9644 79.9519 99.5090 99.5090 

FFFF 27.8760 53.4914 53.4914 80.0761 99.5847 99.5847 

CCCC 27.9924 51.5169 51.5169 80.3844 99.6434 99.6434 

CCCC-[7] 27.99 51.52 51.52 80.40 99.64 99.79 

NNPN 23.5371 50.9439 50.9869 79.9703 98.7996 99.5161 

FNPC 24.0553 50.0927 50.9485 79.7715 99.4735 99.5396 

 
From these results one can see that for the symmetric in-plane cases there are repeated 

values for the second and third, and fifth and sixth parameters. Changing one restraint 

leads to a split in these, and it is seen in the modes (not shown here). It can be seen that 

such changes can lead to more then 15% change in the parameter for the first frequency. 

 

For the shallow shells, the present results indicate that specific changes in boundary 

conditions investigated here have a significant influence on the frequencies and on the 

modes of vibration. 
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The sounds produced by stringed instruments played in the “acoustic” mode can be largely 

described in terms of the plate-like modes of vibration of the instrument top surface.  At lower 

frequencies, the resonances of a guitar are actually the result of the coupled motion of the top 

plate of the guitar (the “sound board”) and an “air mass” moving in-and-out of a “port”.    One 

simplified model of this coupled motion is based on the model in Figure 1. The guitar top plate 

is modelled as a piston of equivalent area A and mass mp connected to a spring of equivalent 

stiffness kp.  The guitar body is modeled as a Helmholtz resonator with an “air mass” piston in 

its port of area S and mass ma. A pair of differential equations developed by Christensen [2], 

describe the coupling of the piston-like deflections of the sound board and the air mass: 
                                                                                                                                     

 

 
 

F is the force applied by the bridge of the instrument (due 

to plucking of the strings), the R’s are resistances to 

piston motion and μ is a coupling term.  Davis [1] used 

these equations to compute the acoustic radiation of a 

number of sound boards coupled with a vented box.  In 

Figure 2, these predictions are compared with that of a 

sound board alone. 
 

 
Figure 2.  Predicted sound power radiated from a uniform-thickness circular plate sound board with a 

fundamental frequency of 220 Hz (the curve with a single peak) and from sound boards coupled with a 

vented box with a fundamental frequency half that of the sound board. [Figure copied from Reference 1] 

Figure 1.  Simplified model for 

guitar function at low frequencies.  

[Figure copied from Reference 2] 
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Note that the sound power level (SPL) is very closely related to the (velocity) frequency 

response function more commonly used to express vibratory response in the engineering 

vibration community.  Also note that the boundary condition assumed for the sound board disk 

(simply-supported or clamped) has only a slight effect on acoustic radiation.   

 

Due to the substantial damping in the coupled system, the acoustic response of the guitar over 

the interval between these two frequencies is enhanced.  Further, above the (coupled) natural 

frequency of the sound board, the response declines with frequency rather slowly, thereby 

allowing the radiation of sound at higher frequencies.  In fact, a properly-designed guitar has 

good sound producing qualities over a large frequency range.  According to Davis [1], to ensure 

the wide frequency response of a “good” guitar, the fundamental frequency of the sound board, 

fwood, should be designed (by selection of the guitar dimensions and thicknesses) to be at the 

geometric mean of: the frequency of the lowest open string, flow-open; and, one octave above the 

highest open string frequency, that is, at 2fhigh-open.   Further, the fundamental frequency of the air 

mode, fair, is best placed at one half of the wood mode, fwood.  That is: 

 

 

 
Figure 3.  Placement of the two lowest guitar natural frequencies (Hz) from measurement and prediction:  

upper dark, circular markers are fair and fwood for a number of good classical guitars; lower circular 

markers are fair and fwood calculated from Equations 2;  diamond markers are the six open string 

frequencies. The inset shows the measured SPL versus frequency for classical guitars, originally 

published by Christensen [2]. [Figure copied from Reference 1] 
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As shown in Figure 3, the two lowest natural frequency predictions compare well with those 

measured for five classical guitars.  In the inset in Figure 3, the SPL vs frequency plots clearly 

show resonances at frequencies above the “air” and “wood” modes.  The response of the guitar 

at these frequencies, then, extends the favorable radiation of sound to frequencies higher than 

the lowest two modes.  
 

To explain some of the higher resonances, a description of the higher modes of plate vibration 

of the top of the instrument is useful.  Figure 4 has sketches of the four lowest modes of 

vibration of a typical guitar.  The first mode is responsible for the “wood mode” in the coupled 

vibration model described earlier.  

 
Figure 4.  Contours of deflection for the first four modes of vibration  

(labelled 1 to 4) for a typical guitar. [Figure copied from Reference 3] 

 

Now consider the second mode of vibration for a typical guitar, at top-right in Figure 4.  This is 

a mode which is antisymmetric across the line of symmetry; that is, it is aligned with the 

fingerboard.  However, this mode does not radiate well because the oscillatory air velocities 

above the top plate on either side of the fingerboard cancel each other out after only a very 

short distance from the guitar.  

  

However, the next two modes, due to the oblong shape of the guitar body, have regions which 

radiate well.  For mode 3, the upper and lower regions are of differnt sizes and magnitudes of 

velocity, so there is a net radiation.  For mode 4, the two regions on either side of the 

fingerboard (-), which have motion out of phase with the central region (+), dominate the sound 

radiation at its natural frequency.  As such, the 3rd and 4th modes of the guitar top plate extend 

the frequency range of the guitar beyond that of the two lower modes described earlier, thereby 

enhancing the sound of the instrument. 
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Summary

In the 11th International Symposium on Vibrations of Continuous Systems, we presented the extension
of variable-kinematic finite beam elements developed with the Carrera Unified Formulation (CUF) to
study the dynamics of rotating structures. In particular, we adopted the so-called node-dependent
kinematic (NDK) approach to analyze multi-section rotors. This strategy enabled assemblies consist-
ing of rigid (shaft) and highly deformable (thin disks) components to be modeled by merely modifying
the order and the type of structural theory locally. As a result, the NDK finite element (FE) solutions
provided accurate results with a considerable reduction of the computational burden if compared with
high-fidelity models.
Over the last six years, further advances have been made in the rotordynamics field with the CUF-
based finite elements, such as extending the analyses to the geometrically nonlinear regime [1] and
deriving formulations for two- and multidimensional models [2, 3, 4]. In particular, the CUF mul-
tidimensional models, which consist of solid (3D) and beam (1D) elements, exploit the feature of
a specific 1D kinematic formulation that encompasses only displacements as degrees of freedom.
This property is shared with conventional solid FEs; therefore, the 1D/3D connection is performed
by merely summing inertial and elastic contributions at the interface nodes. Moreover, the unified
formalism allows one to derive 3D and 1D FEs. Indeed, the three-dimensional displacement field
u(x,y,z, t) = (ux uy uz) can be approximated as:

3D−FE −→ u(x,y,z, t) =ui(t) ·Ni(x,y,z) ·1 i = 1 . . .N3D
n

1D−FE −→ u(x,y,z, t) =uiτ(t) ·Ni(y) ·Fτ(x,z) τ = 1 . . .M; i = 1 . . .N1D
n (1)

where Ni are the lagrangian 1D and 3D FE shape functions, Fτ are the functions used to approximate
the solution over the beam cross-section (x− z plane), while uiτ(t) and ui(t) are the vectors of un-
known coefficients. The index i refers to the finite element approximation, and it ranges from 1 to the
maximum number of element nodes, which is N3D

n for the solid and N1D
n for the beam. The subscript

τ is related to the expansion used for defining the cross-sectional kinematics, and its maximum value,
M, is an input parameter of the analysis. As mentioned above, the connection between 1D and 3D
finite elements is particularly simple when the so-called Lagrange-type expansions (LE) are used.
The LE kinematics is obtained by combining Lagrange polynomials defined within sub-regions (or
elements) delimited by an arbitrary number of points (or nodes). Figure 1 schematically illustrates
the idea behind the methodology. Among various problems, multidimensional models are highly ad-
vantageous to analyzing structures with complicated geometries, such as swept-tip helicopter blades.
The 3D-FE formulation used in Refs. [3, 4], however, limited the proposed CUF multidimensional
model to small displacements and rotations. Such a hypothesis is acceptable for most operational
conditions of a rotating blade, but it might be too restrictive when the rotational speed is not high

ISVCS13 - Page 24 of 109



Figure 1: The multidimensional model. Figure taken from Ref. [3]

enough to balance the aerodynamic loads and the blade’s weight. The current work overcomes this
limitation by including the nonlinear terms of the strain tensor, εεε , in the derivation of solid elements:

εεε = (bl +bnl) u = (bl +bnl) Ni(x,y,z)ui = (Bi
l +Bi

nl)ui (2)

where Bi
l and Bi

nl are the algebraic matrices of derivatives operators applied to the 3D shape func-
tions, here not reported. The FE matrices of the 1D/3D models can be obtained with ease through
a conventional assembly procedure. Consequently, it is possible to compute the natural frequencies
and mode shapes associated with small-amplitude vibrations (û) of a rotating structure by assuming
a harmonic solution in Equation (3):

M¨̂u + G˙̂u + (KT (ue) + KΩ)û = 0 (3)

where M, G, and KΩ are the mass, Coriolis and spin softening matrices. The operator KT is the tan-
gent stiffness matrix computed at an equilibrium solution (ue) that is, in turn, determined by solving
with a Newton-Raphson scheme the nonlinear problem of Equation (4):

KS(u)ue = Fext + FΩ (4)

The matrix KS(u) is the secant matrix, and Fext and FΩ represent the vectors of external and centrifu-
gal forces, respectively. For demonstration purposes, the nonlinear multidimensional model, consist-
ing of nine 4-node beam elements and four 27-node hexahedral solid elements, has been adopted to
calculate the static response of the blade shown in Figure 2 subjected to a transverse load (along the
z-direction) and applied at its tip. The geometrical and material properties have been taken from Ref.
[3]. Figure 3 shows the transverse deflection calculated at the loaded point using the linear and non-
linear multidimensional formulations. As expected, for this problem, the geometrical nonlinearities
become relevant when the deformation is equal to or larger than 20% of the structure’s length.
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Figure 2: The swept-tip blade and a detail of the connection region. Figures taken from Ref. [3].

Figure 3: Comparison between linear (L) and nonlinear (NL) formulations.
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Abstract 

Fluidelastic instability (FEI) is widely recognized as a mechanism which can cause rapid failure of 
tubes in shell and tube heat exchangers. Thus, predicting the onset of instability has been the subject of 
intensive research for the past five decades. The majority of these investigations were aimed for inline 
and triangular arrays, with very few investigations available for rotated square arrays to date due to is 
complexity. This paper provides a systematic investigation of the array geometrical impact (effect of 
pitch ratio and array flexibility level) on the onset of instability for both transverse and streamwise 
directions independently.  

1. Introduction 

Heat exchangers, became a common place for flow-induced vibration (FIV). The Fluidelastic 
instability (FEI) is by far the most important FIV excitation mechanism. If not mitigated, this 
phenomenon may lead to tube failure and may necessitate the shutdown of the plant due to the expensive 
vibration amplitudes. Recent catastrophic failure of the steam generator (SG) at the San Onofre Nuclear 
Generating Station (SONGS) is one of the prime examples of this phenomeon [1]. The streamwise 
fluidelastic instability (SFEI)—a phenomenon that was discovered for the first time in an operational 
SG—was the cause of the failure. As a result, there have been considerable efforts dedicated to 
understand this phenomenon. While significant progress has been achieved, there are still unresolved 
issues. 

 
There are four basic tube array configurations: parallel triangle, normal trinagle, inline, and rotated 

square array. The later array is not well researched due to its complex behaviour.  The work of Hartlen 
[2] is the earliest experimental work on rotated square array (RS).  In contrast to the square and normal 
triangle pattern, it was found that the tube array always remains stable in the transverse direction and 
only becomes unstable in the streamwise direction due to the change of the flow channel in the RS 
array. In summary, RS array continues to be challenging and is not completely understood. To further 
understand the fluidelastic behaviour of this array layout, an experimental research program has been 
initiated at University of Guelph. The research described here aims to study the dynamic behaviour and 
geometrical effect of RS array on the onset of FEI in both transverse and streamwise directions. 

2. Experimental procedure 

The reported experiments were carried out in an open loop wind tunnel facility. The test section 
was designed to accommodate tube arrays with various pitch ratio (in this study P/D of 1.25, 1.4, 1.5, 
and 1.7 were investigated). In order to control the number of flexible tubes, the test section was designed 
to allow each tube to be altered from flexible to rigid. Figure 1 depicts the (7 x 5) rotated square array 
configurations that were tested. All tubes were constructed from a straight acrylic tube that was 
mounted on a thin flexible rectangular cantilever beam. This allowed the tubes to be flexible just in the 
preferred direction, either streamwise or transverse, while maintaining full rigidity in the other direction.   
For the three tubes marked U (upstream), C (center), and D (downstream), strain gauges are utilized to 
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track tube vibration signal (Fig. 1). A pitot tube connected to a digital differential pressure transducer 
and located 155 mm upstream of the tube array was used to monitor the flow velocity. The average tube 
mass damping parameter (𝑚𝛿 ∕ 𝜌𝐷!) was found to be 4.0.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Rotated square configurations: a) single flexible tube, b) flexible column of 3 tubes, c) 
kernel of 7 flexible tubes, and d) fully flexible array:   fixed tube,   flexible tube,  instrumented 
flexible tube. 

3. Modelling 

Modelling of the system requires the accounting for the fluid excitation and the structural response.  
The structural response is obtained by the temporal integrating the second order equation of tube 
structure. The fluid excitation is modelled by utiliziling the unsteady model for fluidelastic instability 
of tube arrays in cross flow by Hassan and Weaver [1]. In this model, the flow inside the tube bundle is 
idealized as being unsteady, incompressible and inviscid flow. The coupling results from the tube 
motion influencing the flow channel width.  The change in the flow channel due to the tube motion does 
not take place instantaneously. The delayed flow response is incorporated by introducing time delay 
due to the flow redistribution. The flow pressure is integrated over the tube/flow interface resulting in 
the FEI force which is included in the structural model.  

4. Results 

For the kernel configuration of the tube array with a pitch ratio of 1.25, Fig. 2 illustrates the rms 
responses for the three monitored tubes in transverse and streamwise directions against the reduced 
flow velocity (𝑈" = 𝑈/𝑓𝐷). Both the transverse and streamwise orientations exhibit similar overall 
tube response pattern up to a critical value. The rms amplitudes grow gradually with the flow velocity; 
after that threshold, the amplitudes rapidly increase with the flow velocity. The experiment was 
promptly interrupted to prevent damage to the tubes since once the flow velocity exceeds certain limits, 
the tube amplitudes grow to unacceptable levels. From the results in Fig. 2, the critical reduced 
velocities were estimated to be 23 and 51, respectively, for the streamwise and transverse directions. 
It was found that the stability threshold in transverse direction (Fig. 3a) was sensitive to the flexibility 
level of the array as single and column configuration remains stable and the tube becomes unstable only 
in case of kernel and full flexible configurations. Also, the streamwise FEI was found to be sensitive to 
the number of flexible tubes (Fig. 3b) for all examined P/D. Due to the lack of tube-to-tube interaction, 
single and partially flexible arrays exhibit delayed instability development.  

 

 
(a)Transverse 

 
(b)Streamwise 

 
(a)Transverse 

 
(b)Streamwise 

Figure 2. Tube response versus reduced flow 
velocity for P/D =1.25 (kernel configuration) 

Figure 3. Effect of the number of flexible tubes on 
the FEI for P/D =1.25  

 
Figures 4 and 5 depict the effects of the pitch ratio on the transverse and streamwise response for 

the kernel configuration. It is clear, that transverse and streamwise directions have the same behaviour. 
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No significant effect was recorded for smaller P/D arrays; however the critical velocity (𝑈#") was 
sensitive to P/D greater than 1.4 as 𝑈#" 	increases with increasing the P/D. Figure 6 shows a comparison 
between the model prediction of the present work and data from the literature for both transverse and 
streamwise directions. The current experimental data was including in both the transverse and 
streamwise directions.  The expermintal data from the present work follows the same trend as those of 
the previous experimental data. The model prediction agrees well with the bulk of the expermintal work. 

 

  
(a)Transverse 

 
(b)Streamwise 

 
Figure 5. The effect of the tube pitch 
ratio, P/D, on the stability threshold Figure 4. Effect of the P/D ratio on the response  

 

 
(a) Transverse 

 
(b) Streamwise 

Figure 6. Stability map of the FEI comparing the current results to the available experimental data.  

Conclusion 

Fluidelastic stability in rotated square array with 4 different pitch ratios was experimentally 
investigated in both transverse and streamwise directions. The results show that the number of flexible 
tubes significantly impacts the onset of FEI at the same MDP for both transverse and streamwise. Also, 
the stability threshold was found to be sensitive to the pitch ratio, generally the FEI stability threshold 
decreases with decreasing pitch ratio. In fact, these findings confirm that FEI in RS array was driven by 
the stiffness-controlled excitation and tube-to-tube coupling is very essential for the array to become 
unstable either in transverse or streamwise directions. 
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Summary 

Composite structures are on some occasions surrounded or supported by elastic or viscoelastic 

media in serving environment. With supporting foundations, dynamic characteristics change since 

the foundations provides additional constraints. The interaction between the foundations and 

composites can be linear, nonlinear or viscoelastic. In this work, we aim to build the mathematical 

model for delaminated composite plates, as shown in Figure 1, resting on various foundations by 

means of the improved layerwise theory and finite element implementation for free vibration- and 

dynamic response analysis. The displacement fields are assumed by the following equation: 

 
1

11 1 1 1 1

1

( , , , ) ( , , ) ( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( )
N

j
k k k

j

j

U x y z t u x y t x y t z x y t g z x y t h z u x y t H z z  
−

=

= + + + + −  

1

22 2 2 2 2

1

( , , , ) ( , , ) ( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( )
N

j
k k k

j

j

U x y z t u x y t x y t z x y t g z x y t h z u x y t H z z  
−

=

= + + + + −            (1) 

1

3

1

( , , , ) ( , , ) ( , , ) ( )
N

j
k

j

j

U x y z t w x y t w x y t H z z
−

=

= + −  

 

 

Figure 1. Geometry of delaminated composite laminate on elastic foundation, and three 

interfacial delamination locations 

 
The proposed model takes into account three foundation models, such as two-parameter 

foundation, three-parameter nonlinear model and visco-Pasternak foundation model to investigate 

their effect on the dynamic characteristics of delaminated plates. (LF: two-parameter linear 

foundation; NF: three-parameter nonlinear foundation; VF: visco- Pasternak foundation): 

 
2 2
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w w
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x y
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The equations of motion are obtained from Hamilton’s principle. The details of Hamilton’s 

principle can be expressed by the following equations for the three foundation cases: 
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Substituting all the strain-stress relation, geometric relaitons, performing integration by parts and 

applying boundary conditions, the governing equations can be obtained in the following matrix 

form, for the three foundation cases: 

 

0+ =Md Kd                                                 (LF) 

( )0 1 2 0L L NL L+ + + + =Md K K K K d              (NF)                                                                         (4) 

Ld+ + =Md K d Kd F                                     (VF) 

 

For free vibration, the first four natural frequencies are shown in Figure 2, for a cross-ply ([0/90]4s) 

composite plate with various delamination locations on two-parameter elastic foundation. We can 

observe the delamination effect on the natural frequencies especially for the delamination located 

at the middle plane of the laminate. The impact response of the equations of motion is solved by 

the Newmark time integration method. The displacement, velocity and acceleration are 

approximated by the Taylor’s expansion and only terms up to the second derivative. The results 

are shown in Figure 3. The slight difference due to delamination on transient history can be 

observed and the PSD result also shows some difference at the high frequency peaks. 
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Figure 2. Natural frequencies of the first four modes for cross-ply ([0/90]4s) composite plate with 

various delamination locations 

 

 
Figure 3. Transient history and PSD of healthy and delaminated clamped-free plate with kd= 

0.002 under 1N impact load at the tip center with the time duration of 1ms 
 

Understanding the dynamic behaviour of composite structures on elastic foundations is very 

important for structural applications. Moreover, the existence of delamination affects the higher 

frequencies dramatically which may further help identify delamination locations in composite 

plates resting on various foundations for structural health monitoring. 
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Summary 

Plates and stiffened panels provide low mass solutions in many engineering applications, including aircraft, 

road and rail vehicles, ships and bridges. Initial imperfections, cracks, delaminations and other forms of 

damage reduce their stiffness and load carrying capacity. Damage is often difficult to detect visually, 

particularly in built-up structures such as aircraft wings and fuselage panels. Non-destructive testing can 

identify changes in vibration behaviour, and can be carried out with minimal instrumentation if attention is 

confined to the natural frequencies rather than the vibration modes [1]. The location and extent of damage in 

beams and frame structures have been identified from observed degradations in their natural frequencies in 

conjunction with a dynamic stiffness model which represents a crack by a rotational spring [2-4]. Such 

models for plates commonly assume longitudinal invariance, which is violated by the presence of a crack, and 

instead finite element and hybrid models have been employed [5]. 

 

Consider a thin rectangular plate of thickness ℎ , covering the area 0 ≤ 𝑥 ≤ 𝑎 , 0 ≤ 𝑦 ≤ 𝑏  and simply 

supported on all four sides. The plate is made from an isotropic material with Young’s modulus 𝐸, Poisson’s 

ratio 𝜈 and density 𝜌, and vibrates at a natural frequency 𝜔𝑚𝑛0 with a mode shape given by 

 

𝑤(𝑥, 𝑦) = 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑠𝑖𝑛(𝜔𝑚𝑛0𝑡) (1)  

 

At zero displacement the strain energy is zero, while the kinetic energy takes its maximal value 
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At peak displacement the kinetic energy is zero, while the strain energy takes its maximal value 
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Conservation of energy requires that 𝑇0 = 𝑈0 and so 
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A crack running from (𝑥1, 𝑦1) to (𝑥2, 𝑦2) is modelled as a rotational spring with compliance 𝐶 per unit length 

calculated as in [3]. The strain energy associated with discontinuous rotation along the length of the crack is  
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(5)  

 

where 𝑙 is the length of the crack and 𝜑 is its orientation to the positive 𝑦 axis. The cracked plate vibrates with 

a reduced natural frequency 𝜔𝑚𝑛c and at zero displacement has kinetic energy 

 

𝑇𝑐 =
1

2
𝜌ℎ𝜔𝑚𝑛c

2 𝑤𝑚𝑛
2 ∫ ∫ sin2 (

𝑚𝜋𝑥

𝑎
) sin2 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0

𝑎

0

𝑑𝑥 (6)  

 

Conservation of energy requires that 𝑇𝑐 = 𝑈0 − 𝑈𝑑 and so 𝜔𝑚𝑛c
2 = 𝜔𝑚𝑛0

2 − 𝛿𝑚𝑛 where 

 

𝛿𝑚𝑛 =
2𝑈𝑑

𝜌ℎ𝑤𝑚𝑛
2 ∫ ∫ sin2 (

𝑚𝜋𝑥
𝑎

) sin2 (
𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0

𝑎

0
𝑑𝑥

 (7)  

 

Table 1 shows the lowest six natural frequencies of a simply supported rectangular plate of length 𝑎 =
0.12m, width 𝑏 = 0.10m and thickness ℎ = 0.001m with Young’s modulus 𝐸 = 110GNm−2, Poisson’s ratio 

𝜈 = 0.3 and density 𝜌 = 4480kgm−3, before and after the introduction of a crack of depth 𝑑 = 0.1ℎ running 

parallel to the 𝑥 axis from (𝑥1, 𝑦1) = (0.02, 0.03)m to (𝑥2, 𝑦2) = (0.06, 0.03)m. The degradations 𝛿𝑚𝑛  in 

the squares of natural frequencies calculated from Equation (7) show good agreement with finite element 

results using a mesh of 48 × 20 rectangular shell elements with 12 degrees of freedom taken from [6]. The 

degradations 𝛿𝑚𝑛 may be regarded as components of a vector 𝛅 which, when normalised to a unit vector 𝛅̅, 

can be used to locate the crack [3]. The normalised components 𝛿𝑚̅𝑛 are shown in Table 1 for this example, 

and also for variants in which the crack depth, location or length are altered as shown. It is seen that the 𝛿𝑚̅𝑛 

are independent of the crack depth but vary a little with the length of the crack. They vary much more with 

the crack location because the energy calculation of Equation (5) depends on the curvatures of the different 

mode shapes along the crack. Note that, in common with much previous research, the analysis has ignored the 

small changes in mode shape due to the crack, resulting in some inaccuracy for larger cracks. 

 

Table 1. Natural frequencies of a simply supported rectangular plate, degradations 𝛿𝑚𝑛 in their squares due to 

a crack, and normalised degradations 𝛿𝑚̅𝑛. Key to variants: deep crack 𝑑 = 0.2ℎ; short crack (𝑥1, 𝑥2) =
(0.03, 0.05)m; 𝑥 shift (𝑥1, 𝑥2) = (0.01, 0.05)m; −𝑦 shift 𝑦1 = 𝑦2 = 0.015m; +𝑦 shift 𝑦1 = 𝑦2 = 0.045m. 

(𝑚, 𝑛) 
𝜔𝑚𝑛0 

(rad s-1) 

𝜔𝑚𝑛c 

(rad s-1) 

𝛿𝑚𝑛 

(rad2 s-2) 

Error 

vs FE 

(%) 

𝛿𝑚̅𝑛 

𝛿𝑚̅𝑛 

deep 

crack 

𝛿𝑚̅𝑛 

short 

crack 

𝛿𝑚̅𝑛 

𝑥 

shift 

𝛿𝑚̅𝑛 

−𝑦 

shift 

𝛿𝑚̅𝑛 

+𝑦 

 shift 
(1,1) 2507.7 2506.7 5140.6 0.84 0.037 0.037 0.035 0.027 0.004 0.021 

(2,1) 5590.9 5590.0 10102.8 0.44 0.073 0.073 0.077 0.088 0.007 0.041 

(1,2) 6947.5 6941.3 86169.6 1.12 0.620 0.620 0.590 0.452 0.137 0.025 

(2,2) 10030.7 10025.9 97039.6 0.88 0.699 0.699 0.744 0.843 0.154 0.028 

(3,1) 10729.6 10728.6 20588.2 1.52 0.148 0.148 0.049 0.153 0.014 0.084 

(1,3) 14347.3 14345.7 43556.0 1.42 0.314 0.314 0.298 0.229 0.978 0.995 
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Table 2. Natural frequencies of a simply supported square plate and degradations 𝛿𝑚𝑛 in their squares due to 

a short crack running from (0.054, 0.0385)m to (0.056, 0.0415)m. Key to variants: medium crack running 

from (0.050, 0.0325)m to (0.060, 0.0475)m; long crack running from (0.035, 0.010)m to (0.075, 0.070)m. 

(𝑚, 𝑛) 
𝜔𝑚𝑛0 

(rad s-1) 

𝜔𝑚𝑛c 

(rad s-1) 

𝛿𝑚𝑛 

(rad2 s-2) 

Error vs 

[7] (%) 
𝛿𝑚̅𝑛 

𝛿𝑚̅𝑛 

medium 

crack 

𝛿𝑚̅𝑛 

long 

crack 

(1,1) 2959.9 2957.1 16489.4 -45.39 0.033 0.035 0.037 

(2,1) 7399.7 7399.4 5359.8 -66.84 0.011 0.027 0.196 

(1,2) 7399.7 7398.1 23497.3 -71.24 0.048 0.060 0.158 

(2,2) 11839.6 11835.8 89746.3 396.83 0.182 0.162 0.304 

(3,1) 14799.5 14783.6 469457.6 -8.49 0.950 0.941 0.744 

(1,3) 14799.5 14795.3 121578.1 -64.26 0.246 0.286 0.538 

 

Table 2 shows the lowest six natural frequencies of a simply supported square plate with sides 𝑎 = 𝑏 = 0.1m, 

thickness ℎ = 0.001m , Young’s modulus 𝐸 = 110GNm−2 , Poisson’s ratio 𝜈 = 0.3  and density 𝜌 =
4480kgm−3, before and after the introduction of a short crack of depth 𝑑 = 0.5ℎ. The degradations 𝛿𝑚𝑛 in 

the squares of natural frequencies differ substantially from those of [7], where the energy calculations use the 

curvatures in the mode shape at the midpoint of the crack, whereas here they are integrated along the crack 

length and are therefore more accurate. Also Equation (5) is more accurate than its equivalent in [7], allowing 

for the effects of twist on the compliance of arbitratily aligned cracks. 

 

The proposed energy approach can be applied to plates with different boundary conditions by replacing the 

sinusoidal mode shapes in Equation (1) by appropriate deflection functions. Built-up structures can be 

handled by first using the dynamic stiffness method to find the natural frequencies and mode shapes of the 

uncracked structure. The mode shapes then supply the boundary conditions for each of the component plates.  

 

It is proposed to apply the understanding gained from this analysis to inverse problems involving the 

identification of cracks in plate structures. This is a more challenging task than for beams and frame structures 

[3] and will be tackled using advanced optimisation techniques. 
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1. Introduction 

Multi-layered composite structure exhibits complex shear deformation characteristics. The 
periodic concept of material arrangement in metamaterial design can provide structures with 
different dynamic properties and create new resonance characteristics [1], while also presenting 
challenges on vibration analysis. 
Based on different shear deformation theories, scholars derived a variety of analytical solutions 
for dynamic analysis of composite beams [1-3]. As for numerical analysis, different beam 
elements were proposed [4-6]. These studies were all based on one-dimensional beam theory. If 
a composite beam is treated as a two-dimensional structure, then there is no need to assume the 
distribution of deformation or stress on the cross-section [7, 8].  
The state-space method has a unique advantage in analysing multi-layer composite structures 
because it treats displacement and its energy-conjugated stress components as basic unknowns 
[8, 9]. Based on this, a mixed finite element method for the dynamic analysis of periodic 
composite structures is proposed in this paper. It has the advantage of accurately analysing 
dynamic characteristics of composite structures. 

2. Governing equations and solutions 

Consider the free vibration problem of a periodic composite beam. The vibration frequency of 
the beam is denoted by ω , and the Lagrangian function of the two-dimensional system can be 
expressed as: 

  
T

2 T, ,1 1
, ,2 2

x xx xy x

y yx yy y
ω

        = −    
        

u C C u
u ρu

u C C u
 , (1) 

where T[ ]u v=u is the displacement vector in which u and v represents displacements in x and 
y direction, the subscript comma followed by the coordinate indicates the partial derivative with 
respect to this coordinate. , , ,xx xy yx yyC C C C  are matrices of elastic coefficients of orthotropic 
material in plane stress problem [9], ρ  is the material density matrix. Choosing y-direction as the 
transfer direction, the following Hamilton function is obtained by the Legendre transformation 

 T 1 T 1 T 2 T1 1 1( , ) , , ,
2 2 2y y y yy y y yy yx x x xx xH ω− −= − − +u σ σ C σ σ C C u u C u u ρu , (2) 

where T[ ]y yx yyσ σ=σ  is the stress vector in which yxσ , yyσ  is the shear and normal stress in 
the plane normal to the direction parallel to the x-axis, and 
  1

xx xx xy yy yx
−= −C C C C C . (3) 

The finite element discretization is performed in the x-direction, that is, the following 
assumptions are made for the displacements and stresses in element e 
  ( , ) ( ) ( )i t

e ex y e x yω=u N d , (4a) 
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  ( , ) ( ) ( )i t
ye ex y e x yω=σ P s . (4b) 

where i te ω  represents the time-varying functions of displacement and stress at frequency ω . eu  and 

yeσ  denote the displacement and stress components inside an element, ed  and es  denote the 
displacement and stress components at the nodes of the element, and ( )xN  and ( )xP  denote the 
interpolated shape functions of the displacement and stress inside the element. The mixed energy 
functional of the system becomes 

 
1

T
1

10

( [ , ( , )]d )d
e

e

xH m

y y y y
e x

H x y
+

=

Π = −∑∫ ∫ σ u u σ  (5) 

where H is the whole beam height, m is the number of elements in x-direction, and [ ]1,e ex x +  are the 
interval occupied by the e-th element. Substituting Eq. (4) into Eq. (5), we obtain 

 
2

2 T T T T T
1

0

1 1( , )d
2 2 2

H
i t

ye yω ω
Π = − + + −∫ s Dd s Hs s Gd d Kd d DRd , (6) 

where d and s denote the global vectors of displacements and stresses, and D, G, H, K, R and J 
denote the global matrices assembled from their element counterparts. Taking the variation of 
equation (6) and non-dimensionalizing it, we obtain 

 
d
dζ

=
Δ AΔ , [0,1]ζ ∈ . (7) 

where 

 L
m

=d d , E=s s , y Hζ= , (8) 

 
 

=  
 

d
Δ

s
, 

1 1 T

T T 2 T T T( )

HH Em
L

LH H
mE

ω

− −

− −

 − 
=  
 −  

D G D H
A

D K D R D G
. (9) 

For different sizes of the A matrix, different methods can be used for accurate solution, such as 
matrix exponential function, DQM method, and matrix eigenvalue decomposition, which can be 
referred to the works of Sheng et al. [11], Xu et al. [12] and Jiang et al. [9]. 

3. Numerical example 
The steel-concrete composite beam works together through periodically distributed shear 
connectors. Consider a steel-concrete experimental composite beam with a span of 2m (figure 1). 
Two methods were considered here for shear connectors. One is to consider the actual spaced 
periodic distribution of stiffness, and the other is to equivalent it to a uniform distribution. Table 
1 provides the natural frequency results of the composite beam under the two methods, which 
are compared with the finite element numerical results and test results of Zhang et al. [13].  
Results using method (Ⅰ) match well with the experimental measurements, with an error of only 
0.64%. In contrast, results using method (Ⅱ) are lower than the experimental measurements. 
This is because the equivalent method that uniformly distributes the shear strength over the 
entire beam length reduces the connection stiffness at the ends, leading to a decrease in the 
natural frequency of the composite beam. 

Table 1. Natural frequency of periodic composite beam 

Method Present (Ⅰ) Present (Ⅱ) FEM Test 

f (Hz) 56.48 55.12 56.55 56.12 
Error (%) 0.64 -1.78 0.76 / 
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Figure 1. Schematic diagram of a composite beam with periodic shear connectors. 
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Introduction

This summary presents a highly accurate and efficient hybrid modelling technique for the broad-
band 2D vibro-acoustic analysis. The structures are modelled by dynamic stiffness method (DSM)
[1] using particular solutions of general acoustic and distributed force excitations. The acoustic
cavities are modelled by the spectral DSM [2] with arbitrary BCs. The vibro-acoustic coupling is
modelled analytically in the form of the modified Fourier series with very rapid convergence rate
by enforcing the velocity continuity. As a result, the hybrid method exhibits a predominant advan-
tage over the finite element method (FEM) [3] in terms of accuracy and computational efficiency.

1 Problem definition

A typical 2D vibro-acoustic system can be characterized by two physical variables: the acoustic
pressure p(rrr) at a position rrr(x,y) inside the acoustic domain Ωa and the transverse deformation
w(rrr′) at a position rrr′(x′,y′) on the structure Γs. On parts Γp, Γv and ΓZ the prescribed pressure,
normal velocity and normal impedance can be specified respectively.

Figure 1: The model of a 2D coupled vibro-acoustic system.

The acoustic cavity Ωa is filled with an acoustic fluid (density ρ0 and sound speed c0). The steady-
state acoustic pressure p(rrr) inside the cavity is governed by the Helmholtz equation

∇
2 p(rrr)+ k2

a p(rrr) = 0, ∀rrr ∈ Ωa (1)

where ka = ω/c0 denotes the acoustic wave number, ω is the circular frequency.

The structure Γs can be treated as a beam assembly, which has a density ρs and Young’s modulus
E. The steady-state transverse displacement w(rrr′) of the beam assembly is governed by the Euler-
Bernoulli theory
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(
∇

4 − k4
b
)

w
(
rrr′
)
=

f (rrr′F)
EI

, ∀rrr′ ∈ Γs (2)

where kb =
4
√

ρsAω2

EI is the bending wavenumber, EI is the bending stiffness and A is the cross-
sectional area of a beam. f (rrr′F) is the distributed force or acoustic excitation at the position
rrr′FFF(x

′
F ,y

′
F).

Here, a light-fluid approximation is made: the normal velocity continuity condition needs to be
satisfied along the structural-acoustic coupling interface Γs

j
ρ0ω

∂ p(rrr)
∂n

= jωw(rrr′), rrr ∈ Γs (3)

where j =
√
−1 is the imaginary unit and n is the surface outward normal.

2 Spectral dynamic stiffness (SDS) formulations for vibro-acoustic analysis

The interior acoustic cavity is first constructed by the SDS model [2] using the modified Fourier
series (MFS) with a favourable convergence rate. The acoustic pressure is expanded into a sum of
two series solutions by using modified Fourier basis functions (MFBF) [2], which satisfies exactly
the Helmholtz equation and is given by

P(x,y) = ∑
m∈N

k∈{0,1}

Tk(αkmx)Pkm(y)+ ∑
n∈N

j∈{0,1}

Pjn(x)T j(β jny) (4)

and Tk(αkmx) and T j(β jny) are MFBF defined in the united form as

Tl(γlsξ ) =

{
cos(γlsξ ) l = 0
sin(γlsξ ) l = 1

, γls = (s+
l
2
)
π

L
(5)

where γls refers to either αkm or β jn, ξ refers to x or y and L is half the boundary length of the
acoustic cavity.

Next, the SDS matrix for an acoustic cavity can be developed analytically based on the above
general solution and boundary conditions, which can be written in the form

vvv = KKK ppp (6)

where KKK is the SDS matrix of the acoustic cavity, vvv and ppp are respectively the modified Fourier co-
efficient vector of the normal velocity and the acoustic pressure. The modified Fourier coefficients
Vls of the normal velocity vector vvv can be given by

Vls =
∫ L

−L
jωw(ξ )

Tl (γlsξ )√
ζlsL

dξ (7)

with
w(ξ ) = NNNF(ξ ,ω)dddF +w∗

F(ξ ), dddF = KKK−1
F fff F (8)

where NNNF(ξ ,ω) is the shape function, KKKF is the DS matrix which relates the force vector fff F and
displacement vector dddF of the beam. w∗

F(ξ ) is the particular solution of an external excitation.
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3 Results

An I-shaped beam frame coupled with two acoustic cavities is given to illustrate the superior
performance of the proposed method. The vibro-acoustic system is subjected to an incident plane
wave with an oblique incident angle of α = 30◦, as shown in Figure 2. The dimensions of each
acoustic cavity are 2L1 = 1.25 mm and 2L2 = 1.6 mm. The vibro-acoustic response up to 1000 Hz
under the acoustic excitation is computed by the present methods and FEM, as shown in Table 1.
The DoFs for both the structural and acoustic part is 86 in total, while only 5 structural elements
and 2 acoustic elements are used in the proposed method. However, 6988 elements are obtained
during the FE discretization in which the element size is not larger than 2.5 mm and thus 29118
DoFs are used in the FEM. Thus, the proposed method shows a big potential in reducing the
computational cost.

Figure 2: The vibro-acoustic system consist of beams and cavities under acoustical excitation.

Table 1: Vibro-acoustic response of an I-shaped beam frame coupled with two acoustic cavities
under the acoustical excitation at 70 Hz, 400 Hz and 1000 Hz.

Method 70 Hz 400 Hz 1000 Hz

Present
method

FEM
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In the field of soft or stretchable manufacturing, rotating structures are always the core 
components of sensors, pumps, and actuators that are designed for specific functions and 
complicated working scenarios [1-3]. Moreover, rotating structures are also used to generate 
various prescribed patterns [3]. For soft cylinders, the effects of the rotation on both static and 
dynamic behaviour are more obvious. Ertepinar [4] studied the vibration characteristics of a 
rotating cylinder using the theory of small motions superposed on the large deformation, while 
Haughton and Ogden [5] presented the bifurcation analysis of a rotating thick-walled soft cylinder 
with finite length. 
 
Here, we investigate the effects of the centrifugal and Coriolis forces on the dynamic behaviour 
of a rotating soft cylinder based on the nonlinear elasticity and linear incremental theories [6]. 
The large deformation of the soft cylinder induced by centrifugal force causes initial tension and 
makes the material anisotropic. The cylinder is then assumed to undergo small perturbation 
superposed on the large deformation. Numerical results are finally presented to explain the 
differences of dynamic behaviour between the rotating and stationary soft cylinders.  
 
Consider a stationary infinitely long soft cylinder with arbitrary thickness in a reference 
coordinate system  , , ZR   . Under a uniform rotating speed   along its axis, the cylinder 

undergoes an axisymmetric deformation to a deformed state in the initial coordinate system 

 , ,r z . Then, the deformation gradient can be described as  diag , ,r z  F  

 =diag d d , ,1r R r R . For an incompressible neo-Hookean solid with the strain energy density 

 2 2 2 3 2r z       , the Cauchy stresses can be writen as 2
rr p     and 

2 p     with p  denoting the hydrostatic pressure. The Cauchy stresses in the cylinder then 

satisfy the equilibrium equation  

2 0rrrr r
r r

  


  


. (1)  

Combine with the boundary conditions at the outer and inner surfaces i o,r r r , the above 

equation finally gives the inner radius ir  of the deformed cylinder. Once the inner radius of the 

deformed cylinder has been determined, the initial stresses can be obtained. 
 
Theoretical predictions show that the principal hoop stretch at the inner surface i i ir r R  

increases with the rotating speed oR     for various initial tube sizes, and tends to 

infinity at a certain rotating speed max  (Fig. 1a). The rotation is also expected to induce 
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inhomogeneous deformation in the rotating cylinder (Fig. 1b) with the dimensionless equivalent 

elastic moduli defined as 
2

0rrA p
    and 2

0A p   .  

 

Figure 1. (a) Deformed inner radius of the soft cylinder due to rotating speed for various 
initial radius ratios. (b) Variations of the equivalent elastic moduli at the deformed middle 

surface versus the rotating speed.  

For the dynamic characteristics of the deformed soft cylinder, the incremental displacement vector 
is r ru u  u e e , where ,r e e  are the unit base vectors corresponding to the deformed 

configuration. According to the linear incremental theory [6], the governing equations are 
2
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   

   

   
 (2)  

where 0T  is the incremental Lagrangian stress. The incremental field problem governed by Eqs. 

(2) may be solved using the state space method [7]. 
 

For the rotating cylinder, the dimensionless natural frequency o /R     is no longer 

symmetric due to Coriolis force. A significant difference lies between the fequencies of the waves 
propagating along the rotating direction (forward) and those propagating along the anti-rotating 
direction (backward) as shown in Fig. 2a.  

 

Figure 2. (a) The natural frequencies of vibration modes 2,  3,  4n   versus the rotating speed. 

(b) Vibration modes at rotating speed 1  . 

 
We further investigate the snap-through instability of rotating tubes with Ogden model, which 
results in jump phenomenon of frequency. As shown in Fig.3(a), the rotating soft tube expands 
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suddenly from point P1 to point P2, corresponding to a sudden jump in the frequencies, see Fig.3(b). 
Interestingly, for a thin tube, the negative frequencies of first- and second-order almost meet 
together when the snap-through instability occurs, and the first-order negative frequency is nearly 
unchanged before and after the snap-through instability as indicated by the point P3.  
 

 

Figure 3. (a) The snap-through instability of rotating Ogden tubes. (b) The natural frequencies 
jump suddenly as the rotating speed increases. 

In conclusion, the soft cylinder expands nonlinearly with the increasing rotating speed. The 
natural frequencies of the cylinder are no longer symmetric due to the presence of Coriolis force 
induced by the rotation. The soft cylinder may suffer snap-though instability with high rotating 
speed, leading to the suddenly jump of natural frequencies. This work demonstrates that the 
centrifugal and Coriolis forces might have significant effects on the vibrational characteristics of 
the cylinder. The results will benefit the design and control of novel engineering systems with 
rotating soft cylinders or shafts. 
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Summary 

Sandwich beams with porous cores have extensive application in engineering structures due to 

their advantageous characteristics, including lightweight design, high strength-to-weight ratio, 

and enhanced vibration damping. Accurately determining the effective elastic properties of these 

sandwich beams is essential for understanding their dynamic behaviour, particularly in relation to 

natural frequencies. Presently, methods for determining these properties typically involve a two-

step process. Initially, the effective elasticity modulus of the porous core is determined, often 

through the use of analytical formulas or numerical techniques based on homogenization theories. 

Subsequently, this modulus is employed to calculate the effective cross-section stiffness, 

encompassing axial, bending, shear, and torsional stiffness, by considering the material and 

geometric properties of both the core and face sheets. However, this approach is subject to certain 

limitations. The analytical formulas or numerical techniques often rely on simplified assumptions 

when deriving the effective elasticity modulus. These assumptions involve idealized geometric 

configurations, uniform pore distributions, and isotropic material behaviour. Furthermore, in the 

calculation of cross-section stiffness, material properties such as Young's modulus and shear 

modulus, along with cross-section geometric parameters like cross-section area and bending 

moment of inertia, are frequently treated separately for the sake of simplicity, despite their 

integrated contributions to the cross-section stiffness. These simplifications may introduce 

substantial errors into the effective properties of the sandwich beam, thereby affecting the 

accuracy of the calculated natural frequencies.  

 

To overcome these limitations and to align with the emerging technology of voxel-based 3D 

printing [1], we are developing a voxel-based method for accurately determining the effective 

cross-section stiffness of sandwich beams with porous cores, the new method is based on our 

previous work [2, 3]. If the assumptions of Euler-Bernoulli or Timoshenko beam theory are 

adopted, this approach employs the definitions of beam cross-section stiffness, as illustrated in 

Figure 1(a) and expressed in the equations below. 

 

 
�� = � ���, �	
�

�
,     ��
 = � ���, �	

�
��
�,   

  �� = � ���, �	
�
�

, �� = � ���, �	
�

��� + ��	
� 
(1) 

 

In the above expressions �� , ��
 , ��  and ��  are respectively the axial, bending, shear and 

torsional stiffness of the beam. ���, �, �	 and ���, �, �	 are Young’s modulus and shear modulus 

of the material. � is the area of the cross-section.  

 

We assume that the size of the pores is not sufficiently small compared to the cross-sectional 
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dimensions. Therefore, it is necessary to treat the porous core as a heterogeneous material with 

varying effective material properties across the area. To calculate the effective stiffness for the 

cross-section depicted in Figure 1(a) and defined in Equation (1), we began by voxelizing the 

beam, as shown in Figure 1(b). Subsequently, the beam cross-section was partitioned into cells 

for numerical integration, as illustrated in Figure 1(c). In order to determine the effective material 

properties at a Gaussian point, we employed a representative volume element (RVE), Figure 1(d), 

located at that point and performed finite element characterization.   

 

                  
                ( a )                                ( b )                               ( c )                               ( d ) 

Figure 1. Voxel-based method for determining effective stiffness of sandwich beam with 

porous core. (a) A cross-section of the sandwich beam; (b) Voxelization of the phase 

materials; (c) Integration cells and Gaussian points; (d) a RVE taken at a Gaussian point.  

The determined cross-section stiffness properties are subsequently employed in the analysis of 

natural frequencies using beam elements. It is noted that the voxel-based method exhibits 

computational complexity. However, there are several approaches available to enhance its 

computational efficiency. For instance, prior to conducting finite element characterization, it is 

possible to examine the material composition within the representative volume element (RVE). 

If the RVE comprises a single material phase, the material properties can be directly used without 

conducting finite element characterization, thereby saving computational time. 

 

During the conference presentation, we intend to share the following results as they become 

available: 

 

1) The impact of various factors such as voxel size, the number of integration cells, and the size 

of the representative volume element (RVE) on the computed natural frequencies. 

2) Given the scarcity of experimental data on natural frequencies for sandwich beams with 

porous cores in existing literature, we will compare the natural frequencies obtained through 

beam elements with those computed directly from the voxel-based finite element model.  

3) The relation between porosity in the core and the natural frequencies of the beam.  
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Summary  

This paper concerns the transmission of time-harmonic vibrations through a system comprising 
two, one-dimensional uniform waveguides, such as a rod or beam, between which is a finite 
periodic structure (Figure 1(a)). An example is the continuous waveguide with periodic 
attachments shown in Figure 1(b). It is well known that wave propagation in infinite periodic 
structures exhibits pass and stop bands due to Bragg scattering: these are frequency bands in 
which waves propagate freely over long distances or attenuate rapidly with distance.  Wave 
transmission through finite periodic structures has been less extensively considered (e.g. [1,2]) 
and the behaviour is more complicated. The aim here is to predict the amplitudes of the net 
transmitted waves b+ given incident waves a+ and what affects this transmission: these are the 
result of wave reflection, transmission and propagation in various parts of the overall structure. 
 
Figure 1(a) also shows the vectors of wave amplitudes at relevant locations.  There are N cells in 
the periodic segment. There may be a number of waves which travel in both the positive and 
negative x-directions: for example, there is one wave for a rod undergoing axial vibration, two for 
a thin beam in flexural vibration.  In the continuous waveguides waves propagate in the positive 
x-direction as ( )exp i t kxω −  at frequency ω, with k being the wavenumber ( k Eω ρ=  for a 
rod, E and ρ being the elastic modulus and density). The time dependence will henceforth be 
suppressed.  In the periodic segment waves propagate as Bloch waves, each wave varying as 

( )expλ µ=  from one periodic cell to the next, µ being the propagation constant (imaginary in 
the pass band, complex with a negative real part in the stop bands).  Thus at the ends of the 
periodic segment the Bloch waves are related by the propagation relations 
(a) (b) 

Figure 1.  (a) Waveguides with finite periodic array (N = 4). Wave amplitudes at various locations 
shown. (b) Uniform waveguide with N + 1 periodic attachments and periodic cell. 

L 
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 ( ) ( ),N Ndiag diagλ λ+ + − −= =d c c d   (1) 

 
where diag(.) denotes a diagonal matrix. The propagation constants can be found in various ways. 
 
The discontinuities between the uniform waveguides and the periodic segment cause incident 
waves to be reflected and transmitted.  The outgoing waves from these discontinuities are  
 
 1 1 2 2, ,+ + − − + + += + = =c Ta R c d R d b T d   (2) 
 
where R1,2 and T1,2 are matrices of reflection and transmission coefficients, which can be found 
from equilibrium and continuity conditions at junctions 1 and 2. It follows that 
 

 ( ) ( ) 1

1 2 1
N Ndiag diagλ λ

−+ += −  I R R Tc a . (3) 

 
Thus tot

+ +=b T a  where the total transmission matrix totT , which defines the transmission of 

waves +a  through the finite periodic segment, is given by  
 

 ( ) ( ) ( ) 1

2 1 2 1
N N N

tot diag diag diagλ λ λ
−

= −  T T I R R T .  (4) 

 
The total transmission depends on three factors. The first (the λ terms) relates to the pass/stop 
band structure of the periodic segment: in a stop band typically λ is small and wave transmission 
is small while in a pass band 1λ = . The second concerns entrance/exit effects (T1,2) because of 
impedance discontinuities at the two junctions: the wave and Bloch wave mode shapes and 
impedances are different – there are changes in the waveguide properties. There may also be an 
attached impedance at the junction. The third, the matrix inverse in square brackets, represents 
internal resonance effects: the wavefield within the periodic segment comprises successive 
reflections of the Bloch waves from the junctions which may interfere constructively or 
destructively, leading to large and small transmission respectively. The net effect is that the energy 
transmission is centred on the pass bands where it varies very rapidly with frequency. 
 
As an example, consider axial waves in a uniform rod with N+1 masses spaced equal distances L 
apart (Figure 1(b)).  There is 1 DOF, the axial displacement u, and the corresponding internal 
force is the tension P EA u x= ∂ ∂ . Thus q, f, the wave amplitude vectors and reflection and 
transmission matrices become scalars. The choice of the periodic cell is somewhat arbitrary, but 
is here chosen to be a rod segment with half of the attachment at each end (Figure 1(b)), so that 
there are N cells. The transmission coefficient for a single mass is [3] 
 
 ( ) ( ) 1, , tan, 1 1 2t

t
it Te T kLi m ALφ µ φ µµ ρ −= = = = −+   (5) 

 
while 2

1,2 1 2e ,riR R TT Tφ−= = . The propagation constant and Ttot are 
 
 ( ) ( )2 22 2cosh cos cos , 1 rN

tot
iN

t t T TkL R e φµ λφ φ λ −= =− − . (6) 

 
In a stop band 1λ <  and the transmitted power is 2 4 2

tot
NT Tτ λ= ≈ , and is small. In a pass band  
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 ( )( )2 22 2, 1 ri Ni iN

tote T T e R e φ φφ φλ − +− −= = − . (7) 

 
Internal resonances occur when rN nφ φ π+ =  where 1totT = . There are thus N internal 
resonances in each pass band at which energy flows freely through the periodic segment.  Between 
these are antiresonances, where destructive interference occurs. It can be shown that the frequency 
average energy transmission is less than T4, so that the periodic insert decreases the net energy 
flow, even in the pass bands. Figure 2(a) shows the propagation constant as a function of 
dimensionless frequency Ω = kL/π for the case where m = 0.2ρAL. The width of the pass bands 
decreases as frequency increases, with the start of each pass band occurring for integral Ω. The 
transmitted power τ is shown in Figures 2(b,c) for the cases where there are N = 0,1,2,10 periodic 
cells, hence 1,2,3,11 masses.  Transmission is very small in the stop bands but strongly modulated 
in the pass bands, with there being resonances where τ = 1 in each pass band. The results can be 
extended to include the effects of damping, determine frequency average transmission etc. 
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Figure 2.  Rod with added masses: (a) Propagation 
constant; (b) Transmitted power, … 1 mass, - . - . 
2 masses, ___ 3 masses; (c) 11 masses (N=10). 
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Summary 

An Euler-Bernoulli beam carrying a mass with rotary inertia is shown in Figure 1. The governing 

equation of motion of the beam can be expresses as 

𝑚̅𝑢̈(𝑥, 𝑡) + 𝐸𝐼𝑢′′′′(𝑥, 𝑡) = [−𝑀𝑞̈𝑀(𝑡) − 𝐽𝜃̈(𝑡)]𝛿(𝑥 − 𝑥0) (1) 

where 𝑚̅ is mass per unit length, 𝐸𝐼 is flexural rigidity, 𝑥0 is the coordinate of the mass location, 

and 𝑢(𝑥, 𝑡) is the deflection of the beam. The overdot represents the derivative with respect to 

time and the prime represents the derivative with respect to 𝑥. 𝑀 and 𝐽 denote the translational 

inertia and rotary inertia of the mass, respectively. 𝑞𝑀(𝑡) and 𝜃(𝑡) are the vertical displacement 

and rotation of the mass, respectively. The mass is rigidly attached to the beam. For the 𝑛th mode, 

the motion of the mass can be written as 

𝑞𝑀(𝑡) = 𝑢𝑛(𝑥, 𝑡)|𝑥0
= 𝑢𝑛(𝑥0, 𝑡) (2) 

and 

𝜃(𝑡) = 𝑢𝑛
′ (𝑥, 𝑡)|𝑥0

= 𝑢𝑛
′ (𝑥0, 𝑡) (3) 

where 𝑢𝑛(𝑥, 𝑡) is the beam deflection for the 𝑛th mode. 

 

Figure 1. A beam carrying a roving mass with rotary inertia. 

When 𝑀 and 𝐽 are small enough, the influence of the mass is insignificant. Therefore, assuming 

the mode shape stays the same after attaching the mass to the beam, 𝑢𝑛(𝑥, 𝑡) can be expressed as 

(assuming harmonic oscillation) 

𝑢𝑛(𝑥, 𝑡) = 𝜙𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 (4) 

where 𝜔𝑛 is the 𝑛th natural frequency of the beam carrying the mass, and 𝜙𝑛(𝑥) is the 𝑛th mode 

shape of the beam found by solving the following equation 
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𝐸𝐼𝜙𝑛
′′′′(𝑥) − 𝑚̅𝜔𝑏𝑛

2 𝜙𝑛(𝑥) = 0 (5) 

where 𝜔𝑏𝑛 is the 𝑛th natural frequency of the bare beam (i.e. the beam without carrying a mass). 

Substituting Equations (2)-(4) into Equation (1) and multiplying 𝜙𝑛(𝑥)  on both sides and 

integrating over the whole beam yields 

−𝜔𝑛
2 ∫ 𝑚̅𝜙𝑛(𝑥)𝜙𝑛(𝑥)𝑑𝑥

𝐿

0

+ ∫ 𝐸𝐼𝜙𝑛(𝑥)𝜙𝑛
′′′′(𝑥)𝑑𝑥

𝐿

0

=

𝜔𝑛
2 ∫ 𝜙𝑛(𝑥)[𝑀𝜙𝑛(𝑥0) + 𝐽𝜙𝑛

′ (𝑥0)]𝛿(𝑥 − 𝑥0)𝑑𝑥
𝐿

0

(6) 

Considering the orthogonal property of mode shapes 

∫ 𝜙𝑛(𝑥)𝜙𝑚(𝑥)𝑑𝑥 = {
0           (𝑛 ≠ 𝑚)

𝜓𝑛        (𝑛 = 𝑚)

𝐿

0

(7) 

the first term on the left-hand side of Equation (6) can be simplified as 

−𝜔𝑛
2 ∫ 𝑚̅𝜙𝑛(𝑥)𝜙𝑛(𝑥)𝑑𝑥

𝐿

0

= −𝜔𝑛
2𝑚̅𝜓𝑛 (8) 

Considering Equation (5) and Equation (7), the second term on the left-hand side of Equation (6) 

can be written as 

∫ 𝐸𝐼𝜙𝑛(𝑥)𝜙𝑛
′′′′(𝑥)𝑑𝑥

𝐿

0

= 𝑚̅𝜔𝑏𝑛
2 𝜓𝑛 (9) 

Using Equation (7) and the sifting property of 𝛿 function, the right-hand side of Equation (6) can 

be expressed as 

𝜔𝑛
2 ∫ 𝜙𝑛(𝑥)[𝑀𝜙𝑛(𝑥0) + 𝐽𝜙𝑛

′ (𝑥0)]𝛿(𝑥 − 𝑥0)𝑑𝑥
𝐿

0

= 𝜔𝑛
2𝜙𝑛(𝑥0)[𝑀𝜙𝑛(𝑥0) + 𝐽𝜙𝑛

′ (𝑥0)] (10) 

Therefore, rearranging and rewriting Equation (6) gives 

𝑚̅𝜔𝑏𝑛
2 𝜓𝑛 − 𝜔𝑛

2{𝑚̅𝜓𝑛 + 𝜙𝑛(𝑥0)[𝑀𝜙𝑛(𝑥0) + 𝐽𝜙𝑛
′ (𝑥0)]} = 0 (13) 

The 𝑛th natural frequency of the beam carrying a mass at 𝑥0 can be written as 

𝜔𝑛
2(𝑥0) =

𝜔𝑏𝑛
2

1 +
𝑀𝜙𝑛

2(𝑥0) + 𝐽𝜙𝑛(𝑥0)𝜙𝑛
′ (𝑥0)

𝑚̅𝜓𝑛

(14)
 

To verify the accuracy of Equation (14), the natural frequency of a simply supported steel beam 

carrying a mass with rotary inertia is calculated using the dynamic stiffness method (DSM). The 

dimension of the beam and the mass location are shown in Figure 2. For the beam material: 

𝜌=7850kg/m3, E=200GPa, and 𝜈=0.28. For the mass: 𝜏 = 𝑀/𝑀𝑏𝑒𝑎𝑚  and 𝜑 = 𝐽/𝐽𝑏𝑒𝑎𝑚  where 

𝐽𝑏𝑒𝑎𝑚=1.1307kg∙m2 is the rotary inertia about the central axis 𝑂′ of the beam. 

 

 

Figure 2. The geometry of the simply supported beam carrying a mass with rotary inertia. 
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When maintaining 𝜏 (or 𝜑) equal to zero and adjusting 𝜑 (or 𝜏), the relative frequency error is 

evaluated by the ratio between absolute frequency error and DSM frequency result, i.e. 

𝛾 =
|𝜔𝐷𝑆𝑀 − 𝜔𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(14)|

𝜔𝐷𝑆𝑀

(15) 

Figure 3 shows the variation of 𝛾 against 𝜑 (or 𝜏) plotted in logarithm for the first five natural 

frequencies. The magnitude of 𝛾 is found to be very small when 𝜑 and 𝜏 are small, which means 

the assumption that the mode shape stays the same after attaching the mass to the beam does not 

cause significant error when 𝜑 and 𝜏 are small. In that case, Equation (14) gives very good natural 

frequency estimates. It is worth noting that in Figure 3(a), the magnitude of 𝛾  for 𝜔3  is 

consistently close to zero. This is because the mass is located at the extreme point of 𝜙3(𝑥) 

featuring zero beam rotation. Hence the effect of rotary inertia is nullified. 

 

  

(a) when 𝜏=0 and 𝜑 ≠0 (b) when 𝜑=0 and 𝜏 ≠0 

 

Figure 3. The development of relative frequency error as 𝝋 (or 𝝉) increases. 

Similar equations for natural frequency estimation were found in [1-3], however, no explanation 

is given on the assumption for the approximation. The derivation in this summary addresses this 

issue. Equation (14) offers a straightforward way to estimate the natural frequency of a beam 

carrying a mass, especially for beams with standard boundary conditions of which the mode shape 

expressions are readily available in textbooks [4]. It is possible to generalise Equation (14) to 

consider the situation when multiple masses are distributed on the beam. In addition, Equation 

(14) also explicitly shows how 𝑀 and 𝐽 affect the natural frequency. The effect of a roving 𝐽 has 

been discussed in a cracked beam scenario in [5]. From Equation (14), as 𝐽  is engaged by 

multiplying 𝜙𝑛(𝑥0) and 𝜙𝑛
′ (𝑥0), the discontinuity in 𝜙𝑛

′ (𝑥0) caused by a crack leads to a shift in 

𝜔𝑛, which can be used for crack detection. 
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Introduction 

A large number of engineering structures, such as airplanes and automobiles, use thin shallow 

open shells as structural components. It is therefore important to evaluate natural frequencies to 

avoid resonance. For shell vibration problems under known material property and dimension, 

choices of boundary conditions for these shells affect significantly values of the natural 

frequencies. Boundary conditions, e.g., free edge, supported edge and clamped edge, are 

mathematically idealized, and in practical situations however the edge constraint should be 

modelled as elastically constrained. 

 

Based on this premise, this paper presents an analytical approach to study free vibration of thin 

shallow shells elastically constrained along edges by translational and rotational springs. In the 

previous literature, there exist many papers dealing with vibration of shallow shells under uniform 

classical boundary conditions, but there are few papers considering elastic constraints on the 

edges.  Furthermore, the present paper considers more complicated problem of shallow shells 

constrained along parts of the edges, and to the author’s knowledge, there are no papers on shallow 

shells with mixed boundary conditions. In numerical studies, after convergence characteristics of 

the solution is tested, the effects of degree in elastic constraint are discussed. 

Outline of the analysis 

An analytical procedure is briefly stated. Shell curvature is modelled in the coordinates by 

( ) ( )( )2 21 2 x yx, y / x / R y / R = − +  (1)  

Dimension of the shell planform is a and b, and the thickness is given by h.  Rx and Ry are curvature 

radius in x and y direction, respectively. For 1/ Rx =1/ Ry =(finite), the shell has spherical shape 

and for 1/ Rx =-1/ Ry =(finite) it has hyperbolic paraboloidal shape. 

 

Based on Donnell-type shallow shell theory and standard lamination theory, stiffness matrices  
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 (2)  

are derived for in-plane (stretching) motion, in-plane and out-of-plane coupling motion, and out-

of-plane (bending) motion, respectively. For isotropic material, these are reduced to Aij =h Qij, Bij 

=0, Dij=(h3 /12)Qij  (i,j=1,2,6) in terms of Q11 =Q12= E/(1-ν2), Q12 =νQ11 and Q66 =G.  Here, E 

is Young’s modulus, G=E/2(1+ν) is shear modulus andνis Poisson’s ratio. 
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Figure 1. Doubly curved shallow shell under partial        Figure 2. Numerical examples.  

elastic constraints. 

 

The energy functional of a vibrating shallow shell is given by 

( ) ( ) s bs b t rL T V V V V V= − + + + +  (3) 

where Vs,  Vbs,  Vb are strain energies due to in-plane, in-plane and out-of-plane coupling, and out-

of-plane motions, respectively, and T is kinetic energy. In addition to these energies, one can add 

the potential energy Vt  stored in translational springs with coefficients ki (i=1,2,3,4) and the 

potential energy Vr stored in rotational springs with coefficients kri (i=1,2,3,4) as 
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The upper and lower bounds in these integrals are modified to meet with ranges of constraints in 

the numerical examples. Next, the following series solutions are assumed for u, v, w (ξ=2x/a, 

η=2y/b) as                 
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(5a) 

 

 

(5b) 

 

 

(5c) 

where  Pij, Qkl, Rmn are undetermined coefficients, and Bu1, …, Bw4 are boundary index to prescribe 

kinematical boundary condition. Use of the boundary index is explained in previous studies.  

When elastic springs are not included, in-plane displacements u and v can be zero or stress free, 

and out-of-plane displacement w can take free, simple supported or clamped condition. The 

energy functional is minimized with the coefficients, and this process yields a frequency equation  
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   ( )2Ω 0det K M− =  (6) 

where Ω is a frequency parameter defined by 2Ω a h / D =  ( ( )3 212 1D Eh / = − ). 

Numerical results and discussions 

Numerical results are given here for frequency parameters of spherical shallow shells (1/Rx =1/Ry 

=1/R). The shell has a thickness ratio (h/a=0.01) with square planform (a/b=1) and relatively small 

curvature (a/R=0.2). The in-plane boundary condition is set to be S-1 condition on the four straight 

edges, namely, the in-plane displacements perpendicular to the edges are free, but displacements 

along edges are fixed. The out-of-plane displacements (deflection) can be simply supported and 

practically clamped (with high rotational stiffness) simultaneously along the edges.   

 

Figure 2 shows four numerical examples Ex.1,.., Ex.4,  where a square spherical shell with the 

S1-S1-S1-S1 edge condition is used as a base shell additionally with distributed rotational springs. 

Specifically, Ex.1 is a shell with a part from one corner on Edge(2) constrained by a spring. When 

the stiffness value kr1*=(a/D0)kr1 is increased, that part of the edge gradually becomes nearly 

clamped and the edge has mixed boundary condition. Variations of frequency parameters 

approach to certain values as the stiffness becomes more than kr*=103 and can be regarded as 

practically clamped at kr*=104. Similarly, Ex.2, Ex.3 and Ex.4 have mixed boundary conditions 

at a corner, a pair of opposite edges and two pairs of opposite edges, respectively. 

Table 1 presents convergence study of frequency parameters in Ex.1 and Ex.2, when the number 

of series terms in the assumed solution (5) is increased from 6×6 to 14×14. Since the assumed 

solution satisfies the kinematical boundary conditions exactly, they show monotonical decrease 

from above and clearly reveal fast convergence.   

 

Table 2 gives comparison with previous results for square flat plates (i.e., no curvature) with 

mixed boundary conditions, since there are no previous results available for shallow shells with 

mixed boundary conditions. The present results under assumption of a/R=0 agree well with those 

of plates cited from the past references.  

 

Table 1. Convergence of frequency parameters    Table 2. Comparison of frequency parameters 

for spherical shallow shells with partially clamped   for square plates with partially clamped edges   

edges (kr*=104, a/b=1, a/R=0.2, a/h=100).              (kr*=104, a/b=1, a/R=0).  

 

 Ω1 Ω2 Ω3 Ω4 Ω5

Ex.1

Present 22.73 50.14 56.17 82.43 99.73

Narita(2006) 22.49 49.84 55.62 81.85 99.43

Wei (2001) 22.42 49.88 55.54 82.26 99.67

Shu (1999) 22.42 49.93 55.51 82.32 99.64

Mizusawa (1990) 22.71 50.10 56.13 82.37 99.73

Narita (1981) 22.63 50.04 55.95 82.34 99.71

Ex.3

Present 28.62 53.87 68.37 91.70 101.0

Narita(2006) 28.37 52.26 67.64 89.74 100.2

Wei (2001) 28.36 53.29 67.60 89.87 100.4

Narita (1981) 28.44 53.49 67.85 90.50 100.6

M xN Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Ex.1

6×6 23.06 50.59 56.93 83.11 101.2 111.7

8×8 22.92 50.38 56.61 82.73 99.79 108.9

10×10 22.83 50.27 56.41 82.57 99.75 108.5

12×12 22.78 50.19 56.27 82.48 99.74 108.2

14×14 22.73 50.14 56.17 82.43 99.73 108.0

Ex.2

6×6 70.75 86.58 89.92 108.9 131.2 132.6

8×8 70.64 85.52 89.21 108.0 127.8 128.7

10×10 70.57 85.18 89.09 107.7 127.6 128.0

12×12 70.53 84.96 89.00 107.6 127.5 127.6

14×14 70.49 84.81 88.94 107.5 127.3 127.4
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Summary

In the recent years, applications of soft material are widely spread in many mechanical, aeronau-
tical, robotics engineering and biological applications. Many experimental and numerical studies
have been conducted on hyperelastic media under various static and dynamics loads. Vibrations of
hyperelastic materials have become more and more important due to their extreme elastic behav-
ior: in this framework both geometrical and material non-linearities must be taken into account,
leading to strongly nonlinear governing equations that result in a lack of closed-form solutions for
vibrations problems. Studies in the last decade rely on FEM (Finite Element Method), that allow a
wide range of investigations in terms of material properties and geometries, topology and weight
optimization, frequency analysis and design phase of components.

In this work, finite element models for hyperelasticity and vibrations around nonlinear equilib-
rium states are based on Carrera Unified Formulation (CUF): the primary unknown variables
are expressed by a polynomial expansion of kinematic models and arbitrary cross-section func-
tion/thickness functions (Node-Dependent Kinematics) [1]. Under the CUF formulation, the non-
linear governing equations in weak form are obtained adopting an index notation that allows the
definitions of fundamental nuclei of physical quantities independently of the chosen polynomial
expansion of the displacement field:

Beam 1D models: u(x,y,z) = Fτ(x,z)Ni(y)qτi i = 1,2, ..,Nn (1)

Plate 2D models: u(x,y,z) = Fτ(z)Ni(x,y)qτi i = 1,2, ..,Nn (2)

Solid 3D models: u(x,y,z) = Ni(x,y,z)qi i = 1,2, ..,Nn (3)

Recently, CUF models for geometrical nonlinear analysis of linear elastic structures [2, 3] have
been extended to including material non-linearities, in particular hyperelasticity, obtaining higher-
order displacement-based models for nearly-incompressible and compressible soft materials [4].

To show the capabilities of the present implementation of hyperelastic models, we present here the
nonlinear static analysis of a thick hollow sphere subjected to internal uniform pressure. In this
case study, the analytic solution is known: radial displacement distribution obtained via parabolic
hexahedral models is compared with the analytic reference, for various load conditions. The geom-
etry, boundary conditions and material model and constants are taken from Jiang et al.[5]. Figure
1(a) shows the comparison of radial displacement distribution between analytical and numerical
results, whereas Fig.1(b) shows the deformed configuration when p = 1 Pa.

Afterwards, as done in Carrera et.al [6], we derive the governing equation of the free vibration
problem (or undamped vibration problem) for hyperelastic structures by means of the principle of
virtual displacements (PVD), written as:

δLint +δLine = 0 (4)

ISVCS13 - Page 56 of 109



 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 1  1.2  1.4  1.6  1.8  2

U
r 
[m

]

r [m]

Analytic - 1.00 Pa

Analytic - 1.81 Pa

Analytic - 2.48 Pa

Analytic - 3.82 Pa

Analytic - 4.46 Pa

510H27 - 1.00 Pa

510H27 - 1.81 Pa

510H27 - 2.48 Pa

510H27 - 3.82 Pa

510H27 - 4.46 Pa

(a) Equilibrium curve

1.3e-04

1.2e-03

0.0004

0.0006

0.0008

0.001

D
is

p
la

ce
m

e
n

ts
 M

a
g

n
it

u
d

e

(b) Deformed configuration

Figure 1: Thick hollow sphere: equilibrium curve and deformed configurations.

where Lint is the internal work, Line is the work done by inertia forces and δ denotes the virtual
variation. Adopting the same index notation for the full Green-Lagrange strain tensor, we can
derive the FNs (fundamental nuclei) of internal forces vector, mass matrix and tangent stiffness
matrix by linearization of the virtual variation of internal work:

δLint = δqT
s jF

τsi j
int (5)

δLine = δqT
s jM

τsi jq̈τi (6)

δ (δLint) = δqT
s jK

τsi j
T δqτi (7)

All these FNs have the property that they are independent of the polynomial expansion chosen:
higher-order model are rapidly defined by considering the summation over the indices. The pro-
posed method solves the undamped vibration problem around a nonlinear equilibrium states com-
puting first the static equilibrium problem by means of a Newton-Raphson iterative procedure
coupled with the arc-length procedure [7], then solving the simplified equations of motion (the
classical linear eigenvalue problem) adopting the tangent stiffness matrix at the point of interest:

(Kτsi j
T −ω

2Mτsi j)qτi = 0 (8)

In this way, normal mode frequencies and shapes can be obtained. Contrary to the case of lin-
ear elastic material, for which low amplitude vibrations were observed (thus, linearization of the
problem around a non-trivial equilibrium condition is legitimate), hyperelastic materials undergo
large amplitude vibrations: even so, the small-amplitude behaviour under prestressed conditions
represents an interesting research problem thanks to its various practical applications.

In this last paragraph, we report the actual numerical results obtained for an undamped vibration
problem regarding the thick hyperelastic hollow sphere considered before, around the trivial equi-
librium condition. Regarding the mass matrix definition, density is fixed at the classical value
of natural rubber ρ = 1340 kg/m3. Results from the present model are compared with reference
results obtained by the commercial finite element code ABAQUS. In Table 1 we report the com-
parison between reference results and numerical values of the first ten natural frequencies obtained
by the present model, whereas in Fig.2 undamped vibration configurations are shown.
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Mode 3D ABQ CUF Mode 3D ABQ CUF

1 0.0795 0.0798 6 0.1837 0.1848
2 0.0795 0.0798 7 0.2083 0.2091
3 0.1519 0.1519 8 0.2185 0.2190
4 0.1837 0.1848 9 0.2185 0.2190
5 0.1837 0.1848 10 0.2484 0.2489

Table 1: Thick hollow sphere: Natural frequencies [Hz]

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 2: Thick hollow sphere: snapshots of normal modes of vibration.
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Summary 

Fluid structure interaction (FSI) phenomena are of interest for several engineering fields as well 
as in medical science and in bioengineering or biomechanics. One can find countless examples 
of FSI problems in engineering, e.g. flutter of airplane wings, galloping in powerlines and 
bridge cables, supersonic panel flutter, pipes flutter, fully or partially filled tanks, heat 
exchangers.  In the field of Medical Sciences an important example is the human aorta, where 
the fluid is highly viscous and non-Newtonian and the artery wall is hyper-elastic, this is a 
combination of exceptionally difficult problems. 
In order to have a comprehensive description of fluid structure interaction phenomena, models 
and applications, the reader is suggested to read the monumental work of Paidoussis [1], [1]; in 
such treatises the main fluid-interaction models are described as well as methods of analysis. 
Another interesting paper to be mentioned is a review published in 2003 by Amabili and 
Païdoussis [3], where more than 300 papers on the topic of nonlinear vibrations of shells with or 
without FSI were listed; among the deep and interesting comments on the literature the authors 
pointed out the attention on two aspects, we report their full sentences: “only 23 of the more 
than 350 papers discussed in the present review give experimental data on large-amplitude 
vibrations of complete shells”, “most of the papers reviewed are dedicated to various theoretical 
aspects of the problem, with very few experimental results, although more experimental data are 
available for supersonic flutter of shells”. 
In 2012 Girchenko et al studied numerically the interaction of a nonlinear viscous fluid, having 
a pseudoplastic nature, with a helical shell. They combined two commercial software 
FlowVision (finite volumes) and Simulia ABAQUS (finite elements). They showed the 
differences between Newtonian and Non-Newtonian flows in terms of stresses caused on the 
helical structure. Another study regarding FSI and non-Newtonian fluid was focused on arterial 
bypass [4], the effects of wall elasticity and non Newtonian rheology were investigated 
numerically through the commercial software ANSYS. 
An experimental study on the rheology and processing of solvent-free core shell “polymer 
opals”, see Ref. [5], analyzed an elastic shell grafted to hard colloidal polymer core particles in 
order to study the optical properties under deformation. 
In 2019 Wu et al. [6] presented a numerical study on interaction between elastic multilayered 
spheres and a non-Newtonian fluid. They analyzed gold nanospheres immersed in water and 
calculated theoretically the natural frequencies and the quality factors. 
The bibliographic analysis clearly shows that, even though a huge number of publications can 
be found about FSI problems, and many papers are available about non-Newtonian fluids, the 
interactions between vibrating structures and non-Newtonian fluids appear to be an almost 
unexplored field. 
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This paper presents the results of an extensive experimental campaign focused on the analysis of 
the dynamic interactions between an elastic structure and a non-Newtonian fluid. The structure 
is a circular cylindrical shell clamped at one end to a shaking table and at the other end to a 
heavy rigid disc. The shell has been investigated both in presence and absence of fluid. The 
fluid is a mixture of water and corn starch flour, commonly called Oobleck. The experiments 
were carried out at low and high vibration energy, in order to clarify the influence of the fluid in 
different conditions: changing of modal properties, onset of complex dynamics when the fluid-
solid transitions take place in the fluid. 
 
Experimental setup and specimen definition 
The system is a polyethylene terephthalate (PET) shell, vertically placed, wedged in an 
aluminum base rigidly connected to the shaker at the bottom, and constrained at the top by a C-
40 steel disc, which is called top mass.  
The internal face of the shell was fixed to the external face of both the top mass and the 
basement by means of an instant cyano-acrylic glue. In addition, the lower end of the shell was 
secured to the basement via an aluminum ring, lying on the basement and tightened to it with 
screws. This ring was inserted to guarantee the interlocking constraint. In this setup, the lower 
end of the shell is rigidly connected to the shaker, since the basement is anchored to the shaker 
horizontal plate with screws; conversely, the top mass induces a rigid body motion at the upper 
end of the shell, preventing this end a free deformation. 
 

 

Figure 1 – a) Setup: (1) shaker, (2) shell, (3) measurement accelerometers, (4) telemeter and (5) 
control accelerometer on the shaker plate. b) Overall experimental setup. 

 

Nonlinear dynamic scenario 
Experiments are now carried out considering an empty and a fluid filled shell. The shell is now 
excited from the base, the excitation signal provided to the amplifier is harmonic with different 
amplitudes (0.01-0.08V) and frequencies (150-310Hz for the empty shell and 150-270Hz for the 
fluid filled shell).  
Figure 2 shows a bifurcation diagram obtained from Poincaré sections obtained by using a 
single signal (lateral displacement). The dynamic scenario is extremely rich, we observed 
different sub-harmonic responses: ½, 1/3, ¼, 1/8 as well as quasiperiodic and chaotic dynamics 
in a very wide frequency range. For the sake of brevity bifurcation diagrams obtained by the 
other signals (accelerometers, Laser Doppler) and by changing the excitation levels are not 
reported. 
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Figure 2: Bifurcation diagram of Poincaré maps: excitation 0.06V, downward frequency sweep. 

Conclusions 

In this paper an extensive experimental champaign, focused on the analysis of the dynamic 
interactions between an elastic structure and a non-Newtonian fluid, is presented. When tests are 
carried out at high excitation intensity and close to the resonance conditions of the shell, the 
high amplitudes of vibration induced in the structure cause strong waves propagation in the fluid 
and the onset of complex dynamics when the fluid-solid transitions take place. The analysis of 
the dynamic scenario reveals an exceptional complexity with alternance of harmonic, sub-
harmonic, quasiperiodic and chaotic responses. 
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 4 

Nonlinear dynamic scenario 
Experiments are now carried out considering an empty and a fluid filled shell. The shell is now 
excited from the base, the excitation signal provided to the amplifier is harmonic with different 
amplitudes (0.01-0.08V) and frequencies (150-310Hz for the empty shell and 150-270Hz for the 
fluid filled shell).  
Figure 4 shows a bifurcation diagram obtained from Poincaré sections obtained by using a single 
signal (lateral displacement). The dynamic scenario is extremely rich, we observed different sub-
harmonic responses: ½, 1/3, ¼, 1/8 as well as quasiperiodic and chaotic dynamics in a very wide 
frequency range. For the sake of brevity bifurcation diagrams obtained by the other signals 
(accelerometers, Laser Doppler) and by changing the excitation levels are not reported for the sake 
of brevity. 

 
Figure 4: Bifurcation diagram of Poincaré maps: excitation level 0.06V, downward frequency 
sweep. 
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Summary 

Dynamic analysis of parametrically excited rotors is a research field of great interest and practical 

importance, since instability and resonant behavior can cause issues ranging from anomalous noise and 

wear to catastrophic failures.  

An overview is presented of some advances recently proposed by the authors on the dynamic analysis of 

parametrically excited continuous rotor systems, including results regarding stability analysis (parametric 

resonances) and preliminary insights into resonant behavior in the asymptotically stable domain, due to 

unbalance (external resonances). 

An axisymmetric shaft described by a spinning Timoshenko beam is studied, loaded by oscillating axial end 

thrust and twisting moment, carrying additional inertial elements like discs. Both isotropic and anisotropic 

supports are considered, as well as gyroscopic effects and different kinds of damping distributions (both 

external and internal), which represents a model including all the general features of slender rotors which are 

relevant for their dynamic analysis.  

Stability is studied after discretization of the equations of motion into a set of coupled ordinary differential 

Mathieu-Hill equations. Stability maps in the form of Ince-Strutt diagrams are discussed to highlight the 

occurrence of simple and combination critical solutions [1], as well as the influence of angular speed, 

damping, and anisotropy in the supports. 

Steady-state response is studied in the asymptotically stable domain under the effect of unbalance, 

yielding an additional external harmonic load, acting on flexural deflection [2]. As a first insight into this 

problem, to study the effects of angular speed independently to variations of natural frequencies and to 

facilitate decoupling of the equations of motion, the Timoshenko model is simplified into the Euler-

Bernoulli model, neglecting the gyroscopic effects, additional discs, anisotropy in the supports and twisting 

moment at the ends of the shaft. 

Stability analysis 

Regarding parametric resonances, it has been found that, through gyroscopic actions, the angular speed 

induces on isotropic rotors peculiar interactions between pairs of closely separated modes, affecting the 

stability thresholds. This ‘splitting’ of otherwise coincident eigenfrequencies can be determined in any case 

by the angular speed itself, yielding forward and backward modal pairs, and also by the additional presence 

of anisotropy in the supports [2]. On the contrary, well separated flexural modes do not interact in determ- 

ining the stability thresholds, at least for relatively low amplitudes of parametric excitation. Gyroscopic 

actions generate combination critical solutions [3] (in general, represented by non-periodic functions of 

time), instead of simple critical solutions (represented by periodic functions of time). 

In the presence of principal stiffness anisotropy in the supports, increasing the angular speed has the effect 

of getting the stability thresholds progressively closer to those computed in isotropic conditions. On the 

other hand, in the presence of principal damping anisotropy in the supports, raising the angular speed has a 

moderate stabilizing effect, whilst an increasing part of the stability threshold results by combination 

critical solutions, both effects due to gyroscopic actions [4]. This can be seen in Fig. 1, diplaying stability 

maps computed in an example-case, where  is the frequency parameter and  is the (parametric) axial 

force amplitude parameter (both normalized and defined following the conventional representation of 

Ince-Strutt diagrams [3]). In particular, Fig. 1a shows the growth of combination Arnold tongues (labelled 

C) due to increasing angular speed, in the presence of stiffness anisotropy in the supports, while Fig. 1b 
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shows the progressive conversion of stability thresholds into combination critical solutions (labelled C), 

due to increasing angular speed and damping anisotropy in the supports. 

With respect to internal damping, the counteracting effects due to angular speed and principal stiffness 

anisotropy in the supports have opposite directions: raising the angular speed is destabilizing, while 

increasing the stiffness anisotropy is stabilizing. More in detail, while external damping affects mainly the 

tips of unstable tongues (producing smoothing and contractions, with stabilizing effects), internal damping 

acts significantly on their lateral borders (producing ‘merging’ of unstable tongues, as can be seen in Fig. 2a 

with destabilizing effects induced by angular speed [3]). Stiffness anisotropy in the supports counteracts 

the ‘merging’ between adjacent combination tongues due to internal damping, playing a stabilizing role 

on the parametrically excited system [4]. This can be noticed in Fig. 2b, where the straight line represent- 

ing the stability threshold would get closer and closer to the  = 0 axis by reducing the degree of stiffness 

anisotropy in the supports, until it would coincide with the  = 0 axis in case of pure isotropy. 

(a) (b)

 

Figure 1. Stability maps in presence of anisotropy in the supports: (a) effect of stiffness anisotropy at 116.8 rpm 

(subcritical; T = single period tongue; 2T = double period tongue; C = combination tongue; A = unstable region with 

2 real multipliers out of the unit circle, in opposite directions; B = unstable region with 2 multipliers out of the unit 

circle, in the same half-plane); (b) effect of damping anisotropy at 155.84 rpm S = unstable sub-region with 1 real 

multiplier out of the unit circle; B = unstable sub-region with 2 real multipliers out of the unit circle, in the same 

direction; C = unstable combination sub-region with 2 complex-conjugate multipliers out of the unit circle). 

(b)(a)

T

T
2T

2T

2T

2T

 

Figure 2. Example of stability map showing the effect of stiffness anisotropy in the supports at 3896 rpm (subcritical) 

in the presence of distributed internal damping along the shaft: (a) residual single-period T and double-period 2T 

tongues; (b) stability threshold obtained at 3896 rpm superimposed to the one (black line) obtained at 6818.8 rpm (first 

forward critical speed of the rotor). 

Steady-state response of the non-homogeneous asymptotically stable system 

Regarding the steady-state response of the system to unbalance, it has been studied after decoupling of the 
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equations of motion, reducing the problem to the analysis of a non-homogeneous single-degree-of-freedom 

damped Mathieu equation, and cast in dimensionless form. This allows the study of the modal frequency 

response in terms of four governing parameters: normalized frequency of the unbalance excitation (depend- 

ing on the angular speed of the rotor), normalized frequency of the parametric excitation, normalized modal 

amplitude of the parametric excitation, and modal damping factor. 

It has been found that the steady-state response of the asymptotically stable system is aperiodic unless the 

parametric excitation frequency and the unbalance frequency are commensurate [5]. The relative amplitudes 

of the frequency components of the response are determined directly by the governing parameters, and by 

the characteristic exponents of the parametrically excited system. An approximated analytical expression 

has been derived, yielding the infinite sequence of resonances generated on each modal coordinate by the 

combination of parametric and external excitation frequencies.  

Of particular importance is the result that in presence of parametric excitation, resonances can occur at 

lower frequencies than the related natural frequency, as it can be noticed in Fig. 3. Hence, in a parametric- 

ally excited (stable) rotor, the first flexural critical speed can occur at a lower value than in the non-

parametrically excited system.  

The amplitudes of the frequency responses in resonance conditions are strongly dependent on both 

external damping and parametric excitation (frequency and amplitude). Therefore, a correlation is found 

between resonances and working points on the Ince-Strutt diagrams, as shown in Fig. 3. 

(a) (b)

ε

δ



 

Figure 3. Effects of unbalance: (a) Ince-Strutt diagram for the modal Mathieu equation (black dot: selected 

parameters for computing the steady-state response due to unbalance for figure b); (b) amplitude of modal flexural 

displacement, as a function of the ratio ( )  between angular speed and modal natural frequency. Notice the presence 

of a large resonance peak at a normalized frequency of about 0.9. 
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Introduction

A flexible rod, partially sliding in a rigid sleeve (channel) may exhibit complicated vibration sce-
narios in its free part, whose material length is varying over time; see the discussion of the "flying
spaghetti problem" in [1]. Recently, the role of configurational forces in the dynamics of such
structures has been investigated by the authors of [2, 3] on the example of a "dancing rod problem".
One considers a flexible rod, partially injected into an inclined sleeve in the field of gravity. Let-
ting the rod fall and slide into the sleeve, we also initiate vibrations in its free part. The frequency
of vibrations grows with axial motion as the free part is getting shorter, which in the absence of
damping results into a resistance force at the tip of the sleeve. Under the action of this configura-
tional force, the injection eventually changes to ejection, such that the rod may even completely
fly out of the sleeve. In the present talk, we discuss a simple mathematical model, which allows
for the efficient finite element analysis of the dynamics of the dancing rod. At small vibrations
we present a semi-analytical solution in form of a system of two nonlinear differential equations,
which may easily be integrated numerically and allow obtaining some of the characteristics of the
dynamic process in a closed form.

Mathematical model

The mechanical system under consideration is depicted in Figure 1. A flexible, shear under-
formable and inextensible rod of the length l is moving in the plane x,y, being partially injected
in the rigid sleeve. We assume frictionless contact between the rod and the sleeve, and the gap
within the sleeve is very close to the thickness of the rod: the injected part remains straight and
may move along the x axis. The angle between the sleeve and the vertical direction is α , such
that a rigid rod would just slide into the sleeve with acceleration. A flexible rod, however, would
develop oscillations, which prevent it from falling completely into the sleeve.

We denote the material length of the free part of the rod as η(t), and the length of the part in
the sleeve is l −η . Furthermore, we parametrize the free part of the rod by a dimensionless non-

η

l-η
σ x

y

g
α

Figure 1: Flexible rod, partially sliding in a sleeve and partially moving free in the field of gravity.
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material coordinate σ with σ = 0 corresponding to the material particle presently at the tip of the
sleeve and σ = 1 corresponding to the free end. Introducing a material coordinate s varying from
s = 0 to s = l from left to right, for a material particle in the free segment we find a linear mapping

s = l −η +ησ , σ = 1− (l − s)/η . (1)

The total time derivative of the material coordinate vanishes: ṡ = 0, from which we obtain the total
time derivative of the normalized coordinate in a material particle:

σ̇ =
(l − s)η̇

η2 =
(1−σ)η̇

η
. (2)

As mentioned earlier, we parametrize the position vector of a particle of the free part of the rod

x(σ , t) = x(σ , t)ex + y(σ , t)ey (3)

as a function of the normalized coordinate and time. The equations of structural mechanics re-
quire the first and the second order derivatives of the position vector with respect to the material
coordinate, namely

∂sx = ∂σ x∂sσ =
1
η

∂σ x, ∂
2
s x =

1
η2 ∂

2
σ x. (4)

For the transient analysis we also need the material velocity of a particle

ẋ = ∂tx|s=const = ∂tx|σ=const + σ̇ ∂σ x. (5)

Introducing further a C1 continuous global Ritz or finite element approximation for x as function
of σ , we obtain the strain energy of bending of the rod U (possibly with a penalty term for the
inextensibility constraint), the kinetic energy of both parts of the rod T and the potential energy
in the field of gravity W as functions of the generalized degrees of freedom q and their time
derivatives. For a cubic finite element approximation, q comprises the nodal position vectors xi,
nodal derivatives (∂σ x)i and the additional unknown η . The boundary conditions at the tip of the
sleeve read

x(0, t) = y(0, t) = 0, ∂σ y(0, t) = 0. (6)

The dynamics of small and large vibrations of the rod coupled with the axial motion η(t) is gov-
erned by Lagrange’s equations of motion of the 2nd kind. Such a non-material analysis scheme
for axially moving structures is in line with the mixed Eulerian-Lagrangian simulation framework,
previously used in [4, 5], see also review article [6]. It is interesting to note, that the configura-
tional force, which acts against the injection being work conjugate to η , is related to the release
rate of potential energy and is proportional to the curvature of the rod at the tip of the sleeve. In
the sense of Newtonian mechanics, this force appears as the longitudinal component of the contact
force at the tip of the sleeve because of the small but inevitable inclination of the rod: the gap of
the sleeve must be slightly larger than the thickness of the rod, see again Figure 1.

Semi-analytical solution and comparison

When the vibration amplitude is small, it makes sense to use linear beam theory for the free part
and just a single term in the Ritz approximation. The position vector is sought in the form

x(σ , t) = ση(t)ex + γ(t)w(σ)ey. (7)

The shape function w(σ) corresponds to the first vibration mode of a cantilever beam with w(1) =
1, such that the generalized coordinate γ is the transverse deflection of the tip of the beam. The
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Figure 2: Computed transient dynamics for FE and 2 d.o.f. models.

axial motion of each particle is governed by the second generalized coordinate η . Integrating over
0 ≤ s ≤ l, we obtain the energy expressions

U = akU γ
2/η

3, W = ρg(l(l −2η)cosα −2kW γη sinα)/2,
T = ρ(ηγ̇2 + γγ̇η̇ +4(2kT γ2 + lη)η̇2/η)/8

(8)

with a being the bending stiffness, ρ the mass density per unit length, g the free fall acceleration
and three numerical coefficients following after the integration: kU = 1.5453, kT = 0.094385,
kW = 0.39150. The two nonlinear differential equations of motion are difficult to approach by
analytical methods, but they can easily be integrated numerically. We consider the rod of the length
l = 1, thickness h = 2 ·10−3, Young’s modulus E = 2 ·1011 and volumetric density ρ3 = 7800 (SI
units). The gravity force acts in the diagonal direction: g = 9.8, α = π/4. We compare the
simulation results to the converged finite element solution in Figure 2. One observes alternating
injection and ejection of the rod with rapid changes in the vibration frequency ω . The coefficients
at γ2 in U and at γ̇2 in T in Equation (8) provide an estimate ω = 2

√
2akU/ρ/η2, which matches

very good with the observations from numerical experiments.
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The nonlinear vibrations of large amplitudes of elastic beams are frequently 

encountered as the elastica problem, with complications in various applications. As the 

continuation of the analysis of the large deformation of an elastica, the nonlinear 

vibration equation of a cantilever beam in the rotation angle of the cross-section is 

utilized for approximate solutions. Using the linear solutions, the nonlinear equation 

with the inertia effect and couplings of higher-order vibration modes have been solved 

with the newly suggested extended Galerkin method (EGM). The solutions to the 

vibration problem of an elastic cantilever beam are compared with the exact solutions 

known in elliptic functions, including frequencies and mode shapes of the first three 

modes, with good agreement. The results also proved that the nonlinear vibration modes 

are close to the linear ones. And the mode identification can be done effectively with 

both kinetic and strain energy proportions calculated from vibration solutions. This is a 

perfect combination of the EGM for solutions of nonlinear vibrations and the utilization 

of energy proportion for the identification of coupled vibration modes.   

The cantilever beam is shown in Figure 1, with 𝐿  as the length, 𝐸𝐼  as the flexural 

stiffness, 𝜉  as the tangential coordinate, 𝑠 as the arc length, and 𝑚 as the unit mass, 

respectively. The nonlinear free vibration equation and boundary conditions of a 

cantilever beam in the rotation angle of a cross-section from the beam equation [1] is 

𝜕2

𝜕𝑠2
[𝐸𝐼

𝜕𝜃(𝑠, 𝑡)

𝜕𝑠
] + 𝑚𝑤̈(𝑥, 𝑡) = 0, sin 𝜃 =

𝑑𝑤

𝑑𝑠
, 

𝜃(0, 𝑡) = 0,  𝜃′(1, 𝑡) = 0,  𝜃′′(1, 𝑡) = 0 (1) 

 
Figure 1. The cantilever beam model. 

To this problem, the trial solution is taken from linear solutions as [2] 

𝜃(𝜉, 𝑡) = ∑ 𝐴𝑖𝜑𝑖(𝜉) cos 𝜔𝑖𝑡

𝑁

𝑖=1

, 𝜉 =
𝑠

𝐿
 

𝜑𝑖(𝜉) = 𝐶1 cos 𝜆𝑖𝜉 + 𝐶2 sin 𝜆𝑖𝜉 + 𝐶3 cosh 𝜆𝑖𝜉 + 𝐶4 sinh 𝜆𝑖𝜉 (2) 

where 𝐴𝑖  are undetermined amplitudes, 𝜔𝑖  is the ith-order frequency,  𝜆𝑖  are the 

characteristic values from the mode shape solutions of the linear Euler-Bernoulli beam 
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equation [2], and 𝐶𝑗(𝑗 = 1,2,3,4) are obtained from linear vibrations with boundary 

conditions in Eq. (1) and incorporated into 𝐴𝑖 as unknowns. Differentiating Eq. (1) with 

respect to 𝜉 , followed by a series expansion, then applying the EGM [3] with the 

solution in Eq. (2), one obtains 

∫ ∫ {𝛼
𝑑4𝜃

𝑑𝜉4
+ [𝜃̈ (1 −

𝜃2

2
) − 𝜃̇2𝜃]}

1

0

2𝜋
𝜔

0

𝛿𝜃𝑑𝜉𝑑𝑡 = 0,  𝛼 =
𝐸𝐼

𝑚𝐿4
(3) 

with 𝜔 as the vibration frequency and 𝛿𝜃  as the variation of rotation in Eq. (2). The 

initial condition in Eq. (2) is 

𝜃(1, 𝑡 = 0) = 𝐴 

Since there are 𝑁 components of parameters of vibrations from Eq. (2), the integration 

in Eq. (3) is performed separately as 

𝑁𝑖(𝐴1, 𝐴2, ⋯ , 𝐴𝑁 , 𝜆1, 𝜆2, ⋯ , 𝜆𝑁 , 𝜔1, 𝜔2, … , 𝜔𝑁 , 𝛼; 𝜆𝑖, 𝜔𝑖)

= ∫ ∫ {𝛼
𝑑4𝜃

𝑑𝜉4
+ [𝜃̈ (1 −

𝜃2

2
) − 𝜃̇2𝜃]}

1

0

2𝜋
𝜔𝑖

0

𝜑𝑖cos𝜔𝑖𝑡𝑑𝜉𝑑𝑡 

𝑁1(𝐴1, 𝐴2, ⋯ , 𝐴𝑁 , 𝜆1, 𝜆2, ⋯ , 𝜆𝑁 , 𝜔1, 𝜔2, … , 𝜔𝑁, 𝛼; 𝜆1, 𝜔1) = 0 

𝑁2(𝐴1, 𝐴2, ⋯ , 𝐴𝑁 , 𝜆1, 𝜆2, ⋯ , 𝜆𝑁 , 𝜔1, 𝜔2, … , 𝜔𝑁, 𝛼; 𝜆2, 𝜔2) = 0 

⋮ 
𝑁𝑁(𝐴1, 𝐴2, ⋯ , 𝐴𝑁 , 𝜆1, 𝜆2, ⋯ , 𝜆𝑁 , 𝜔1, 𝜔2, … , 𝜔𝑁 , 𝛼; 𝜆𝑁 , 𝜔𝑁) = 0 

𝐴1 + 𝐴2 + ⋯ + 𝐴𝑁 = 𝐴                                                                      (4) 

The frequency solutions in Table 1 are from the following iterative procedure 

1. Assuming the 𝐴𝑗
𝑘 = 0 with 𝑗 ≥ 1 and 𝑘 > 1 in equation 𝑁𝑗 in Eq. (4) for the 

approximate solutions (𝜔𝑗 , 𝐴) with known (𝜔𝑖, 𝐴) for 𝑖 ≤ 𝑗. 

2. Substituting known (𝜔𝑖, 𝐴𝑖), 𝑖 = 1, 2, ⋯ , 𝑘 pairs with 𝐴𝑘+1 = 𝐴 − ∑ 𝐴𝑖
𝑁
𝑖=1 , 𝑘 ≥

1 into 𝑁𝑘+1 equations in Eq. (4) and obtain (𝜔𝑖, 𝐴𝑖), 𝑖 = 𝑘 + 1, ⋯ , 𝑁  in A. 

Table 1. The frequencies of a cantilever beam with different amplitudes 

For the examination of energy distribution in the vibrations of a beam, with the neglect 

of coupled terms, the strain energy 𝑈 and kinetic energy 𝑇 of the ith-mode are [5] 

𝑈 = ∫ ∑ ∫
𝐸𝐼𝐴𝑖

2

2
[
𝜕2𝜑𝑖(𝜉, 𝑡)

𝜕𝜉2
cos 𝜔𝑖𝑡]

2

𝑑𝜉𝑑𝑡
1

0

𝑁

𝑖=1

2𝜋
𝜔𝑖

0

, 𝑇 = ∫ ∑ ∫
𝑚𝐴𝑖

2

2
[𝜔𝑖𝜑𝑖(𝜉, 𝑡) cos 𝜔𝑖𝑡]2

1

0

𝑑𝜉𝑑𝑡

𝑁

𝑖=1

2𝜋
𝜔𝑖

0

(5) 

In the calculation, the modal functions of linear vibrations have been used as an 

approximate solution of the governing equation in Eq. (4) to calculate the higher-order 

Amplitude Parameters  

Nonlinear 

𝜔1 (
rad

s
) 

Lian et 

al. [4] 

 

Nonlinear 

𝜔2(
rad

s
) 

Lian et al. 

[4] 

 

Nonlinear 

𝜔3(
rad

s
) 

Lian et al. 

[4] 𝐴(m) 
𝐸𝐼

𝑚𝐿4 
(

N

kg ∙ m2
) 

0.001 5000 248.6188 248.5929 1558.0799 1558.103 4362.7002 4362.921 

0.001 10000 351.6000 351.5634 2203.4577 2203.363 6169.7898 6170.103 

0.001 20000 497.2375 497.1858 3116.1597 3116.011 8725.4004 8725.842 

0.4 5000 250.6767 248.6345 1580.3624 1558.537 4515.6503 4362.011 

0.4 10000 354.5103 351.6223 2234.9700 2204.104 6386.0938 6168.816 

0.4 20000 501.3533 497.2691 3160.7246 3117.075 9031.3005 8724.023 

0.6 5000 253.3224 250.9881 1609.4097 1588.287 4702.7158 4352.588 

0.6 10000 358.2520 354.9508 2276.0490 2246.177 6650.6445 6155.489 

0.6 20000 506.6448 501.9762 3218.8193 3176.572 9405.4316 8705.177 
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frequency solutions by the EGM. Then Eq. (4) can be used again to find amplitudes 

𝐴1, 𝐴2, 𝐴3 of each mode with known frequencies, thus enabling the evaluation of all 

modes.  From Eq. (5), the maximum energies of the ith-mode in Tables 2 and 3 are 

𝑉𝜑𝑖
= ∫

1

2
𝐸𝐼(𝐴𝑖𝜑𝑖

′′)2
1

0

𝑑𝜉, 𝑇𝜑𝑖
= ∫

1

2
𝑚(𝜔𝑖𝐴𝑖𝜑𝑖)

2
1

0

𝑑𝜉 (6) 

Table 2. Energies of each mode at the second-order frequency 

Amplitude 1st strain energy 1st kinetic energy 2nd strain energy 2nd kinetic energy 

𝐴(m) 𝑉𝜑1
(J) 𝑇𝜑1

(J) 𝑉𝜑2
(J) 𝑇𝜑2

(J) 

0.001 0.0371 0.0371 0.1549 0.1549 

0.1 390.8243 391.2195 1369.0733 1371.4869 

0.2 1561.1209 1567.5094 5495.7299 5534.5863 

0.4 6214.0597 6317.2804 22256.1178 22897.3662 

0.6 13854.9499 14383.9816 51227.9150 54659.1255 

Table 3. Energies of each mode at the third-order vibration mode 

Amplitude 
1st strain 

energy 

1st kinetic 

energy 

2nd strain 

energy 

2nd kinetic 

energy 

3rd strain 

energy 

3rd kinetic 

energy 

𝐴(m) 𝑉𝜑1
(J) 𝑇𝜑1

(J) 𝑉𝜑2
(J) 𝑇𝜑2

(J) 𝑉𝜑3
(J) 𝑇𝜑3

(J) 

0.001 0.0485 0.0485 0.0172 0.0172 1.0747 1.0748 

0.1 493.7189 494.2181 91.7433 91.9050 8449.2710 8489.8943 

0.2 1918.9916 1926.8447 342.2683 344.6883 36122.7950 36802.3855 

0.4 6964.7350 7080.4250 1041.8344 1071.8520 176282.2250 188862.6647 

0.6 14610.3885 15168.2654 1818.4242 1940.2210 447113.6270 519532.0793 

Finally, with the known rotation of the cross-section 𝜃(𝜉, 𝑡), the beam deflection is  

𝑤(𝑥, 𝑡) = 𝐿 ∫ sin 𝜃 𝑑𝜉 
𝑥

0

= 𝐿 ∫ sin [∑ 𝐴𝑖𝜑𝑖(𝜉) cos 𝜔𝑖𝑡

𝑁

𝑖=1

] 𝑑𝜉 
𝑥

0

                    (7) 

The vibration modes are successfully identified with the largest energy proportions of 

coupled vibrations, thus providing an important technique for the refined analysis of 

nonlinear vibrations of structures. 
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Introduction

An exact fourth order differential equation governing the motion of a Timoshenko beam-column
on a uniformly distributed, bi-parametric foundation is presented in non-dimensional form. Two
related problems are then solved simply and efficiently. In the first of these, the governing differ-
ential equation is transformed into a standard quadratic equation that provides the core of a simple
procedure that yields the exact natural frequencies of the member for the simply supported case.
In the second problem, the same quadratic equation is used to solve the complementary problem
of predicting the number of simply supported natural frequencies of the member passed by any
given trial frequency.

Theory

An exact, fourth order differential equation governing the motion of an axially loaded Timoshenko
beam of length, L, that is supported on a bi-parametric, distributed foundation, whose lateral and
rotational restraining stiffnesses per unit length are ky and kθ , respectively, has been presented in
rigorous detail by Capron and Williams [1]. Since this paper adopts an identical sign convention
and almost identical notation, the required equation can be written in terms of the amplitude of the
sinusoidally varying lateral displacement V as

[D4 +2ϒAD2 −ϒB]V = 0 (1)

where D = d/dξ ,ξ = x/L is the non-dimensional length parameter and V is the amplitude of the
lateral displacement.

The equivalent equation for the simply supported case is easily achieved by assuming a general
solution of the form V = C sin iπξ , where C is an arbitrary constant, V satisfies the boundary
conditions and i defines the modal rank. It can then be written as

[δ 2
i −2ϒAδi −ϒB] = 0 (2)

where
ϒA = (∆− k∗1) ϒB = (qb2 − k∗2)/t δi = (iπ)2 i = 1,2, . . .∞ (3a,b,c)

∆ = [qp2 +b2(r2 + s2)]/2t q = 1−b2r2s2 t = 1− s2 p2 (4)

b2 = ρAL4
ω

2/EI p2 = PL2/EI r2 = I/AL2 s2 = EI/κAGL2 (5)

k∗1 = (s2k∗y + tk∗θ )/2t k∗2 = qk∗y − s2k∗θ (b
2 − k∗y) k∗y = kyL4/EI k∗θ = kθ L2/EI (6)

and A is the cross-sectional area, I is the second moment of area, E, G and ρ are Young’s modulus,
the modulus of rigidity and the density of the member material, respectively, κ is the section shape
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factor, ω is the radian frequency of vibration and P is the static axial load in the member, which is
positive for compression, zero, or negative for tension.

The non-dimensional parameters b2, p2, r2 and s2 uniquely define the effects of frequency, axial
load, rotary inertia and shear deformation, respectively, and together with the two non-dimensional
foundation parameters, can be ignored in any combination by setting the relevant parameter to
zero.

Substituting Eqs.(3)-(6) into Eq.(2) gives a quadratic frequency equation in the non-dimensional
frequency parameter, b2

i , that can be written as

b4
i r2s2 −{[r2(1− s2 p2)+ s2]δi +[1+ s2(r2k∗y + k∗θ )]}b2

i

+(1− s2 p2)δ 2
i − [p2 − s2k∗y − (1− s2 p2)k∗θ ]δi +(1+ s2k∗θ )k

∗
y = 0 i = 1,2, . . .∞

(7)

where (1− s2 p2) is always positive [1] and the subscript, i, has been added to b in order to denote
modal rank. Eq.(7) clearly offers a simple way of determining the required Timoshenko frequen-
cies explicitly and it is proven in the Appendix that the roots of this equation are always real and
distinct. Furthermore, the lower of the two roots in each pair, corresponds to what is often referred
to as the first spectrum of Timoshenko frequencies, while the upper root corresponds to the ‘so
called’ second spectrum. However, the complete spectrum of frequencies, with or without a foun-
dation, comprise all the bi’s from Eq.(7), plus the cut-off frequency [2], which corresponds to the
point discontinuity in the Timoshenko beam equation and additionally reduces ϒB to zero [2]. It
therefore occurs when

1−b2r2s2 + s2k∗θ = 0 so that b2
co = (1+ s2k∗θ )/r2s2 (8a,b)

The value of b2
co is clearly positive and, as in the case of no foundation [2], it retains its status as a

pure shear mode.

Consider now the complementary problem of establishing an efficient root counting procedure.
Once more the required solution stems from Eq.(2), but in a contrasting way. In the original
problem the unknown frequency parameters, b2, were calculated from a knowledge of δ , while
in the present case the unknown δ are calculated from a knowledge of the given trial frequency
parameters, b2. The traditional quadratic solution procedure can then be applied to Eq.(2) in the
usual way, to yield

δ = ϒA ±
√

ϒ2
A +ϒB (9)

or
Φ

2 = ϒA +
√

ϒ2
A +ϒB and Λ

2 = ϒA −
√

ϒ2
A +ϒB (10a,b)

where the modal subscripts have been dropped since the equations are no longer dealing primarily
with modal quantities. However, it is known that at modal values of the sought parameters, both
Φi and Λi = iπ , the former corresponding to the first spectrum frequencies and the latter to the
‘so called’ second spectrum frequencies. As before, the cut-off frequency must be accounted for
where appropriate. Thus, the number of simply supported frequencies passed by a given trial value
of the frequency parameter is given by

Jss = JΦ + JΛ + Jco (11)

where
JΦ = largest integer < Φ/π JΛ = largest integer < Λ/π (12)
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and
Jco = 1 if b2 > (1+ s2k∗θ )/r2s2 and zero otherwise (13)

Eq.(11) enables exact evaluation of Jss and hence provides the core component of a process that
could converge methodically upon any desired natural frequency. Its development is straightfor-
ward, easy to explain and simple to implement. It therefore provides a compelling alternative to
the corresponding process presented by Capron and Williams [1].

Finally, it is interesting to note that Eq.(10a) also offers the possibility of establishing the modal
rank of the cut-off frequency in the Timoshenko spectrum prior to any analysis being undertaken.
This can be achieved as follows, due to the fact that the cut-off frequency corresponds to ϒB = 0.
In such a case, Eq.(10a) can be written as

(iπ)2 = 2ϒA (14)

Substituting Eqs.(3a) and (8b) into Eq.(14) and noting that the cut-off frequency corresponds to
the first value of Φ that is not an integer multiple of π , the required modal rank is given by

the smallest integer > {[r2 + s2 + s4(k∗θ − r2k∗y)]/(1− s2 p2)r2s2
π

2}1/2 (15)

The term (k∗
θ
− r2k∗y) influences the modal rank in an important way for the following reason.

From Eq.(8b) it can be seen that the cut-off frequency is dependent upon the rotational foundation
stiffness, but not the lateral foundation stiffness. However, if the lateral foundation stiffness is
increased, all frequencies will increase, except the cut-off frequency, whose modal rank might or
might not be required to decrease.
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Appendix

It can be shown straightforwardly that the discriminant of Eq.(7), Ω, can be written as

Ω = δ
2
i [r

4(1− s2 p2)2 −2r2s2(1− s2 p2)+ s4]

+2δi[r2(1− s2 p2)+ s2 + r2s2(1− s2 p2)(r2k∗y − k∗θ )+ s4(k∗θ − r2k∗y)]

+ [1+2s2(k∗θ − r2k∗y)+ s4(r4k∗2
y −2r2k∗yk∗θ + k∗2

θ )]

(A.1)

However, it can also be shown that

Ω = {[r2(1− s2 p2)− s2]δi − [1− s2(r2k∗y − k∗θ )]}2 +4r2
δi (A.2)

where
4r2

δi = 4r2
δi(1− s2 p2)+4p2r2s2

δi (A.3)

Eq.(A.2) clearly demonstrates that Ω is always positive, while its expansion shows exact corre-
spondence to the terms of Eq.(A.1), with the self-evident result that Eq.(A.1) is always positive.
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Summary 

An accurate and efficient substructure method (SM) is developed and presented in this paper for 

free transverse vibration of Mindlin plates of any shape, made of isotropic, orthotropic and 

anisotropic materials, and subjected to any type of constraint on any edge and at any corner.  

 

Background.  Exact or accurate analytical methods are known to be superior to the finite element 

method in accuracy and efficiency for simple structural dynamics problems. However, analytical 

methods usually lack generality and are limited to some specific problems. The finite element 

method, on the other hand, is general, but lacks efficiency. The substructure method, proposed by 

the author, is as general as the FEM and also as efficient and accurate as the analytical methods.  

 

Governing Equations. According to Mindlin’s improved plate theory or IPT for flexural 

vibration [1], a straight line normal to the plate midplane in the undeformed state remains straight 

after deformations.  However, this displaced line is not normal to the deformed midplane due to 

the transverse shear effect. Motion of this line can be regarded as the superposition of the 

translational motion in the thickness or z direction and the rotation about its intercepting point 

with the midplane.  At time t , the displacements of material point at (x,y,z) are determined by 

three field variables uz(x,y,t), x(x,y,t), and y(x,y,t), which are the transverse displacement of the 

midplane and the two angles of rotation about the x and y- axes, respectively.  With the IPT, the 

transverse displacement is invariant with coordinate z; the inplane displacments ux and uy vary 

linearly with coordinate z.  There are five non-zero strains.  The two transverse shear strains zx  

and zy are invariant in the thickness diretion.  The three inplane strains xx ,yy and xy vary lineary 

with coordinate z.  As a result, the volume integrals associated with the kinetic and strain energies 

are reduced to area integrals over the plate midplane. 

  

Geometric Mapping.  A plate whose mid-plane occupies a closed 2D domain and has no more 

than four singularity points or corners can be modelled as a Q-substructure or a T-substructure. 

Plates of geometries excluding triangular plates of straight edges can be modelled as Q-

substructures.  In this paper, only the Q-substructures are dealt with. For a Q-substructure, every 

point in the midplane can be mapped uniquely into a corresponding point in a square using the 

boundary control points and matching orders of bivariate polynomials. The following equations 

map a point in a Q-substructure domain in the Cartesian coordinates (x,y) into a corresponding 

point  in the parent square in the non-dimensional coordinates (,)  

  

             yDSyxDSx GQGQGQGQ  ,,, ; 11,11   (1) 
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where   GQS ,  is a bivariate 

polynomial shape function 

array;   GQD  is the relationhsip 

matrix required to transform the 

coefficients associated with 

bivariate polynomial terms into 

the coordinates of control 

points;  x  and  y  are the 

coordinates of the boundary 

control points. For a 

quadrilateral plate, the 

geometric mapping is done 

through the use of four corner 

control points and order-1 

bivariate polynomials.  The 

shape array, the relationship 

matrix and the coordinate arrays 

are given below for reference  

     1, GQS  

 

  
  
  
   

























































1111

1111

1111

1111

4

1

,

,

,

,
1

44

33

22

11

GQ

GQ

GQ

GQ

GQ

S

S

S

S

D ,    





















































85.0

75.1

0

0

,

5.0

2.1

5.1

0

yx  
(2) 

Figure 1 shows the mapping of 14 lines defined by ,1,3/2,3/1,0,  in the parent square 

into the corresponding lines in the quadrilateral plate domain.  

 

Spatial variations of field variables. For a Q-substructure, at time t , the three 2D field variables 

may be defined in terms of a hybrid bivariate shape function array   VQS ,  , the relationship 

matrix  VQD  and the nodal variable arrays   tuz ,   tx  and   ty  as  

                       tDStDStuDSu yVQVQyxVQVQxzVQVQz  ,,,,,  (3) 

In this paper, the following generic hybrid shape function array is proposed to capture the spatial 

variations of all 2D field variables for an nm  grid  

         m

T

nVQ HHS ˆROW,  (4) 

    )()()(1 21
32  mm cccH   (5)  

    )(ˆ)(ˆ)(ˆ1ˆ
21

32  nn cccH   (6) 

 







 





42

1
cos)(

k
sck ,

 







 





42

1
cos)(ˆ

k
sck  (7) 

 

Formulation of eigenvalue problem. For plates made of linearly elastic material, isotropic, 

orthotropic or generally anisotropic, a set of standard linear eigenvalue problem may be 

formulated using Hamilton’s principle and solved using an eigen-solver.  

 Figure 1.  Geometric mapping of a quadrilateral plate into a square.  
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Numerical Results. Numerical results 

are obtained using the proposed 

approach, the finite element method 

and the exact Navier method for a 

simply supported rectangular isotropic 

plate of aspect ratio 1.25. For an 

objective comparison, the substructure 

and FE models contain 121 nodes. In 

transverse vibration analysis, the 

lateral displacement is the dominating 

field variable. Both SM and FEM 

models can only yield a maximum of 

81 bending modes because the 

transverse displacements at the 40 

boundary nodes are eliminated in the 

eigenanalysis. Percentage errors in natural frequencies are plotted for the first 26 modes in Figure 

2. It can be seen that the natural frequencies predicted by the SM have negligibly small errors 

while the FEM results are noticeably inaccurate even for the low vibration modes.  In the second 

case, a completely free isotropic circular plate of thickness ratio of 1.0/ rh and a Poisson ratio 

of 0.3 are obtained using the SM method and compared with those of Irie et al. [2] in Table 1.  

The corresponding modal contours are plotted in Figure 3.  

 

Table 1. Eigenvalues of a Completely Free 

            Isotropic Circular Plate 

Elastic 

Modes 
SM (5,5)-(9,9)* Irie et al. (1980) 

1, 2 5.278, 5.279 5.278 (2,0)** 

3 8.868 8.868 (0,1) 

 4,5 12.067, 12.067 12.064 (3,0) 

6,7 19.712,19.712 19.711 (1,1) 

8,9 20.807,20.812 20.801 (4,0) 

10,11 31.285,31.285 31.270 (5,0) 

12,13 33.035,33.043 33.033 (2,1) 

*(5,5) refer to the material mapping scheme; (9,9) 

refer to the variable meshing scheme.          

**The numbers in parenthesis are the number of 

waves in the circumferential and radial directions. 
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Figure 2. Comparison of computed eigenvalues.  

 Figure 3. Modal contours of a circular plate. 
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Introduction 

Functionally Graded Materials (FGMs) are modern materials that are widely used in many industries: aircraft 
and rocket building, shipbuilding, for the manufacture of nuclear reactors, automotive engineering, etc. The 
intensive use of functionally graded materials has led to the need for a thorough study of their behavior during 
operation, considering such characteristics as porosity, elastic foundation, varying thickness of plate or shell. 
In this regard, many scientists have devoted their research both to theoretical developments related to the 
construction of mathematical models [1-4] and to the implementation of experimental work [5, 6].  
It can be noted, that in the manufacturing process porosities may arise in functionally graded structures. So, 
many researchers considered the influence of porosity while they were investigating mechanical, thermal, and 
other characteristics of FGM structures. Kim et al. [7] used the classical and first-order shear deformation theory 
to investigate buckling, bending and free vibration characteristics of porous FG plates, moreover the literature 
on vibration analysis of FGM plates resting on elastic foundation was reported by researchers in the last years 
and models based on Winkler and Pasternak interaction were considered. Yang and Shen [8] conducted 
vibration analysis of an initially stressed FGM plate resting on an elastic foundation. They used a simple power 
law for material gradation with clamped boundary conditions. 
Investigations in the field of porous FGM plates and shells with variable thickness resting on elastic foundation 
are in demand now and they are still limited. Especially concerning the investigation of FGM plates and shells 
with a complex planform and different boundary conditions.  

In this work, the R-functions method (RFM) and the variational Ritz method has been used to investigate 
the free vibration of porous FGMs plates and results are compared with finite element analysis using COMSOL 
Multiphysics. The study focuses on plates with various shapes and boundary conditions, considering elastic 
foundation effects. 

For the case of plates and shallow shells of complex shape the difficulties are usually connected with the 
construction of an admissible functions system. These functions should be linearly independent, differentiable, 
form a complete system and satisfy the geometrical boundary conditions. Applying the R-functions theory we 
can construct a sequence of the basic functions. At first the corresponding solution structure is built as 

.     (1) 

Here  is a vector of displacements; B is an operator depending on the system and its boundary conditions; 

 is an equation of domain boundary;   are equations of some parts of domain 

boundary; ,  are indefinite components. The equation of the domain boundary is constructed by the 

R-functions theory and the function  satisfies the following conditions: 

{ } { }1 2( , ,..., , , )k iU B P P P w w=

{ }U
( , ) 0x yw = ( , ) 0i x yw =
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,       ,      ,  (2) 
According to the RFM indefinite components of solution structure are expanded into a truncated series 

with respect to a system of functions : 

𝑃!(𝑥, 𝑦) = ∑ 𝑎"
(!)φ"

(!)(𝑥, 𝑦)%
"&'       (3) 

where 𝑎"
(!)are indefinite coefficients, taken by such a way that vector-function  satisfies a given system of 

differential equations. These coefficients are determined by means of the Ritz method. For a complete system 
of functions  power polynomials, Chebyshev’s polynomials, trigonometric polynomials, splines and 
others can be used. 
 
Numerical results and discussions 
Consider a porous plate on elastic foundation with a variable thickness (Fig. 1) made of FGM (ceramics, top of 
the plate, and metal, bottom) with exponential variation of material property along thickness.  To demonstrate 
the effectiveness of the proposed method and the correctness of the results obtained a validation study was 
carried out for square FGM plates for various cases with different parameters of porosity, volume exponent, 
elastic foundation, different types of FGM and boundary conditions. 

  
Figure 1. FGM plate on elastic foundation with 
variable thickness 
 

Figure 2. FEM results of simply supported 
𝐴𝑙 𝐴𝑙(𝑂)⁄ plate (Table1) 
 

 
Investigation of free vibration of a square FGM plate on elastic foundation made of Aluminum and Alumina 
(𝐴𝑙 𝐴𝑙(𝑂)⁄ ) without porosity (𝛼 = 0) is conducted, see figure 2; mechanical properties are: 

 E=70 GPa   

 
E=380 GPa   

Four different values of the volume exponent index p=0, 1, 2, 5 were considered in Table 1, where the 
comparison analysis with the results from work [9] and [10] are reported. In Table 2 are shown the results for 
an isotropic simply supported square tapered plate, and in Table 3 are shown the results for a square FGM 

 plate with different boundary conditions, gradient index, and uniform porosity parameters. 
 
Table 1. Comparison of non-dimensional fundamental frequency 𝜆2 = 𝜔 ∙ 𝑎( ∙ ℎ ∙ 6𝜌* 𝐸*⁄  for simply 
supported (without porous) FG (𝐴𝑙 𝐴𝑙(𝑂)⁄ ) plates, +

,
= 1, -

+
= 0.05;	𝜌*, 𝐸* are density and Young’s modulus 

of metal (Aluminium) 
Kp Method p=0 p=1 p=2 p=5 
0 RFM 0.02909 0.02221 0.02019 0.01912 
 [9] 0.0291 0.0222 0.0202 0.0191 
 [10] 0.0291 0.0222 0.0202 0.0191 
 FEM 0.02863 0.0219 0.0199 0.0187 

100 RFM 0.04059 0.03780 0.03739 0.03766 
 [9] 0.0406 0.0378 0.0374 0.0377 
 [10] 0.0406 0.0378 0.0374 0.0377 
 FEM 0.0383914 0.03523182 0.03466274 0.03472385 

( ) ( ), 0, ,x y x yw > " ÎW ( ) ( ), 0, ,x y x yw < " ÏW ( ) ( ), 0, ,x y x yw = " Î¶W

( ){ },i x yj

{ }U

( ),i x yj

Al 0.3n = 32707 /kg mr =

2 3Al O 0.3n = 33800 /kg mr =

( )2 3/Al Al O
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Table 2. Comparison of the fundamental frequencies  for isotropic simply supported 

square tapered plate with different thickness and taper ratio 

Taper ratio  Method =100 
0.5 RFM 24.554 

[9] 25.0594 
FEM 21.57 

1 RFM 29.193 
[9] 30.8965 
FEM 25.43 

Table 3. Comparison of non-dimensional frequency parameter for square FGM 

plate with different boundary conditions, gradient index and uniform porosity parameters +
-
= 20, 𝛽 = 0.4 .

p Method 𝛼 = 0 𝛼 = 0.1 𝛼 = 0.2

SSSS 

3 RFM 9.406 8.7741 7.7039 
[9] 9.4611 8.8289 7.7603 

FEM 9.28 8.64 7.55 
5 RFM 9.1969 8.5106 7.2713 

[9] 9.2501 8.5637 7.3255 
FEM 9.23 8.53 7.25 
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2020), for analytical methods for linear vibration and since 2021 he has been serving as  

Receiving Editor and a Deputy Editor-in-Chief. He has secured two major grants, a 

Marsden grant for research into vibration analysis of complex structures and a grant by 

the New Zealand government’s Ministry of Business Innovation and Employment 

(Category Smart Ideas) to conduct research on the development of an omnidirectional 

base isolator. 

His current research topics include adaptive vibration isolation from vertical seismic 

excitation and crack detection. He is also interested in computer-aided learning and has 

developed and used several interactive lectures and tutorials for teaching Mechanics of 

Materials and Vibration, as well as computer-based interactive tutorials and games for 

learning/teaching Tamil language. He us married to Krshnanandi, and they have two 

children and a grandson. In his past time, he enjoys spending time with his family, 

gardening, and cooking. 

ISVCS13 - Page 93 of 109

https://www.waikato.ac.nz/news-opinion/media/2011/negative-concepts-lead-to-positive-results-for-waikato-researcher
https://i.stuff.co.nz/national/107339393/Waikato-University-engineering-research-inspired-by-collapsing-plant


Dr. Jiaqing Jiang received his Bachelor’s degree in civil engineering from 

Zhejiang University (2014) and Master’s degree in earthquake engineering from 

Imperial College London (2015). He worked on pedestrian-induced force 

measurement using smart phone and sympathetic vibration attenuation algorithms 

between crowds and the bridge at that time. He then completed his Ph.D. in 2022. His 

work is about developing a new mixed finite element method for composite 

structures, which provides very accurate stress distributions results for multilayered 

beams, plates and shells. He was rewarded as a three-good student in Zhejiang 

University and got certificate of distinction from ICL.  

He is now a post-doctoral fellow in Zhejiang University under the guidance of Prof. 

Weiqiu Chen. His research field contains active control methods for piezoelectric 

metamaterials and deep-learning based optimization algorithms for acoustic cloaking 

designs. He has published 4 articles in international journals and 1 article for 

international conference.  
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Bio-sketch of Professor Jin-Wei Liang 

Jin-Wei Liang accepted his Ph.D. degree in the field of Mechanical Engineering from 
Michigan State University on 1996. He is currently serving as a professor for the 
Department of Mechanical Engineering at Ming Chi University of Technology 
(MCUT), New Taipei City, TAIWAN. He served as the Dean of the College of 
Engineering, MCUT from 2008-2022. He was also a Distinguish Professor from 2020-
2022. His primary research interests include linear/nonlinear vibrations and intelligent 
control problems.  

Professor Jin-Wei Liang is the co-founder of Perseverance Technology Co. Ltd., a start-
up company initiated in TAIWAN. He has published about 40 technical papers. 
Recently, he leads a research team in studying prognosis problem of rotary machines in 
chemical industry. He was interviewed by “Impact” magazine (www.impact.pub) for 
the outstanding effort put in handling the industry-based problems.  
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Title: Ph.D., Professor 
Affiliation: Central South University 
Address: High-speed train research center,  
Central South University, Changsha, Hunan 
Phone: +86 138 7314 4366 
E-mail: xiangliu@csu.edu.cn
URL: https://faculty.csu.edu.cn/liuxiang/en/index.htm

Dr. Xiang Liu’s research interests include noise and vibration control in 
transportation, structural dynamics and instabilities, aeroelasticity, etc. He studied 
for his Bachelor (civil engineering), Master and PhD (road and railway 
engineering) in Central South University, another PhD in applied mathematics from 
University of Glasgow (UK) and then worked as Research Fellow in structural 
dynamics in City, University London and then Professor in School of Traffic & 
Transportation Engineering of Central South University in 2017. Dr. Liu serves as 
the editor board member of 5 scientific journals, regular reviewer of over 40 
journals, has published over 90 papers in international journals and conferences 
and 16 authorized patents. Recently, he has been granted 16 grants, summing up to 
15+ million RMB. 
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Dr. Chaofeng Lü is currently the Vice President and Pao 
Yue-Kong Distinguished Professor of Ningbo University. 
He received his Bachelor’s degree and Ph.D. degree in 
civil engineering from Zhejiang University in 2001 and 
2006. Dr. Lü joined College of Civil Engineering and 
Architecture, Zhejiang University as an Assistant 
Professor in 2006, and promoted to Associate Professor 
in 2008 and full Professor in 2013. During this period, he 

jointly worked as a Research Fellow in City University of Hong Kong from 2007 
to 2009, Visiting Scholar in Northwestern University from 2010 to 2012 and 
Pao Yue-Kong Visiting Professor in 2015. Since January 2022, Dr. Lü has 
been appointed as the Vice President of Ningbo University, and the Director of 
Center for Mechanics Plus under Extreme Environments. 

Dr. Lü's research interests include mechanics of smart materials and 
structures, flexible and stretchable intelligent devices, self-assembly of 
materials, and mechanics of materials under hypergravity conditions. He has 
co-authored over 120 refereed international journal articles and 50 
international conference papers, which have received more than 6200 
self-excluded independent SCI citations with an H-index 35. His recent awards 
include the Elsevier Highly Cited Chinese Researchers (2020, 2021), NSFC 
Distinguished Young Scientist (2019), Changjiang Scholar Young Scientist 
(2017), National Natural Science Award (2015), NSFC Outstanding Young 
Scientist (2013), and MOE Natural Science Award (2012). He is now the 
Director of the Electronic and Electromagnetic Devices Mechanics Division of 
CSTAM, the Editorial Board member of Mechanics of Advanced Materials and 
Structures, Forces in Mechanics, Sensors, Materials, and Journal of Zhejiang 
University A – Science. 
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Bio-sketch of Dr. Yunhua Luo 

Dr. Luo obtained his doctoral degree in Solid Mechanics (specialized on finite element method) 

from the Royal Institute of Technology, Sweden. Since then, Dr. Luo worked in Karlsruhe 

University (Germany) and Rensselaer Polytechnic Institute (USA). He joined the University of 

Manitoba in 2006 and became a full professor in 2019.  

With a passion for teaching and research, Dr. Luo has dedicated his efforts to the finite element 

method and its applications in solving a wide range of engineering problems. For more than 15 

years, he has instructed undergraduate and graduate courses on finite element analysis. His 

research interests encompass various areas, including the advancement of finite element 

approaches and algorithms, the study of bone strength and hip fracture prediction, brain injury 

and prevention, micromechanics of composite materials, design and analysis of functionally 

graded materials, and the nonlinear and dynamic behavior of materials and structures. 

Dr. Luo's research endeavors have been supported by esteemed organizations, including the 

Natural Sciences and Engineering Research Council (NSERC), the Canadian Institutes of Health 

Research (CIHR), Mitacs, Research Manitoba, and the Manitoba Medical Service Foundation 

(MMSF). His significant contributions have been disseminated through the publication of two 

monographs and approximately 120 peer-reviewed papers. 

Recognized as a mentor and supervisor, Dr. Luo has successfully guided over 50 high-quality 

personnel (HQP), including postdoctoral fellows, PhD, MSc/MEng, and undergraduate students, 

fostering their development and scholarly growth. 

In addition to his research and teaching commitments, Dr. Luo has served on various committees 

at the faculty and department levels. His involvement includes contributions to tenure and 

promotion committees, graduate and undergraduate scholarships and awards committees, and his 

current position as Chair of Graduate Studies within the department. 
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Brian Mace 

I am currently Emeritus Professor in the Department of Mechanical and Mechatronics 
Engineering at the University of Auckland, having been Professor there since 2011. Prior to that 
I was Professor of Structural Dynamics at the Institute of Sound and Vibration Research 
(ISVR), University of Southampton.  

I graduated MA (Hons) in Engineering Science and subsequently DPhil (1977) from the 
University of Oxford. Following that I was Research Fellow at the ISVR (1977-1980), Lecturer 
in the Department of Civil and Structural Engineering, University College, Cardiff, Wales 
(1980-1983) and then moved to the University of Auckland, returning in 2000 to the ISVR.  

My general research interests concern structural dynamics, waves in structures, vibrations, 
acoustics and smart structures. More specifically they include uncertainty modelling and wave-
based approaches, particularly regarding noise and vibration behaviour at higher frequencies. A 
strong interest concerns wave motion in structures, including periodic structures and acoustic 
metamaterials. A significant amount of current work concerns a hybrid wave and finite element 
(WFE) method for structural dynamic and acoustic analysis and a hybrid FE/WFE method for 
prediction of transmission through joints. Applications include noise and vibration in buildings, 
tyre noise and vibration, composites, rail vehicles etc. Recent activity also includes vibrations of 
complex, built-up structures such as cars, aircraft etc., when data uncertainty and product 
variability become important. Modelling the uncertainty is an important part of the virtual 
design process, but computational cost and model size are real problems. Here my research 
concerns energy approaches and methods based on component mode synthesis. Other interests 
include smart structures for noise and vibration control, air- and structure-borne noise in 
buildings and active noise and vibration control. 

Interests outside work include fishing, bridge, golf, walking and doing what my wife Gwyneth 
tells me to do in the garden. 
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YUSUKE MOCHIDA 

University of Waikato 
Te Whare Wananga o Waikato 

Hamilton, New Zealand 
yusuke@waikato.ac.nz 

I am currently working at the University of Waikato in New Zealand. The overall aim of 
my current research is to develop a vibration isolator for earthquake protection and non-
destructive testing method using frequency measurements. The methods under 
consideration includes the use of the concept of pseudo-zero/negative stiffness 
mechanism, and natural frequency shifts by roving mass with rotary inertia.  

I was born and grew up in Japan. After I graduated with a B.E. in Mechanical Engineering 
from the Tokyo Metropolitan University (Japan) I worked for a while in Japan and went 
to New Zealand as a working holiday maker to travel around and work. Actually I was 
away from the engineering field for several years. This made me miss engineering and so 
after learning English, I enrolled in a Postgraduate Diploma programme at the University 
of Canterbury (New Zealand). During my postgraduate study I became interested in 
vibration and decided to continue towards an M.E. under the supervision of Professor 
Ilanko, who had at this time relocated to the University of Waikato. I completed my M.E. 
and then continued working towards a Ph.D at the same university. Since commencing 
my M.E. studies I have developed several codes based on the Superposition Method, the 
Rayleigh-Ritz Method and the Finite Difference Method to solve free vibration problems 
of plates and shells using MATLAB. I was also involved in research on the development 
of analytical procedure for vibration analysis of complex structures using the concept of 
negative structures, and structural health monitoring using frequency measurement. In 
addition to my research experience, I have been lecturing in Dynamics and Mechanisms, 
Vibration, Mechanics and Finite Element Analysis classes.  

Through my career, I hope I can contribute to the development of research relationships 
between New Zealand and other countries, especially Japan, and the advancement of 
research in New Zealand.  

Personally, I am also interested in snowboarding, golf, playing drums, Shorinji Kempo 
(Japanese martial arts), foreign exchange, personal development and cooking. 
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Yoshi (Yoshihiro Narita) 

Hokkaido University (Prof. Emeritus), Sapporo, Japan 

   I am a retired professor of Mechanical Engineering at Hokkaido University (HU) and other 
institutions. I started my research on vibration of continuous systems when I was a PhD student 
under adviser Prof. Irie of HU in 1976, and had a chance to study one year in 1978-1979 under 
Prof.Leissa at the Ohio State University. I have attended all the ISVCS’s except for only once. 
I am very delighted to see old and new friends in Canada.  

Let’s enjoy!

<career> 
1951 Born in Sapporo, Japan (now, age 72) 
1980 PhD Hokkaido University 
1980-2004 Hokkaido Institute of Technology (Sapporo) 
2004-2017    Hokkaido University (Sapporo) 
2017-2020    JICA (Japan Intl. Corp. Agency) advisor for universities in east Indonesia 
2020-2023    Yamato University (Osaka) 
2023-present   Board chairman of Hokkaido Lutheran Institution (four kindergartens) 
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Alfonso Pagani serves as associate professor of spacecraft structures at the Department of Mechanical and 
Aerospace Engineering, Politecnico di Torino. He obtained a Ph.D. in Aerospace Engineering from City 
University of London in 2016 and, prior to that, a Ph.D. in Fluid-dynamics (Aeroelasticity) from Politecnico di 
Torino. 

As an active fellow of the Italian Association of Aeronautics and Astronautics (AIDAA, www.aidaa.it), which 
is a distinguished founding member of the International Astronautical Federation (IAF) and the hosting 
organization of IAC 2024, dr. Pagani holds several significant responsibilities. These include being AIDAA’s 
IAF delegate, chair of the European research actions initiative, and invited member of the AIDAA Governing 
Board. 

Alfonso Pagani is associate editor for Advances in Aircraft and Spacecraft Structures and the International 
Journal of Dynamics and Control. He conducts his research on structures, space mechanisms and advanced 
materials mechanics at the MUL2 Lab (www.mul2.com). His scholarly pursuits encompass a broad spectrum 
of fundamental and applied studies, having forged numerous fruitful collaborations with international 
organizations and industry. Recognizing his contributions to the field, he has indeed garnered several 
prestigious awards, including a Wiley Best Paper Award in 2023 and the Ian Marshall's Award in 2013.  

Dr. Pagani is the PI of the EU-H2020 ERC-StG project PRE-ECO, which aims to explore a novel approach to 
addressing the challenges associated with the design of variable stiffness structures for aerospace 
applications (www.pre-eco.eu). Additionally, he is the deputy for Spoke 8 in the Extended Partnership 
"Space It Up!", a program funded by the Italian Space Agency that focuses on advancing human and robotic 
space exploration. 

Previously, in 2018, Alfonso joined the California Institute of Technology as a visiting associate to study 
deployable space booms. He also spent research periods at various institutions, including Purdue University 
in 2016, where he explored the micro-mechanics of fibre-reinforced composites. In addition, he conducted 
research at RMIT Melbourne in 2014 and at Universidade do Porto in 2013. 
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Biography 
of Francesco Pellicano 

Francesco Pellicano is Aeronautical Engineer and Ph.D. in Theoretical and Applied Mechanics, he is currently Full 
Professor, Head of the Centre Intermech MoRe and was committee president of 2 BsC and 2 MsC programmes. He was 
coordinator (PI or local) of several projects: COMETA, NATO (composite metamaterials), METaGEAR POR-FESR 
(Gears, Materials, Robotics), INDGEAR, EU-Fp7 (condition monitoring) and HPGA Fortissimo, EU-Fp7 (applications of 
high performance computing). He published 2 Books, more than 80 Journal papers and more than 100 conference 
papers. Bibliometry: 176 papers on Scopus, h-index 36, more than 3000 citations.  
His research activities are:  
Fluid-structure interaction: cooperating with Prof. Amabili and Païdoussis developed models for vibration and stability 
analyses of shells interacting with incompressible heavy fluids, compressible and supersonic fluids; recently interactions 
with non-Newtonian fluids were investigated. 
Gear stress and vibration modelling and testing, the research was focused on vibration aspects of gears including non-
smooth dynamics and chaotic vibration, optimization using Genetic Algorithms, Diagnostics and Prognostics. 
Vibration control using active passive techniques: active control through piezo-electric actuators, active control of 
suspension through variable stiffness for earthquake applications; linear and nonlinear dynamic absorbers and 
applications to railways bridges; quasi-zero stiffness suspension for earthquake applications; origami isolators and 
applications to automotive. 
Shell dynamics and stability: modal interactions, nonlinear random responses and synchronization phenomena, thermal 
effects and their impact on the dynamic scenario. 
Vibration of carbon nanotubes: development of new continuous shell models for investigating the vibration characteristics 
of single and multiwalled nanotubes considering size effects and van der Waals interactions. 
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Silvio Sorrentino 

Associate Professor in Mechanics of Machines 

University of Modena and Reggio Emilia 

Master Degree in Mechanical Engineering at the Politecnico di Torino (I). PhD in Mechanics of 

Machines at the Politecnico di Torino, Department of Mechanics. Certificate in Advanced 

English at the University of Cambridge (UK). 

Research Associate at the University of Sheffield, Sheffield (UK), Department of Mechanical 

Engineering (2003-2004). Research Associate at the Georgia Institute of Technology, Atlanta 

(USA), Institute of Aerospace, Aeronautical and Astronautical Engineering (2004). 

Research Associate at the University of Bologna, Department of Mechanical Engineering (2005-

2010), lecturing on Mechanics of Machines (2006-2010). 

Assistant Professor in Mechanics of Machines at the University of Modena and Reggio Emilia (I), 

Department of Engineering Enzo Ferrari (2010-2016). Since 2016 Associate Professor in 

Mechanics of Machines at the University of Modena and Reggio Emilia, Department of 

Engineering Enzo Ferrari, lecturing on Vehicle Mechanics (2016-present) and Vehicle Dynamics 

(2011-present). 

Research topics: (1) identification methods from vibration data (output-only methods, subspace 

stochastic methods); (2) vibration analysis of viscoelastic models (general damping distributions, 

fractional derivative models with analytical developments and experimental validation); (3) 

dynamics of oleohydraulic systems coupled with mechanical systems (non-newtonian fluids); (4) 

dynamic behaviour of structures with travelling loads (deterministic, stochastic); (5) wave 

propagation in solid structures (catenary-pantograph problem); (6) dynamic analysis of plates 

(coordinate mapping, homogenization of periodic lattices); (7) rotor-dynamics (distributed 

parameter and finite element modelling, stability analysis of parametrically excited rotors); (8) 

vehicle dynamics (motorcycle stability, self-excited oscillation analysis). 

Coordinator of the Corsi di studio in Ingegneria Meccanica (Laurea L-9 and Laurea Magistrale 

LM-33) at the Department of Engineering Enzo Ferrari of the University of Modena and Reggio 

Emilia (November 2019 – present). 

Awarded the Premio Scientifico ‘Francesco Masi’ by the University of Bologna in 2009. 
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Prof. Yury Vetyukov 

Biosketch 

Yury Vetyukov studied applied mechanics at St. Petersburg State Polytechnical University, Russia and 
graduated  in 2000 with distinction. His master thesis was devoted to large spatial deformations of 
thin curved rods. As a doctoral student of the same university he studied self-excited axial-torsional 
vibrations of rotating drillstrings at deep oilwell drilling and obtained his PhD in 2004. Between 2002 
and 2004 he worked as a research assistant at the Johannes Kepler University Linz, Austria. From 
2004 until 2008 he was an assistant professor in St. Petersburg. Here he started his career as a 
university teacher and independent researcher, focusing on nonlinear mechanics of thin-walled 
structures (elastic shells, rods and thin-walled rods). In 2008 he returned to Linz as a post-doctoral 
researcher and stayed there until 2015, working in various basic and industrial research projects. A 
monograph entitled “Nonlinear mechanics of thin-walled structures: asymptotics, direct approach 
and numerical analysis” was published by him in 2014 at Springer. Since 2015 Yury Vetyukov is 
working at the Institute of Mechanics and Mechatronics at Technische Universitaet Wien (formerly 
known as Vienna University of Technology), Austria. Here he received his venia docendi in 2017. 
Having started as a post-doctoral researcher, in 2021 he was appointed as a full university professor 
and is currently the head of division of mechanics of solids. 

Research interests of Yury Vetyukov comprise various aspects of structural mechanics and thin-
walled structures. He actively puts into practice analytical methods based on direct tensor calculus, 
asymptotic techniques and analytical mechanics. Problem specific novel numerical approaches also 
stay in the focus of his basic and applied research. In the recent years, he mainly deals with axially 
moving structures such as flexible belts, elevator cables or moving metal sheets during forming 
processes. Nonlinear effects of material inelasticity, various contact phenomena and dynamics along 
with the motion of the structure across various qualitatively different domains make respective 
problem formulations often inaccessible for conventional methods of analysis or by means of 
commercial software. Along with several novel analytical solutions, Yury Vetyukov and his colleagues 
are developing problem-specific numerical approaches featuring non-material kinematic description 
in the framework of mixed Eulerian-Lagrangian formulation. 
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Professor Ji Wang, Ningbo University, China 

Professor Ji Wang has been a Qianjiang Chair Professor of 
Zhejiang Province at Ningbo University since 2002.  He also 
served as Associate Dean for Research and Graduate Study, 
School of Mechanical Engineering and Mechanics, Ningbo 
University, from 2013 to 2019.  Professor Ji Wang is the 
founding director of the Piezoelectric Device Laboratory, which 
is a designated Key Laboratory of City of Ningbo.  Professor Ji 
Wang was employed at SaRonix, Menlo Park, CA, as a senior 
engineer from 2001 to 2002; NetFront Communications, Sunnyvale, CA, as senior 
engineer and manager from 1999 to 2001; Epson Palo Alto Laboratory, Palo Alto, CA, as 
Senior Member of Technical Staff from 1995 to 1999.  Professor Ji Wang also held 
visiting positions at Chiba University, University of Nebraska-Lincoln, and Argonne 
National Laboratory.  He received his PhD and Master degrees from Princeton University 
in 1996 and 1993 and a bachelor’s degree from Gansu University of Technology in 1983.   
Professor Wang has been working on acoustic waves, high-frequency vibrations of elastic 
and piezoelectric solids for resonator design and analysis, and nonlinear analysis of 
vibrations with several US and Chinese patents, about 240 journal papers, and frequent 
invited, keynote, and plenary presentations in major conferences around the world.  He 
has been board member, advisor, and consultant to many leading companies in the 
acoustic wave device industry.  Professor Wang has been a member of many international 
conference committees and currently serving the IEEE UFFC Technical Program 
Committees of the Frequency Control and Ultrasonics Symposia, the IEEE MTT-S, and 
the IEC TC-49.  He is also the funding chair of Committee on Mechanics of Electronic 
and Magnetic Devices, CSTAM, and the SPAWDA.  From 2015, Profess Wang was the 
editor-in-chief of Structural Longevity and members of the editorial boards of several 
international journals.  
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Andrew Watson 

Lecturer of Aerospace Structures 

Department of Aeronautical and Automotive Engineering 

Loughborough University, United Kingdom 

Andrew obtained his undergraduate and higher degrees from Cardiff University.  His 
PhD looked at the stability analysis and optimisation of light weight structures.  After 
two post-doctoral appointments at Cardiff Andrew joined Loughborough University as 
a member of academic staff in 2004. 

His research includes buckling and postbuckling of aerospace panels and vibration 
of Timoshenko beams.  Buckling and vibration problems can be approached by 
using the Dynamic Stiffness Method along with the Wittrick-Williams algorithm. 
Vibrating structures can be modelled as quantum graphs and Andrew is currently 
researching higher order graphs to obtain the spectral results of tree shaped graphs 
all using the DSM.   

Outside of this research Andrew has been looking at fossil fuels and other finite 
resources.  To facilitate this he is developing analytical methods to optimise 
structures where the objective function can be mass, energy costs or environmental 
degradation.  Jaguar Land Rover are funding a research studentship looking at 
thermal management of electric vehicles. 

In his spare time he likes to keep up with current affairs and enjoys walking and 
swimming.   
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1

Brief  CV Shudong Yu 

Shudong Yu received his bachelor’s degree 1982 from Jiangxi University of Technology (Mechanical 

Engineering), master’s degree in 1984 from Northeastern University (Applied Mechanics), and PhD 

degree in 1995 from University of Toronto (Mechanical Engineering).  

He studied the method of superposition and its applications to vibrations of plates and shells as a 

research associate at University of Ottawa under Professor D.J. Gorman during 1988-1989.   He 

worked as a nuclear fuel design engineer for Atomic Energy of Canada Limited (AECL) during 1994-

1997. He joined Ryerson University (Mechanical Engineering) in 1997, and held assistant 

professorship (1997-2004), associate professorship (2004-2009), and full professorship (2009-

present).    

Dr. Yu’s research areas are structural dynamics, chaos and bifurcations, and fluid dynamics.  He has 

published over 62 papers in recognized scientific and technical journals, and presented 87 papers at 

various technical conferences.  He authored and co-authored 47 technical reports, resulted from the 

industrial projects.       

Dr. Yu is a fellow of Canadian Society for Mechanical Engineering (CSME). He served as Vice 

President for CSME Ontario during 2002-2009.      
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Professor Antonio Zippo is a mechanical engineer with PhD in "Advanced Mechanics and 
Vehicle Techniques", he is currently an Associate Professor of Mechanism and Machine Theory, 
Applied Mechanics and Mechanical Vibration since 1 June 2023 at "Enzo Ferrari" Department of 
Engineering, University of Modena and Reggio Emilia - UNIMORE. 
He has received the following funding for research activities: 
• FAR2022 - Identification, modelling and analysis of nonlinear EMG signals of pathological
tremor - University Research Fund 2022 for financing departmental development plans in the field
of research. 27/07/2022 €10,000
• Funding from CONSORZIO FUTURO IN RESEARCH for research on "MODELLING AND
EXPERIMENTAL MEASUREMENTS OF NON-LINEAR COMPLEX SYSTEMS AIMED AT THE ACTIVE
CONTROL OF ESSENTIAL AND PARKINSONIAN TREMOR" 01/05/2022 €30870
• Project "International Higher Education School in NVH for Industry 4.0 Higher Education
school in NVH for Industry 4.0" from 22/11/2021 to 31/12/2023 13750 €
• Individual funding of 3000€ for basic research activities REFERRED to ARTICLE 1,
PARAGRAPHS 295 AND FOLLOWING OF LAW NO. 232 OF 11 DECEMBER 2016
He has participated in various international, European and national research projects:
• 2019 “DiaPro4.0 Diagnostic-Prognostic multi-sensor cost-effective system integrated in
mechanical drives of Industry 4.0”, POR-FESR 2014-2020ER
• 2018 “Omnidirectional earthquake isolation system”, Ministry of Business, Innovation &
Employment (New Zealand);
• 2016 "Integrated platform for the design and advanced production of industrial gearboxes
- MetAGEAR" (PG/2015/732270) POR-FESR 2014-2020ER
• 2014 “FORTISSIMO, Experiment: HPGA”, FP7 (applications for high performance
computing);
• 2013 INDGEAR, FP7-SME (condition monitoring);
He teaches the courses of multibody dynamics in the master's degree course in mechanical
engineering (industry 4.0 curriculum), Mechanical Vibration in the master's degree course
Advanced Automotive Engineering and Mechanics of the Vehicle in the bachelor’s degree course
in vehicle engineering.
He have published 16 articles in international journals, 54 articles for international conferences
and 1 book chapter and received the national scientific qualification Settore Concorsuale 09 / A2-II
fascia on 31/05/2021
Bibliometric: h-index 9, 277 citations. He reaches the threshold for full professor.

His research activities are in experimental tests, modelling and numerical simulations in complex 
nonlinear dynamics, linear and nonlinear vibration analysis of mechanical systems and nonlinear 
vibrations of structures and control. His research focused on chaos and nonlinear time series 
analysis, non-smooth dynamics, diagnostic, prognostic, predictive maintenance and condition 
monitoring of complex systems, fluid-structure interaction, the effect of thermal gradients and 
bioengineering. He is part of the Vibration, NVH and Powertrain Laboratory of the Department of 
Engineering "Enzo Ferrari". 
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