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Preface

It is with great pleasure that we present the Proceedings of the 14th International 
Symposium on Vibrations of Continuous Systems (ISVCS 2025), held from July 27 to 
August 2, 2025, in the serene and inspiring setting of Lake Grundlsee, in the Austrian 
Salzkammergut region. This unique Symposium continues a long-standing tradition of 
bringing together leading researchers and seasoned experts in the field of vibrations and 
dynamics of continuous systems.

Since its first edition in 1997, ISVCS has provided a distinctive platform for the open 
exchange of ideas, the presentation of both mature and developing research, and the 
fostering of collaborations in a relaxed and collegial environment. The scientific scope of 
the Symposium includes, but is not limited to, the vibratory behavior of structural 
elements such as strings, beams, membranes, plates, and shells. What sets ISVCS 
apart is its unique discussion-driven format, designed to promote in-depth engagement 
with topics and encourage participants to share not only their latest results but also their 
personal insights and reflections over years of work in the field. The daily schedule—
technical sessions in the morning, and outdoor excursions in the afternoon, and social 
and scientific gatherings in the evening—facilitates both rigorous academic dialogue and 
the building of lasting professional relationships.
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We would like to express our sincere gratitude to all participants for their contributions 
and to those who have worked hard to organize and support this event. We hope that the 
Symposium continues to inspire constructive discussions, foster new collaborations, and 
deepen our collective understanding of the complex and beautiful dynamics of 
continuous systems.

  

The Organizing Committee

This volume includes short summaries of the technical presentations delivered at the 
Symposium, alongside brief biographical sketches of the participants. These 
contributions re ect the depth and breadth of research currently being conducted in the 
study of continuous systems and provide a valuable snapshot of the eld as it stands 
today. This year marks the third edition of ISVCS held without the presence of Art 
Leissa, the founder of the Symposium. Art’s vision and enthusiasm shaped 
ISVCS into the vibrant and collaborative community it has become. We remember him 
fondly and are proud to continue the Symposium in his spirit, welcoming new 
voices and encouraging the next generation of researchers to carry forward the 
tradition of excellence, curiosity, and collegiality.
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Delamination detection using the tracking of beam’s natural 
frequencies 

H. Abramovich and S. Penias
 Faculty of Aerospace Engineering,Technion, I.I.T.,32000 Haifa, Israel 

*haim@technion.ac.il, abramovich.haim@gmail.com

Abstract 

The purpose of the present study was to evaluate the effect of inter-laminar 
delaminations in composite materials on the natural frequencies of a laminated 
structure. The ability to predict such changes in the natural frequencies, and to measure 
them, can be translated into an ability to detect delaminations in a composite structure 
by vibrating it and measuring its natural frequencies.  
Inter-laminar delaminations can be the product of faulty manufacturing, which 
propagates itself in lack of adhesion between the epoxy resin and the graphite fabric. 
Such delamination might also be the result of time-dependent delamination because of 
load cycles or environmental effects. This kind of delamination can be propagated into a 
catastrophic failure of the aircraft itself, see also [1-5]). 
In the study, a numeric analysis was performed, in which various types of delaminations 
existing in a composite beam were modeled and their effects on the natural frequencies 
were evaluated. The numerical part was followed by an experimental test series aimed 
at validating the proposed method. 
The numerical study considered a rectangular cantilever beam with a high length to 
width ratio, 1:20, made from 16 Graphite-Epoxy AS4-12k/E7K8 layers, (see Fig. 1) 

Fig. 1 Geometric dimensions and materials of the calculated beam 

The beam’s first 10 natural frequencies and mode shapes were numerically calculated, 
using the ANSYS software code. The delamination was created by changing the 
boundary conditions of certain elements to an” un-bounded” mode in the code. Fig. 2 
presents the delamination shape which was applied between various material’s layers. 
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Fig. 2 Delamination shape 

Numerical results show that the natural frequencies around the Z axis (sideway bending) 
remain the same, as expected, therefore those modes will be disregarded. As expected 
from the literature (see for example [6-9]), the natural modes around the X axis (torque) 
and the Y axis (bending) show decrease in the natural frequencies as the delamination is 
closer to the mid-layer of the beam (Figs. 3,4). 

Fig. 3 The first four bending modes 

Fig. 4 The first two torsion modes 

Delamination of different sizes were also considered, all symmetric in respect to the X 
axis. The numeric results show that, as expected, the natural frequencies in the bending 
and torque modes decrease with the increase in delamination size. Figures 5 and 6 show 
the results for delamination of various sizes and different layers, for the 4th bending 
mode and for the 2nd torque mode , respectively. 
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Fig. 5  Forth bending mode                                          Fig. 6 Secomd torque mode  
In addition, the effect of the delamination location within the layer was also investigated 
for different configurations, as shown in Fig. 7, yielding interesting results. 

 
Fig. 7 (a)- position in the x direction, (b)- position in the y direction 

An experimental study was also conducted on four specimens, as depicted in Fig. 8. 

 
Fig. 8 The experimental specimens 

The comparison of the experimental results to numerical ones shows a relatively good 
matching, thus increasing the confidence in the proposed method for detecting 
delamination in laminated composite beams using dynamic excitation. 
To sum up, some interesting conclusions can be drawn: 
a. Effect of delamination on the bending and torque modes natural frequencies 

increase as the delamination is closer to the mid-layer of the beam. 
b. Natural bending and torque frequencies decrease as the delamination area is larger. 
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c. Bending frequencies are affected by delamination's size alone. Torque frequencies 
are affected by the deviation of the delamination from symmetry. 

d. Change in natural bending frequencies would change with the location of the 
delamination on the X axis. The frequency change plot resembles the mode shape. 

e. Composite beams have significantly larger effect on natural frequencies when 
delamination is introduced, than isotropic materials. 

f. Clamped-clamped beams showed a more significant change in natural frequencies 
than cantilever and simply supported beams. 

All the conclusions above show that a simple measurement of the first few beams’  
bending and torque natural frequencies of a beam, can give a lot of information 
regarding a possible delamination: 
- Delaminated layer – by the change in bending modes frequencies. 
- Delamination size – by change in both torque and bending modes 
- Delamination location: 

o In the X axis – by difference between various bending modes. 
o In the Y axis – by change in torque modes 

For better detection, it is suggested to clamp the beam at both sides. The present 
approach is valid, if the natural frequencies of the perfect beam are available. 
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MEMS and NEMS are now widespread in modern engineering. They combine such 
useful properties as small size, light weight, inexpensive operation, and low-power 
consumption [1-4].  
MEMS and NEMS are interesting and attractive systems that offer unique and 
intelligent technological solutions. In this regard, the accurate modelling of the 
mechanical behavior of such structures is of great importance. However, the following 
difficulties might arise. The electric forces are inherently strongly nonlinear. The micro- 
and nanoscale components undergo large deflections, that is why geometric nonlinearity 
is significant. Therefore, the mathematical models for MEMS and NEMS contain power 
and non-power nonlinearities and are difficult to analyze. One of the essentially 
nonlinear effects is the pull-in phenomenon, i.e., collapse of the system when values of 
applied DC or/and AC voltages overcome some threshold [3,4]. If only DC voltage is 
applied and it increases monotonically, the stable equilibrium (node) and unstable 
equilibrium (saddle) coincide at a saddle-node bifurcation (static pull-in). Application of 
the AC voltage can lead to dynamic instabilities of various natures – parametric 
resonances, nonlinear resonance due to the forcing signal, bifurcations. Such 
phenomenon is called dynamic pull-in. In the papers [1,2] an effective algorithm was 
proposed to analyze the pull-in phenomenon for thin-walled MEMS/NEMS. In the 
present paper, this algorithm is used to analyze various mechanisms of the dynamic 
pull-in for electrically actuated rectangular micro/nanoplate (Fig. 1). 

Figure 1. Top and cross-section views of a model of the parallel charged micro/nano 
rectangular plate.   
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The nonlinear vibrations of a rectangular micro/nanoplate (Fig. 1) under the action of 
Coulomb force can be described by the following equation:  
 

 
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0,   are the relative and vacuum permittivities; 0 1( )V V  is the magnitude of DC (AC) 

voltage;   is the AC frequency;   is the  damping coefficient;   is the flexible plate 

mass density.  
We use Berger’s approach for flexible plate, within this hypothesis, the influence of 
geometric nonlinearity is described by the expression in curly brackets in equation (1). 
For approximation of distributed Coulomb force we apply a parallel capacitor formula 
and neglect fringe field effect and Casimir/van der Waals forces.  
It is assumed that the plate is clamped along the contour 

 0w   at 0,1; 0,1x y  ; 0
w

x
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
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w
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
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 at 0, 1x  .  (2) 

To reduce the original PDE to an ODE, we use the following ansatz: 
        2 2, , ( , ); ( , ) sin sinw x y t u t x y x y x y     . (3) 

Then we apply the Kantorovich procedure and obtain an ODE 
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                  . 

Let us denote the static pull-in value as pi . Then for each 0 pi    there is a stable 

stu and unstable unstu  equilibrium point. Next, we solve equation (4) for given values of 

DC  0 pi    , amplitude 1  and frequency   of AC under zero initial conditions. 

Eq. (4) is solved numerically by the Runge-Kutta method over a longtime interval. We 
vary the amplitude 1  and use a binary search to find the value 1pi  such that when 

1 1pi   the displacement u  is less than the given value limu , and for 1 1pi   the 

displacement u  exceeds limu . Both unstu  and the largest permissible value 1u   were 

used as limu . Calculations carried out with lim unstu u and lim 1.0u  coincided with an 

accuracy of up to 410 . The comparison with the results of calculations based on other 
methods, as well as with experimental results [4] shows sufficient accuracy of the 
proposed algorithm and the adequacy of the adopted model. 
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For the simulation, the physical parameters of a typical device [3] were selected: 

11, 6.00, 0.100b B    . The static pull-in value for movable plate with these 

parameters is pi 14.471  . The step size of frequency  change was chosen to be 0.01. 

For convenience, the discrete points are connected by continuous curves (Fig. 2-4).  
Periodic (stable) solutions of Eq. (4) correspond to points 1  located below the graph 

 1pi ,   , and non-periodic (unstable) solutions correspond to points 1  allocated 

above the specified graph. 

 

Figure 2. Dependence of the dimensionless dynamic pull-in 1pi  on the dimensionless 

frequency   in the absence of a DC voltage ( 0  ). 

At low frequencies the difference between values of dynamic and static pull-in is small. 
At points 9.0, 19.3, 36.2      the value of the dynamic pull-in 1pi  is significantly 

less than pi , which is explained by the presence of resonances. Let us analyze the 

nature of these resonances. Eq. (4) for 0   can be written as follows: 

      
2

3 2 2
1 3 1 1 2 12

32 8
cos2 1 1 4 cos2 1

9 9

d u du
c u c u t I u t

dtdt
                 . (5) 

The parameters i  take the values 0 or 1. Eq. (5) contains both force ( 1 20, 1   ) and 

parametric ( 1 21, 0   ) excitations. Let us conduct numerical experiments, by 

neglecting the parametric excitation in one case ( 1 20, 1   ), and by discarding the 

force excitation ( 1 21, 0   ) in the second case. The results are presented in the Figs. 
3 and 4 (note that these figures do not model a real problem, but only illustrate the 
influence of certain factors).  

 
Figure 3. Numerical experiment: force excitation ( 1 20, 1   ). 
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At the points 9.1, 19.4, 36.0      (Fig. 2) the values of the dynamic pull-in, as can 

be seen in Fig. 2, are significantly less than at other neighboring points. This confirms 
the presence of resonances caused by a driving force. We also note that the chaotic 
behavior of an electromechanical system at high excitation frequencies qualitatively 
coincides with the behavior of a force driven Duffing equation.      

 

Figure 4. Numerical experiment: pure parametric excitation ( 1 21, 0   ). 

In Fig. 4, in the neighborhood of the point 19.3  , the dynamic pull-in does not have 
an extremum at all. At the points 8.5   and 31.4  , the dynamic pull-in reaches 
local minimum values 1pi 24.6   and 1pi 16.3  . This allows us to assume the presence 

of parametric resonances at these points. In addition, judging by the discontinuous 
behavior of the solutions, these points may be bifurcation points as well.  
Numerical experiments allow us to draw a conclusion about the nature of the emerging 
resonances. This provides useful information in practical situations. Knowing the 
resonant frequencies allows us to avoid them in operating electromechanical systems. 
This can be achieved by changing the AC voltage frequency or by modifying the 
parameters of the system itself. On the other hand, knowledge of the resonant 
frequencies allows us to design new and more effective devices [4]. 
This research was partly funded by the Science Committee of the Ministry of Science and Higher 
Education of the Republic of Kazakhstan (Grant No. AP 23490543) (for Andrianov, Khajiyeva) and was 
partly supported by a Simons Foundation (SF) grant (Award ID: 1160642, Project: SF Support to 
Researchers in Ukraine, Program: Presidential Discretionary-Ukraine Support Grants) (for Starushenko). 
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Abstract 

  The free vibration analysis of an axially loaded Timoshenko-Ehrenfest beam coupled in axial and 

bending deformations is carried out in this paper for different boundary conditions. First, the governing 

differential equations of motion in free vibration are developed using Hamilton’s principle and then 

they are solved in closed algebraic form for axial displacement, bending displacement and bending 

rotation.  The expressions for axial force, shear force and bending moment are also obtained in explicit 

algebraic form. Finally, by applying the boundary conditions, the natural frequencies and mode shapes 

of the axially loaded axial-bending coupled Timoshenko-Ehrenfest beam are computed for an 

illustrative example with clamped-free (C-F), pinned-pinned (P-P) and clamped-clamped (C-C) 

supports at the ends. The results are discussed, and some conclusions are drawn.  

1. Introduction

The free vibration behaviour of axial-bending coupled beams using Bernoulli-Euler and Timoshenko-

Ehrenfest theories has been investigated by several authors [1-6], but these publications do not generally 

account for the case when the beam carries an axial load whose effect on the beam’s free vibration 

characteristics can be significant. For an axial-bending coupled Timoshenko-Ehrenfest beam exhibiting 

free vibration, the inclusion of an axial load increases the level of complexity greatly. The problem does 

not appear to have been adequately dealt with in the literature. The present paper addresses this problem. 

2. Theory

Figure 1 shows a uniform axial-bending coupled Timoshenko-Ehrenfest beam of length L in a right-

handed Cartesian coordinate system with the Y-axis coinciding with the beam elastic axis which is the 

locus of shear centres of the beam cross-sections. A compressive axial load (P) considered to be positive, 

is assumed to act through the elastic axis of the beam as shown. Note that P can be negative so that 

tension is included in the theory. The coupling between axial and bending displacements will occur in 

a beam of this type because of the eccentricity between the centroid (Gc) and shear centre (Es) of the 

beam cross-section, see Figure 1. There are many practical cross-sections for which the centroid and 

shear centre are non-coincident (see Figure 2 of [4]), but the inverted T section is shown in Figure 1 

only for convenience. The mass axis which is the locus of the centroid of the beam cross-sections is 

separated by a distance z from the elastic axis, as shown. Now, if v0, w0 and  are axial displacement, 

bending displacement and bending rotation of a point on the elastic axis at a distance y from the origin 

in the coordinate system of Figure 1, the governing differential equations of motion in free vibration of 

the axially loaded axial-bending coupled Timoshenko-Ehrenfest beam can be obtained by applying 

Hamilton’s principle and they are in the usual notation, given by  

𝐸𝐴𝑣0
′′ − 𝐸𝐴𝑧𝛼𝜃′′ − 𝜌𝐴𝑣̈0 + 𝜌𝐴𝑧𝛼𝜃̈ = 0   (1) 

𝐸𝐼𝑒𝜃′′ − 𝜌𝐼𝑒𝜃̈ + 𝜌𝐴𝑧𝛼𝑣̈0 − 𝐸𝐴𝑧𝛼𝑣0
′′ + 𝑘𝐴𝐺(𝑤0

′ − 𝜃) = 0   (2) 

𝑘𝐴𝐺(𝑤0
′′ − 𝜃′) − 𝑃𝑤0

′′ − 𝜌𝐴𝑤̈0 = 0   (3) 
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where EA, EIe and kAG are axial, bending (about the elastic axis) and shear rigidities of the beam, A, 

Ie are mass per unit length and mass moment of inertia per unit length (about the elastic axis) and a 

prime and an over dot denote partial differentiation with respect to length y and time t, respectively. 

The expressions for axial force (f), bending moment (m) and shear force (s) which result from the natural 

boundary conditions of the Hamiltonian formulation are given by 

𝑓 = −𝐸𝐴𝑣0
′ + 𝐸𝐴𝑧𝛼𝜃′            (4) 

 𝑚 = −𝐸𝐼𝑒𝜃′ + 𝐸𝐴𝑧𝛼𝑣0
′            (5) 

𝑠 = −𝑘𝐴𝐺(𝑤0
′ − 𝜃) + 𝑃𝑤0

′            (6) 

 

Figure 1. Coordinate system and notation for an axially loaded axial-bending coupled Timoshenko-

Ehrenfest beam. 

For harmonic oscillation with circular or angular frequency , and by introducing the non-dimensional 

length parameter =y/L, Equations (1)-(3) can be solved for the amplitudes of axial displacement (V), 

bending displacement (W) and bending rotation () in terms of integration constants A1-A6 to give 

𝑉(𝜉) = 𝜇𝑘𝛼𝐴1 sinh 𝛼𝜉 + 𝜇𝑘𝛼𝐴2 cosh 𝛼𝜉 + 𝜇𝑘𝛽𝐴3 sin 𝛽𝜉 −

                                                                   𝜇𝑘𝛽𝐴4 cos 𝛽𝜉+ 𝐴5 sin 𝛾𝜉 + 𝐴6 cos 𝛾𝜉     (7) 

𝑊(𝜉) = 𝐴1 cosh 𝛼𝜉 + 𝐴2 sinh 𝛼𝜉 + 𝐴3 cos 𝛽𝜉 + 𝐴4 sin 𝛽𝜉       (8) 

𝛩(𝜉) = 𝐴1
𝑘𝛼

𝐿
sinh 𝛼𝜉 + 𝐴2

𝑘𝛼

𝐿
cosh 𝛼𝜉 +𝐴3

𝑘𝛽

𝐿
sin 𝛽𝜉 −𝐴4

𝑘𝛽

𝐿
cos 𝛽𝜉      (9) 

where , , , k, and k are given by 

𝛼 =
√

−
𝐶1

2
+

√𝐶1
2+4𝐶2

2
; 𝛽 =

√𝐶1

2
+

√𝐶1
2+4𝐶2

2
; 𝛾 = √

𝜔2𝜌𝐴𝐿2

𝐸𝐴
  𝑘𝛼 =

𝑏2𝑠2+𝛼2𝜆2

𝛼
; 𝑘𝛽 =

𝑏2𝑠2−𝛽2𝜆2

𝛽
       (10) 

with 

𝐶1 =
(𝑎2−𝜇2𝑏2){𝑏2(𝑟2+𝑠2)(𝑎2−𝜇2𝑏2)+𝑎2𝑝2−𝑏2𝑟2𝑠2(𝑎2−𝜇2𝑏2)}

(1−𝑝2𝑠2)(𝑎2−𝜇2𝑏2)
;    𝐶2 =

{𝑎2𝑏2−𝑏4𝑟2𝑠2(𝑎2−𝜇2𝑏2)}

(1−𝑝2𝑠2)(𝑎2−𝜇2𝑏2)
   (11) 

𝑎2 =
𝜔2𝜌𝐴𝐿2

𝐸𝐴
;  𝑏2 =

𝜔2𝜌𝐴𝐿4

𝐸𝐼𝑒
;  𝑝2 =

𝑃𝐿2

𝐸𝐼
  𝑟2 =

𝐸𝐼𝑒

𝐸𝐴𝐿2;  𝑠2 =
𝐸𝐼𝑒

𝑘𝐴𝐺𝐿2;  𝜇2 =
𝑧𝛼

2

𝐿2; 𝜆2 = 1 − 𝑝2𝑠2   (12) 
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Similarly, the expressions for the amplitudes of axial force (F), shear force (S) and bending moment 

(M) for harmonic oscillation can be obtained as  

𝐹(𝜉) = −
𝐸𝐴

𝐿
(

𝑑𝑉

𝑑𝜉
− 𝜇

𝑑𝛩

𝑑𝜉
) = −

𝐸𝐴

𝐿
  𝛾(𝐴5 cos 𝛾𝜉 − 𝐴6 sin 𝛾𝜉)          (13) 

𝑆(𝜉) =
𝐸𝐼𝑒

𝐿3  (𝐴1𝑔𝛼 sinh 𝛼𝜉 + 𝐴2𝑔𝛼 cosh 𝛼𝜉 + 𝐴3𝑔𝛽 sin 𝛽𝜉 − 𝐴4𝑔𝛽 cos 𝛽𝜉)     (14) 

𝑀(𝜉) = −
𝐸𝐼

𝐿2
(𝐴1ℎ𝛼 cosh 𝛼𝜉 + 𝐴2 ℎ𝛼 sinh 𝛼𝜉 + 𝐴3ℎ𝛽 cos 𝛽𝜉 + 𝐴4ℎ𝛽 sin 𝛽𝜉 − 𝐴5 ℎ𝛾 cos 𝛾𝜉 + 𝐴6ℎ𝛾 sin 𝛾𝜉)  (15) 

where 

𝑔𝛼 =
𝑏2

𝛼
;      𝑔𝛽 =

𝑏2

𝛽
;  ℎ𝛼 = 𝛼𝑘𝛼(1 − 𝜇2𝑏2/𝑎2);   ℎ𝛽 = 𝛽𝑘𝛽(1 − 𝜇2𝑏2/𝑎2);  ℎ𝛾 = 𝛾𝜇𝑏2/𝑎2   (16) 

Now, Equations (7)-(9) and Equations (13)-(15) can be used to apply boundary conditions for 

displacements and rotations, as well as for forces and moments, respectively, to eliminate the constants 

A1-A6 and arrive at the frequency equation which yields the natural frequencies of the axially loaded 

axial-bending coupled Timoshenko-Ehrenfest beam. The mode shapes can be recovered by assigning a 

chosen value of one the constants and determining the rest of the constants in terms of the chosen one. 

3. Discussion of results and conclusions 

To demonstrate the application of the developed theory, an axially loaded coupled axial-bending 

Timoshenko-Ehrenfest beam made of aluminium and with the inverted T cross-section shown Figure 2 

which is that of [5] is now analysed for its free vibration characteristics. The dimensions used for the 

cross-section (see Figure 2) are b = 40 mm, t = 4 mm and the length of the beam L is taken as 1 m. The 

distance between the shear centre and the centroid of the cross-section is worked out to be z = 9.474 

mm. The material properties used in the analysis are the Young’s modulus E = 70 GPa, the shear 

modulus G = 26.92 GPa and the density  = 2700 kg/m3. The shear correction factor (also known as the 

shape factor) k is taken to be 2/3. Using the above data, the stiffness and mass properties of the section 

are calculated as axial stiffness (EA) = 2.128×107 N, (ii) bending stiffness (EIe) = 5135.57 Nm2, (iii) 

shear stiffness (kAG) = 5.4564 ×106 N, (iv) mass per unit length (A) = 0.8208 kg/m and (v) the mass 

moment of inertia (rotatory) per unit length (Ie) = 0.001981 kgm. 

 

 

 

 

 

 

 

Figure 2. Cross-sectional details of an axially loaded coupled axial-bending Timoshenko-Ehrenfest 

beam, mass axis (centroid): Gc, elastic axis: Es. 

The critical buckling loads (Pcr) of the axial-bending coupled Timoshenko-Ehrenfest beam for clamped-

Free (C-F), Pinned-Pinned (P-P) and clamped-clamped (C-C) boundary conditions were established at 

7.9471 kN, 45.055kN and 124.44 kN, respectively using the theory of [6]. (Note that the P-P boundary 

condition prevents axial and bending motions at the ends, but not the bending rotation.) The first five 

natural frequencies of the beam for C-F, P-P and C-C boundary conditions were computed considering 

the axial load 0.0, 0.5Pcr and -0.5Pcr, respectively, and the results are shown in Table 1. These results 

were checked using the computer program BUNVIS-RG [7] which has the capability to connect 

eccentrically an axially loaded beam to nodes at the centroid of the cross-section to idealise an axially 

loaded axial-bending coupled beam, giving approximate, but sufficiently accurate results. 

t 

t 

b 

b 

z 

Gc 

Es 

● 

○ 
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Table 1. Natural frequencies of an axially loaded axial-bending coupled Timoshenko-Ehrenfest beam 

for different boundary conditions. 

 

Frequency 

Number 

(i) 

Natural frequencies i (rad/s) 

C-F P-P C-C 

Axial Load (P) Axial Load (P) Axial Load (P) 

0.0 0.5Pcr -0.5Pcr 0.0 0.5Pcr -0.5Pcr 0.0 0.5Pcr -0.5Pcr 

1 220.036 158.654 264.873 736.381 520.752 901.802 1381.23 985.952 1678.63 

2 1364.98 1306.85 1420.42 2431.11 2200.10 2641.98 3735.55 3243.68 4165.44 

3 3761.76 3712.99 3809.90 5510.47 5288.36 5723.95 7147.55 6620.77 7636.82 

4 7210.10 7163.85 7256.04 9214.82 8992.90 9430.97 11478.1 10923.3 12006.6 

5 7998.11 7998.11 7998.11 14275.8 14046.7 14501.1 15996.2 15996.2 15996.2 

 

The results shown in Table 1 indicate as expected that the effect of the compressive axial load (P=0.5Pcr) 

is to reduce the natural frequencies whereas the corresponding effect of a tensile load (P=-0.5Pcr) is to 

increase the natural frequencies. For instance, the presence of the axial load (P) altered the fundamental 

natural frequency 1 for the C-F boundary condition of the beam, by -27.9% for the compressive load 

(0.5Pcr) and 20.4% for the tensile load (-0.5Pcr.), which are significant changes. It should be noted that 

the fifth natural frequency for the C-F and C-C boundary conditions is unaltered because it corresponds 

to a pure axial mode for which the axial load is not expected to have any major effect. The theory 

developed and the results presented demonstrate the importance of axial-bending coupling effects on 

the free vibration characteristics of axially loaded axial-bending coupled Timoshenko-Ehrenfest beams. 
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Summary

The vibrational analysis of thin rectangular plates is a very important and studied topic in structural
design. For rectangular plates there are 100 combinations of the classical types of boundaary
restraints along the four edges. These include simply supported (S), Clamped (C), Free (F), and
Guided (G). For square plates the number is reduced to 55 possible cases. The benchmark results
for the frequencies of rectangular plates were presented in a previous paper by the authors [1].
In the current work we extend the analysis to cases where along any edge there are two or more
segments with different restraints leading to a much more complex problem. This problem was
studied in many publications and here we mention just two by Narita [2] and Shu and Wang [3].

The free vibrations is governed by the following equation

D
(

∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4

)
−ρhω

2w = 0 (1)

where w(x,y) is the out of plane deflections of the plate, D = Eh3/12(1− ν2), is the flexural
stiffness of the plate, ρ is the mass density of the material, h is the plate thickness, and ω is the
free vibration frequency. The edge slope, bending moment, and shear force are given in [1]. The
solution for this partial differential equation will be derived as the sum of two parts

w(x,y) = w1(x,y)+w2(x,y) =
∞

∑
m=0

X̄mYm +
∞

∑
n=0

Xn Ȳn (2)

X̄m = sin(λax)sin(mπ/2)+ cos(λax)cos(mπ/2) (3)

Ȳn = sin(λby)sin(nπ/2)+ cos(λby)cos(nπ/2) (4)

λa =
mπ

a
; λb =

nπ

b
(5)

and substituting the assumed functions X̄m and Ȳn into Eq. 1 we obtain two fourth order ordinary
differential equation for Ym an Xn. The solutions for the two functions Xn and Ym are hyperbolic
functions

Ym = Am cosh (α1y)+Bm cosh (α2y)+Cm sinh (α1y)+Dm sinh (α2y) (6)

Xn = En cosh (α3x)+Fn cosh (α4x)+Gn sinh (α3x)+Hn sinh (α4y) (7)

with

α1 =
√

λ 2
a −δ ; α2 =

√
λ 2

a +δ ; α3 =
√

λ 2
b −δ ; α4 =

√
λ 2

b +δ ; δ =

√
ρhω2

D
(8)

The solution is dependent on 8 unknown constants for the values of m and n in the summation in
Eqs. (6,7). These are Am,Bm,Cm,Dm,En,Fn,Gn, and Hn. The plate has 4 edges, and on each
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of them we can prescribe 2 quantities, making for the 8 unknowns. For the current case we
divide the plate into rectangular segments in such a way that on every edge the conditions are
not changing. Then we apply the usual boundary condition where applicable, and we have a new
set of continuation conditions along edges common to two segments. On these, the condition is
that the displacement, slope, bending moment and the shear are equal. Utilizing the technique in
[1] we can obtain a system of linear equations for the unknowns. When the determinant of the
system is equal to 0 it indicates ω is a natural frequency.

Two examples are given as shown in Fig. 1. In the first case the plate is divided into two equal
segments with one connecting edge in the middle. The second plate is divided into nine segments
with few types of boundary and connecting conditions. The examples were analyzed using 30
terms in the summation in Eq. 2, and the results are very accurate. In Table 1 the results are
compared to the values given in [2, 3]. The first six frequencies for this case are compared with
a plate with simply supported edges all around, and the percentage increase in the frequencies
is given in the last row. It can be observed that in this case the raise for the second and fifth
frequencies is minor as compared to the other four frequencies. In Table 2 the results for the nine
segment plate are compared to the results by Narita [2]. In this case the increase is much more
significant with respect to all the frequencies. In this case a total of 50% of the edge length is
clamped, as compared to only 12.5% in the first case. In Table 3 we show the modes of vibration
and observe that the effect of the stiffening of the corners has little effect on the modes. It can
be concluded that the extent and the location along the edges of the stiffer clamped sections has a
major effect and it will be explored further in the future.
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Figure 1: Two-segment and nine-segment plates
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Table 1: Results for two segment plate - Fig. 1, case 1
ω1 ω2 ω3 ω4 ω5 ω6

Narita [2] 22.63 50.04 55.95 82.34 99.71 107.6
Shu& Wang [3] 22.42 49.93 55.51 82.32 99.71 -

Current 22.4717 49.9165 55.6316 82.2725 99.6752 106.9284
SSSS Plate 19.7392 49.34802 49.34802 78.9568 98.6960 98.6960
% increase 13.8 1.15 12.7 4.20 0.992 8.34

Table 2: Results for nine segment plate - Fig. 1, case 2
ω1 ω2 ω3 ω4 ω5 ω6

Narita [2] 26.18 58.70 58.70 98.58 102.0 114.9
Current 25.4554 57.7174 57.7174 97.2122 101.1986 101.1986

SSSS Plate 19.7392 49.34802 49.34802 78.9568 98.6960 98.6960
% increase 28.9 16.9 16.9 23.1 2.53 2.53

Table 3: Modes for the 9 segment plate
Frequency Current Mode SS Plate Mode

ω1

ω2

ω3

ω4

ω5

ω6
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Summary

Nonlinear vibrations, including free and forced oscillations, are a critical study area in structural
and mechanical engineering. Nonlinear systems can exhibit complex relationships between ap-
plied forces, vibration amplitudes, and frequencies. These phenomena may lead to amplitude-
dependent responses, internal resonances, and bifurcation phenomena. Real-world operating con-
ditions often cause structures to vibrate in nonlinear regimes, especially when the bodies are slen-
der. These configurations are typically idealized as one-dimensional members, and understand-
ing their nonlinear dynamic response is crucial for designing and analyzing various engineering
structures, such as bridges, aircraft wings, and space components. This study investigates the
steady-state response of beam-like structures characterized by large amplitude vibrations using
variable-fidelity one-dimensional finite elements (FEs) to overcome the well-known limitations of
analytical and semi-analytical approaches, which usually consider specific boundary conditions
and reduce the number of equations. The nonlinear equation of motion to be solved is

Mq̈(t)+KS(q)q(t) = F(t) (1)

where M, KS, F, q, and q̈ are, respectively the mass matrix, the secant stiffness matrix, the vector
of generalized forces, the unknown vector and its second time derivatives. The Carrera Unified
Formulation (CUF) is used to derive the above FE operators [1]. Considering the system’s response
periodic with frequency ω and introducing the dimensionless time t̄ = ω t, Equation 1 can be
written as

ω
2Mq′′+Ks(q)q = F(t̄) (2)

F(t̄) =
N f

∑
n=1

(
Fc cos(nt̄)+Fs sin(nt̄))

where primes denote derivatives with respect to t̄. The load is expressed as a sum of trigonometric
functions with an arbitrary number of terms (N f ) to consider sub-harmonic, super-harmonic, and
internal resonances. According to the Incremental Harmonic Method (IHM), the unknown state of
vibration (q and ω) is sought by incrementing a known solution (q0 and ω0) of the quantities ∆q
and ∆ω

q = q0 +∆q ω = ω0 +∆ω (3)

The substitution of Equation 3 into Equation 2 and neglecting higher-order terms yields the fol-
lowing incremental equation

ω2
0 M∆q′′+KT(q0)∆q = R− (2ω0Mq′′

0)∆ω

R = F(t̄)− (ω2
0 Mq′′

0 +Ks(q0)q0)
(4)
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The term KT is the tangent stiffness matrix (see [2]), while R is the residual (or correction) vector.
An approximate solution of Equation 4 is obtained by applying Galerkin’s procedure. The generic
generalized coordinate (qr0) and its increment (∆qr0) are expanded in finite Fourier’s series

qr0 =
1
2 ar0 +∑

Nq
m=1(arm cos(mt̄)+brm sin(mt̄)) = HS Ar

∆qr0 =
1
2 ∆ar0 +∑

Nq
m=1(∆arm cos(mt̄)+∆brm sin(mt̄)) = HS ∆Ar

(5)

where HS is a row-vector collecting the trigonometric functions while Ar and ∆Ar are column-
vectors of the unknown amplitudes and relative increments. Since Equations 5 represent approx-
imate solutions, Equation 4 is not satisfied. Thus, the error is being minimized and the following
equations in terms of increments are obtained

K̄H∆A = R̄− R̄H∆ω (6)

Equation 6 is solved by starting from an acceptable guess solution, estimated with the cubic inter-
polation proposed in [3]. The guess attempt is modified until convergence parameters are below
prescribed tolerances. The continuation method used to draw the equilibrium curves is based on
the classical arc-length method. The procedure has been verified considering a hinged-hinged
beam 150 mm long, 26 mm wide, and 0.514 mm thick subjected to a transversal concentrated
load (Pz = 0.15 N) at the midspan. The structure was made of an isotropic material with Young’s
modulus E = 69.7 GPa, Poisson’s ratio ν = 0.33, and density ρ = 2668.32 kg m−3. Figure 1
shows the vibrational responses of the beam calculated at the loaded point. The mathematical
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Figure 1: Nonlinear steady-state responses calculated at the midspan of the hinged-hinged beam
subjected to a point load, Pz = 0.15 N.

model consisted of ten cubic Lagrangian finite elements along the beam axis while three different
structural theories have been adopted to approximate the kinematic field: Taylor-based expansion
of first and second order (TE1 and TE2) and a bi-quadratic Lagrange-based model (1-LE9). For
comparison purposes, we reported the results presented in Ref. [4]. It can be observed that the TE1
solution closely agreed with the finite element results reported in [4] while the bi-quadratic the-
ories predicted a more significant hardening effect. Nevertheless, this trend can also be observed
in [5], where the harmonic balance method and the Galerkin approach were applied to investi-
gate the influence of the initial curvature and axial displacement on the steady-state deflection of
clamped-clamped beams.
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Summary

Sliding structures—such as beams that move through guides or deployable elements—have been
studied for decades. Early applications include deployable antennas and tethered satellites, for
instance. Problems of sliding beams became popularly known as the “spaghetti problem” [1],
a term that reflects their most distinctive feature: similar to a noodle that is being sucked in, a
structure slides in a preferred direction while its material domain changes over time as shown in
Fig. 1 (left).

Figure 1: The “sliding spaghetti problem” of a beam being retrieved into a guide (left); axially
moving continua characterized by a more or less continued sliding motion (right) [5].

In most modeling approaches, a coordinate transformation was used to map the time-dependent
material domain to a fixed domain with respect to a stretched coordinate. Owing to such transfor-
mation, kinematic constraints and external loads can be prescribed at fixed points of the compu-
tational domain, which greatly facilitates the numerical modeling, see, e.g., [2] for a comparative
study. Some time ago, we extended classical formulations to scenarios where the boundary mo-
tion is a function of the system’s state of deformation [3]. This approach marked a departure
from earlier formulations, where the sliding motion had been imposed kinematically. In the pro-
posed formulation, the relative motion of a structure and its supports emerged from the interaction
between internal deformation, external forces, and kinematic constraints. As the boundary mo-
tion was no longer prescribed, the coordinate transformation introduced to accommodate for the
variable material domain became state-dependent.

Sliding structures share key characteristics with axially moving continua—systems like conveyor
belts or rolling sheets—where material flows through a fixed spatial domain, see, e.g., [4]. Our
generalized formulation for sliding beams [5] bridges both types of problems by allowing for mul-
tiple variable material domain boundaries and domains, respectively, which enables the modeling
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of a material flow through a control volume. Let the domain of interest D =
⋃n

i=1 Di of some ma-
terial body be decomposed into (sub-)domains Di = [X1

i (t),X
1
i+1(t)], which generally comprise a

variable set of material points. By means of a piecewise-linear transformation, the (axial) material
coordinate X1 is mapped onto a stretched coordinate ξ 1 such that the transformed domain D̃i is
fixed with respect to ξ 1:

ξ
1 =

X1
i+1(0)−X1

i (0)
X1

i+1(t)−X1
i (t)

(
X1 −X1

i (t)
)
+X1

i (0), ξ
1 ∈ D̃i = [X1

i (0),X
1
i+1(0)]. (1)

The above relation assumes the boundaries of the stretched domains to coincide with the initial
material boundaries, i.e., ξ 1

i = X1
i (0). Any function f in the material coordinate X1 is converted to

a function f̃ of the stretched coordinate ξ 1, for which constraints and loads are fixed. Depending
on the “physical” nature of the variable domains, appropriate constraints need to be provided to
specify the evolution of the domain boundaries.

By including the variable domain boundaries of the individual non-material domains as additional
unknowns, we re-establish the (anti-)symmetry properties of mass and convective terms introduced
by the coordinate transformation. We base our formulation on Hamilton’s principle, where a
variation in the domain boundaries naturally introduces the notion of configurational forces—a
concept that has recently gained some attention and plays a central role in some of our own recent
work, such as the “dancing rod” problem [6]. More specifically, the variation of the action integral
Si is composed from contributions of the individual variable domains,

δS =
n

∑
i=1

δSi = 0, δSi =
∫ t1

t0

(
δTi −δW int

i +δW ext
i

)
dt, (2)

where we take the variation in both the generalized displacements ŨUU (comprising translation and
rotation) and the domain boundaries Xi:

Si = Si(ŨUU ,∂ŨUU/∂ t,X1
i , Ẋ

1
i ,X

1
i+1, Ẋ

1
i+1), δSi = δuSi +δlSi. (3)

The generalized sliding beam formulation allows us to efficiently solve problems of sliding beams
and axially moving continua as illustrated in Fig. 2.
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Figure 2: Snapshots of configurations of a sliding beam being retrieved into a rigid guide (left)
and an axially moving beam with the right-hand support being lifted in the course of motion [5].

The extension of the sliding beam formulation to two dimensional continua is more or less straight-
forward. The domain boundaries X1

i = X1
i (X

2, t) additionally depend on the transverse coordinate
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X2, which is accounted for by an extended transformation,

ξ
1(X1,X2, t) =

li(0)
li(X2, t)

(
X1 −X1

i (X
2, t)

)
+X1

i (0), ξ
1 ∈ D̃i = [X1

i (0),X
1
i+1(0)], (4)

where li(X2, t) = X1
i+1(X

2, t)−X1
i (X

2, t), see Fig. 3. The static example problem of a cantilever

Figure 3: Generalization of the sliding beam formulation to two-dimensional continua.

subjected to a transverse shear load is meant to illustrate the mapping, see Fig. 4. The material
body is composed from two non-material domains Di = [X1

i ,X
1
i+1], i = 1,2 (indicated in green and

red). The nature of the domains is such that their interface is supposed to remain at a spatially
fixed horizontal position, i.e., the position of the interface in the undeformed configuration. In
other words, the left boundary of the first domain and the right boundary of the second domain are
fixed with respect to the material points of the structure, i.e., X1

1 = 0 and X1
3 = L. The interface is

spatially fixed, which implies

X1
2 (X

2)+u1(X1
2 (X

2),X2) = X1
2 (0) =

L
2
. (5)

Applying the coordinate transformation (4) to the above relation, we obtain an algebraic relation
that defines the position X1

2 of the domain interface:

X1
2 (X

2)+ ũ1(ξ 1
2 = L/2,X2) =

L
2
. (6)

The deformed configuration (Fig. 4, right) shows the material lengths li = li(X2) currently located

Figure 4: Generalization of the sliding beam formulation to two-dimensional continua.

in the respective domain as a function of the transverse coordinate.

Our ongoing research efforts focus on two distinct aspects: To apply the generalized sliding beam
formulation in the industrial context of slab rolling, we combine the formulation with ideas pro-
posed by Vetyukov et al. [7] in the framework of their mixed Eulerian-Lagrangian formulation:
Inhomogeneities in the velocity profile of the material points at non-material domain boundaries
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are accounted for by means of intrinsic strains that move along with the material point; so do
internal variables related to plastic deformation. For this purpose, additional advection problems
need to be solved to allow for the motion of material quantities relative to the stretched coordinate.
Secondly, space-time finite-element formulations have recently seen increasing popularity. The
intrinsic coupling of spatial and temporal variables renders sliding beams an ideal model problem
for space-time approaches, which is confirmed by first results of our current research work.
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Summary 

Efforts to use natural frequency measurements to identify the presence of cracks in structures, as 

well as to locate them and assess their severity, remain an active subject of research [1-3]. The 

determination of natural frequencies for structures with cracks of known location and severity is 

relatively straightforward, with several methods—both exact and semi-analytical—commonly 

employed depending on the type of structure [4, 5]. However, determining the presence, location, 

and severity of cracks involves solving an inverse problem, which is considerably more 

challenging, as multiple combinations of crack number, location, and severity can lead to the same 

natural frequencies. While the use of measured frequencies from multiple modes can help, it still 

demands substantial computational effort. One promising approach leverages the characteristic 

that the natural frequencies of skeletal structures exhibit a steep change when the position of a 

roving auxiliary body is shifted across a crack [2]. This phenomenon arises from the discontinuity 

introduced by the crack’s rotational flexibility and the rotary inertia of the attached body. In 

practical applications, the auxiliary body can only be attached over a finite area rather than at a 

point, resulting in a steep—but not abrupt—change in frequency. 

 

Previous experimental work we conducted [1] demonstrated that the expected frequency change 

across a crack can be obscured by the inherent variation in natural frequency caused by the 

changing location of the roving mass 

itself. Specifically, our findings 

indicated that the observed frequency 

differences between adjacent positions 

of the roving body were not always due 

to the presence of a crack; instead, they 

could result from the mass-induced shift 

in the structure’s dynamic response. For 

the beam tested and the roving body 

designed (Figure 1), it was a challenge 

to distinguish between frequency 

changes due to mass relocation and 

those due to the crack, for example as 

shown in Figure 2.  

Figure 1. Experimental Setup in [1] 
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Figure 2. The 7th natural frequency versus mass location (20% crack. Green dots – 

experiment results using impact hammer test; blue dots – simulation results using ANSYS; 

yellow dots – analytical results using Dynamic Stiffness Method). 

One aspect of our current work to address the above challenge is discussed here. That is to 

investigate how the spacing of roving body placement affects the measurability of frequency shifts 

due to crack as the body passes over a crack. Understanding this may help to find a way to 

determine a suitable spacing that is small enough to ensure that the effect of the frequency due to 

the mass relocation can be eliminated. The discussion is based on the experimental setup 

described in [1], wherein the same clamped-clamped cracked beam model and the same 

magnitude of mass and rotary inertia are used, and the crack depth remains 20% of the beam 

height. The results were generated using the Dynamic Stiffness Method (DSM).  

 

The natural frequency change, denoted as ∆𝑓, resulting from shifting the mass across a crack, 

includes two components: the frequency change due to the mass relocation itself (∆𝑓𝑚𝑎𝑠𝑠) and the 

frequency change due to the crack as the mass passes it  (∆𝑓𝑐𝑟𝑎𝑐𝑘). It is given by, 

 

 ∆𝑓 = ∆𝑓𝑚𝑎𝑠𝑠 + ∆𝑓𝑐𝑟𝑎𝑐𝑘.  (1) 

∆𝑓𝑐𝑟𝑎𝑐𝑘 is useful for crack detection but  can be obscured by ∆𝑓𝑚𝑎𝑠𝑠.Therefore, to extract ∆𝑓𝑐𝑟𝑎𝑐𝑘, 

∆𝑓𝑚𝑎𝑠𝑠 can be deducted from ∆𝑓. 

 

In this study, ∆𝑓𝑚𝑎𝑠𝑠  is obtained by shifting the 

same auxiliary mass on an intact (uncracked) 

beam and calculating the frequency change 

between adjacent mass locations, while ∆𝑓  is 

calculated under two different configurations. In 

the first configuration, the 20% crack is located at 

0.394m from the left boundary (as in [1]) and the 

mass is incrementally shifted by ∆𝑥  after each 

frequency calculation, as shown in Figure 3.  

 

Figure 3. The first configuration for 

∆𝑓 calculation. 
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In the second configuration, the 20% 

crack is not located in a fixed position, 

instead, it is assumed that as the mass is 

shifted along the beam, it always passes 

over the crack in the subsequent 

placement, as illustrated in Figure 4. 

Based on the first configuration, after 

subtracting ∆𝑓𝑚𝑎𝑠𝑠 from ∆𝑓, the results 

of ∆𝑓𝑐𝑟𝑎𝑐𝑘 versus mass location for the 

first four natural frequencies with 

spacings of 4mm, 10mm, and 20mm 

are shown in Figure 4. The results 

indicate that after removing the 

influence of ∆𝑓𝑚𝑎𝑠𝑠, it is possible to locate the 20% crack using all three mass spacings, while in 

[1], it was challenging to pinpoint the crack location using 4mm spacing although the crack-

induced frequency change was still measurable. However, it should be noted that the methodology 

in [1] relies solely on data obtained from the cracked beam, whereas the approach adopted here 

involves deducting ∆𝑓𝑚𝑎𝑠𝑠 from ∆𝑓, essentially introducing the response of the uncracked beam 

as baseline information, which may not be readily available in practice. However, the results here 

show that using a small spacing effectively suppresses fluctuations in ∆𝑓𝑐𝑟𝑎𝑐𝑘 curves due to the 

relocation of the mass.  

  
(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

 

Figure 5. The results of ∆𝑓𝑐𝑟𝑎𝑐𝑘 using three different spacings based on the 1st configuration 

(the red dashed line indicates crack location). 

Similarly, based on the second configuration, the results of ∆𝑓𝑐𝑟𝑎𝑐𝑘 versus mass location for the 

first four natural frequencies with spacings of 4mm, 10mm, and 20mm are shown in Figure 5. It 

can be observed that the influence of the crack on different modes varies with crack location, 

Figure 4. The second configuration for ∆𝑓 

calculation. 
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while the effect of mass placement spacing is less pronounced than in the first configuration. The 

∆𝑓𝑐𝑟𝑎𝑐𝑘 results exhibit anti-symmetry due to the symmetry of the structure, boundary conditions 

and layout of roving body positions. In different modes, ∆𝑓𝑐𝑟𝑎𝑐𝑘 approaches zero at different 

positions, possibly due to the modal curvature approaching zero near those locations, thereby 

effectively negating the influence of the rotational flexibility introduced by the crack. Thus, it is 

necessary to use more than two modes for crack detection as relying on a single mode may result 

in missed detection when the crack is located at positions where that mode is insensitive to its 

presence. These results show that the effect of the shift in the mass location is one of the factors 

that pose a challenge in identifying the location of crack through measured frequency shifts. It is 

acknowledged that other factors must also be considered in developing a reliable system to locate 

the cracks based on natural frequency measurements for practical applications. 

  
(a) 1st mode (b) 2nd mode 

  
(c) 3rd mode (d) 4th mode 

 

Figure 5. The results of ∆𝑓𝑐𝑟𝑎𝑐𝑘 using three different spacings based on the 2nd configuration. 
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Summary 

Numerical simulation of complex geometric structures using global admissible functions via the Ritz method 

was impossible in the past. Researchers have previously considered the problem insoluble due to the difficulty 

of constructing a general admissible function to approximate the deformation of structures with complex 

geometries and the difficulty of numerical integration on complex geometric domains. This fact has led to a 

large number of literatures examining the problems of two-dimensional (2D) and three-dimensional (3D) 

structures having regular geometries, e.g. rectangular, elliptical, circular, polygonal, spherical, cylindrical, and 

ellipsoidal etc. As pointed out by Reddy [1], the Ritz method is a true "meshless" method because it uses a 

global trial function for solving the problem, thus eschewing the necessity for meshes or nodes in the solution 

process. However, engineering problems are significantly more complex with irregular geometries, preventing 

the Ritz method from being applied, despite the fact that it is "meshless", efficient, and accurate.  

Recently, literatures [2-5] have demonstrated that orthogonal polynomials, including Legendre polynomials 

and Chebyshev polynomials, are capable of predicting deformation of structures with complex geometries if 

high precision integration is possible on a complex geometric domain. Discrete Ritz methods [2-4] used the 

smallest rectangular domain to cover the plate domain in arbitrary geometries and generated a large number of 

Gauss points to perform numerical integration. With the Ritz R-function method [5], background rectangular 

meshes were generated with a constant number of Gauss points in each mesh, and dense meshes were used to 

approximate the geometric boundary of the plate. Despite the fact that both methods require a large number of 

Gauss points to perform numerical integration, the accuracy of integration cannot be determined mathematically 

for complex geometric domains. Furthermore, in the Ritz method [6], the development of universal formulas 

for numerical simulation of plates and solids with complex geometries using a global admissible function 

remains a challenge. Therefore, efficient numerical integration schemes and universal formulations are 

demanded to accurately simulate the deformation of plates and solids with complex geometries.  

In order to solve the mechanical variational problems on complex geometric domains, a novel numerical 

method, energy element method, based on global admissible functions and high-precision global-local level 

mapping integration strategy, is proposed. By placing any geometric configuration structure into a standard 

geometric domain, combined with extended interval integration, and constructing variously-shaped energy 

integration elements (such as triangular [7], quadrilateral, circular, and elliptical energy elements, etc.) based 

on Gauss-Legendre quadrature and two-level mapping and inverse mapping in this geometric domain, high-
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precision numerical integration and deformation simulation based on Boolean operations of energy elements 

on complex geometric domains are realized.  

 

Since the energy functionals are constructed on a standard geometric domain, the modelling and solution 

procedures for any geometric configuration structure are completely standard, and the numerical simulation 

after the geometric configuration changes can be achieved through the Boolean operation of variously-shaped 

energy elements consist of Gaussian integration point sets, which bridges the gap between CAD geometry and 

CAE numerical model. The energy element method is used to solve the vibration problems of plates and solids 

with complex geometric configurations [3, 4, 7-10], and compared with analytical, numerical, and experimental 

results, the accuracy and efficiency of the energy element method are verified.  

 

A simple example of the global-local level mapping integration strategy is introduced for a 2D problem, which 

is the vibration analysis of arbitrarily shaped polygonal plates. At the global level (see Fig. 1), the polygonal 

plate is embedded in a rectangular domain, and then the rectangular domain is mapped to a unit square domain. 

The polygonal plate is then divided into multiple triangular domains. At the local level (see Fig. 2), each 

triangular domain is mapped to a right-angled triangular domain and then to a unit square domain, from which 

triangular energy elements are constructed using Gauss-Legendre quadrature via inverse mapping. A flowchart 

is given in Fig. 3. By applying the global-local level mapping integration strategy to the vibration analysis of 

polygonal plates, the energy functionals in terms of global admissible functions can be established on the 

rectangular domain, and the integration of elements in the stiffness and mass matrices can be performed based 

on triangular energy elements. As a result, the energy functionals and computation procedures for arbitrarily 

shaped polygonal plates are standard, and will not be affected by variations in the polygonal plate's geometry. 

The vibrational behaviors of triangular, skew, trapezoidal, pentagonal, hexagonal, heptagonal, and octagonal 

plates are investigated, and compared with those reported in the literature [7]. Results demonstrate the 

generalization, reliability, accuracy of the proposed method. This method is universal for solving 2D 

mechanical variational problems on a complex geometric domain within Ritz formulation, and can be extended 

to 3D problems with complex geometries.   

 

A general flowchart of the proposed energy element method for 2D and 3D mechanical variational problems is 

presented in Fig. 4. Modelling and solution procedures of the energy element method (EEM): Firstly, use a 

standard geometric domain covering the real geometric domain, and then map this rectangular/cuboidal 

domain into a unit square/cuboidal domain, which is the computation domain; The energy functional is 

constructed on this standard geometric domain, and will not alter with the variation of the geometry. 

Secondly, perform numerical integration within the real geometric domain of the standard geomeric domain 

using variously-shaped energy elements based on Gauss-Legendre quadrature and their Boolean operation 

to simulate the geometry, this numerical integration strategy is performed for each element in the stiffness 

and mass matrices. Global admissble functions is used to simulate the deformation of the structure, and 

Ritz solution procedures are applied. Lastly, solving the vibrational eigenvalue problem to extract the 

frequencies and corresponding modes shapes. 
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Figure 1. Global level mapping – construct the computational domain in a rectangular domain and the 

polygonal domain is divided into multiple triangular domains: (a) Original polygonal domain Ω; (b) 

Polygonal domain Ω is divided into multiple triangular domain Δi; (c) Using a rectangular domain Ωr to 

cover the polygonal domain Ω; (d) Mapping the rectangular domain Ωr into a standard square domain Ξr 

defined in the range [-1, 1]; (e) The original triangular domains Δi are mapped to corresponding triangular 

domains Λi in the square domain Ξr. 

 
Figure 2. Local level mapping - arbitrary triangular domain transforms to a standard right-angled triangular 

domain, and then mapped it to a standard square domain: (a) triangular energy element i; (b) normalized 

right-angled triangular domain; (c) normalized square domain. Gaussian integration points are generated in 
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the square (c), and mapped inversely to the triangular domain (a) to construct the triangular energy element, 

which characterizes the energy (strain energy or potential energy, etc.) of the triangular domain.  

 

 
Figure 3 Flowchart of the global-local level mapping integration strategy 

 

Figure 4. Modelling and solution 

procedures of the energy element 

method (EEM): Firstly, use a 

standard geometric domain 

covering the real geometric 

domain, and then map this 

rectangular/cuboidal domain into a 

unit square/cuboidal domain, 

which is the computation domain; 

The energy functional is 

constructed on this standard 

geometric domain, and will not 

alter with the variation of the 

geometry. Secondly, perform 

numerical integration within the 

real geometric domain of the 

standard geomeric domain using 

variously-shaped energy elements 

based on Gauss-Legendre 

quadrature and their Boolean 

operation to simulate the geometry, 

this numerical integration strategy 

is performed for each element in 

the stiffness and mass matrices. 

Global admissble functions is used 

to simulate the deformation of the 

structure, and Ritz solution 

procedures are applied. Lastly, 

solving the vibrational eigenvalue 

problem to extract the frequencies 

and corresponding modes shapes.  

Mapping the rectangular domain Ωr into a 

standard square domain Ξr, simultaneously, the 

domain Ω is mapped to domain Ξ in  Ξr

Dividing the polygonal domain Ξ into multiple 

triangular domain Λi

Transform the triangular domain Λi into a right-

angled triangular domain via Duffy transformaion

Transform the right-angled triangular domain 

into a standard square domain 

Generate Gauss points and weights in the 

standard square domain, and transform them into 

the original triangular domain  Λi. The triangular 

energy element is constructed.

Perform numerical integration on each triangular 

energy element Λi

Global level energy computation in 

a rectangular domain
Use a rectangular domain Ωr to cover the 

polygonal domain Ω, and construct the energy 

functional based on the rectangular domain Ωr

Local level energy computation in 

a  triangular domain

Using energy Boolean operation based superposition 

principle for all triangular energy elements Λi to obtain the 

numerical integration results  on the polygonal domain Ω
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Abstract 

Beams are fundamental structural elements widely employed across various fields, ranging from 

micro/nanoscale systems to large-scale structures. Recent advancements in material science have driven 

the development of composite and multi-material structures to improve the mechanical performance. 

Among these, bi-metallic beams—comprising two metallic layers with distinct mechanical and thermal 

properties—are of particular interest due to their potential to exhibit tuneable dynamic responses. In this 

study, the dynamic behaviour of a bi-metallic beam composed of aluminium and copper layers, joined 

through an innovative welding technique, is investigated through experimental approach. A key focus is 

placed on understanding the influence of temperature on the system’s dynamic characteristics. Therefore, 

experimental tests are conducted within a controlled climate chamber using a shaking table to apply base 

excitations across a range of operational temperatures. Additionally, an experimental modal analysis is 

performed to characterize the beam's fundamental dynamic properties. The results provide critical insights 

into the temperature-dependent dynamic behaviour of bi-metallic structures, contributing to the design and 

optimization of advanced structural components for diverse engineering applications. 

1. Introduction

Advances in technology have led to the development of composite structures with tailored mechanical

properties by combining different materials in multilayered configurations. Understanding their behaviour

is essential for ensuring structural safety. Pellicano et al. [1,2] studied the nonlinear dynamics of beams

resting on a nonlinear spring with cubic stiffness and axially moving beams using a high dimension discrete

model obtained by a Galerkin procedure. Tang et al. [3] examined how material gradation affects the

buckling behaviour of functionally graded Euler–Bernoulli beams. This study experimentally investigates

the dynamic behaviour of a bi-metallic beam made of aluminium and copper, focusing on how varying

operational temperatures affect its response. Using controlled thermal conditions, the beam is mounted on

an electrodynamic shaker and tested under base excitation to assess temperature-dependent dynamic

characteristics.

2. Experimental Setup

The bi-metallic beam is made of two layers of metals: copper 𝐶 12500 (material 1 — upper layer) and

aluminium alloy 𝐴𝑙 1050 (material 2 — bottom layer), see Figure 1a. In this analysis clamped–clamped

boundary conditions are considered, which allow to appreciate the effect of thermal loads. To implement

clamped-clamped boundary conditions, the beam is fixed on an aluminum Vibration Table Adapter (VAT)

through fastening the ends of the beam with two steel plates and tightening using M12 bolts, which can be

seen in Figure 1b. The presence of VAT is necessary to connect the beam to the shaker.
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Figure 1. Geometry of the beam and implementing clamped condition 

A Dongling ET-40-370 electrodynamic shaker (40 kN peak force, 100 g maximum acceleration, 500 kg 

maximum static payload, 1–2800 Hz frequency range) is used to apply seismic loading to the structure. The 

base motion directly excites the beam. The shaker is controlled by a Siemens LMS SCADAS system using 

TestLab software and is integrated with a climatic chamber, enabling tests under controlled 

thermohygrometric conditions. Beam displacement is measured using a Polytec OFV-505 laser vibrometer 

(±25 m/s maximum velocity, 0.1 pm displacement resolution, 24 MHz frequency bandwidth). Due to the 

limited space inside the climatic chamber, the laser head cannot be positioned directly within it. Instead, a 

periscope system is employed to redirect the laser beam onto the side surface of the bi-metallic beam, as 

illustrated in Figure 1c. To monitor the displacement of the shaker base, a mono-axial accelerometer with 

a sensitivity of 108.11 mV/g is mounted on the shaker platform. The axial excitation is applied using an 

open-loop control strategy to prevent interference with potential nonlinear phenomena during testing. 

However, real-time closed-loop control is employed on the voltage signal sent to the shaker amplifier. A 

random excitation signal is used to stimulate the first three vibration modes of the beam, allowing the 

identification of all relevant modes within the 20–800 Hz frequency range. The standard frequency response 

function (FRF)-based method is adopted for experimental analysis. Tests are conducted at various 

temperatures ranging from 0 °C to 70 °C. 

3. Experimental results 

Tests are carried out at different temperatures and the modal properties variations are observed. Table 1 

reports the first natural frequencies of the bi-metallic beam vs. temperature. The natural frequency initially 

decreases with temperature up to around 30°C, then increases steadily. The frequency variations can be 

addressed to the variation of the nominal beam length with the temperature, this variation is not allowed 

due to the presence of clamping, inducing internal compressive stresses (temperature higher than 25°C), 

Right view 

Top view 

c) Inside of Climate Chamber 

𝐸1 = 110GPa 𝜌1 = 8940 kg∕m3, 𝜈1 = 0.34 

𝐸2 =71GPa 𝜌2 = 2778 kg∕m3, 𝜈2 = 0.33 
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a) geometry of the beam  

b) implementing clamped condition 
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such variation is not trivial as the beam is made of two different metals. Moreover, the different expansions 

can induce additional bending deformations due to a nonsymmetric distribution of materials on the cross 

section.  As can be seen from Table 1 and Figure 2, increasing the temperature leads to an increase in the 

damping ratio, and after temperature 35°C it has a downward trend with increasing the temperatures. Figure 

3a illustrates the linear dynamic response of the beam under low-level excitation with a maximum 

acceleration of 0.02g. As the excitation amplitude increases to 0.4g, a clear hardening-type nonlinear 

behaviour emerges, as shown in Figure 3b. Indeed, the red line represents the upward results, where the 

system is excited starting from the lowest excitation frequency and gradually increasing to the highest. 

Conversely, the downward simulation—shown by the black line in Figure 3b—starts from the highest 

frequency and decreases step by step. It is worth mentioning that the tests are still ongoing.  

 

References: 

[1]. Pellicano, F., Mastroddi, F. Nonlinear Dynamics of a Beam on Elastic Foundation, 

Nonlinear Dynamics, 14, 335355 (1997). https://doi.org/10.1023/A:1008297721253. 

[2]. Pellicano, F., Vestroni, F. Nonlinear Dynamics and Bifurcations of an Axially Moving 

Beam.” ASME. J. Vib. Acoust.; 122(1): 21–30,2000. https://doi.org/10.1115/1.568433. 

[3]. Tang Y., Zhong S., Yang T., Ding Q., Interaction between thermal field and two-
dimensional functionally graded materials: A structural mechanical example, Int. J. Appl. 

Mech. 11 (10) (2019). http://dx.doi.org/10.1142/S1758825119500996. 

Figure 2. The variation of the beam damping ratio and natural frequency under different temperatures 
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Table 1. Natural frequency under different temperatures 
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Summary 

This study introduces a dynamic model and flexoelectric vibration control method for rigid-

flexible systems with single-sided flexible appendages. The system consists of a central rigid hub 

and flexible cantilever beams capable of single-axis rotation, with flexoelectric elements attached. 

Using Hamilton's principle, the equations of motion are derived, incorporating flexoelectric 

effects, centrifugal stiffening, and rigid-flexible coupling. Numerical simulations validate the 

accuracy and effectiveness of the proposed model and control approach. 

a) b) 
Fig. 1  The physical problem, a) Model of spacecraft with flexible appendages with the bonded 

flexoelectric patch; b) Kinematics of the rigid body motion and panel deformation 

The geometric structure of current study is shown in Fig.1a), the system comprises an ideally 

central rigid body and one-sided flexible appendage, which can be simplified to a central rigid 

body - flexible beam model. The deformation of the flexible structure is shown in Fig.1b). To 

derive the dynamic model of the rigid-flexible system,  the motion of the beam is restricted to the 

horizontal x z−  plane, and the gravitational force is ignored. The longitudinal and transverse 

displacements of the beam are denoted as 1u  and 3u , respectively. In the natural state, any point 

P on the neutral axis x of the beam moves to point P after the beam deforms.

To derive the dynamic model of the rigid–flexible coupled system, the modeling process 

follows Hamilton’s principle, considering the kinetic and potential energy contributions from the 

rigid hub, the flexible beam, and the flexoelectric patch. The flexible appendage is modeled as an 

Euler–Bernoulli beam, with only transverse bending deformation considered[1,2]. The 

flexoelectric actuator is assumed to be perfectly bonded to the beam and exhibits uniaxial 

polarization. Using modal expansion method for the beam's transverse displacement and 

incorporating the effects of centrifugal stiffening and flexoelectric coupling through energy 

functional derivation[3,4], the equations of motion are systematically formulated. The final 

coupled system dynamics are obtained by assembling the resulting kinetic energy, potential 

energy and external work terms into a unified expression: 
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            2
T TJ q M q q M q U q    + + + =   (1) 

         ( )          2 1 1

2 2

T
U M q K M q B V V f V    + + − = − + −   (2) 

               
1 1

2 2

T T TC V B q f q q= + −  (3) 

where, J  is moment of inertia,   is the attitude angle,  M  is mass matrix, U 
   is coupling 

matrix ,  K  is stiffness matrix, and  q  is the vector of elastic generalized coordinates.  

If the elastic displacement is small compared with the rigid body rotation, the second-order 

coupling effect can be ignored in the equation of motion of the above system, which is then 

simplified to 

 
 J U q  + =   (4) 

                    
1 1

2 2

T

a a a a a a a a aU M q K q B G V G V f G V   + + = − + −   (5) 

 
                   1 1 11 1

2 2

T T T
s s s s s s sV G C B q G C f q G C q− − −     = + −     

 (6) 

where a  and s  in the subscript represent the actuator and sensor respectively.  B  and  C  

matrices can be broken down into sensor and actuator parts corresponding to the sensor and 

actuator voltages,  sV  and  aV .  aG  and  sG  represent the actuator and sensor amplifier gains 

respectively. 

According to the normalization and orthogonal properties of the mode shape, there are the 

following transformations 

 
              

T TN M N I N K N= = ，
 (7) 

where  N  is a matrix with columns consisting of orthonormal eigenvectors,    2diag i =  is an 

eigenvalue matrix, and  I  is the identity matrix. Inserting the coordinate transformation 

    q N = , at the same time, the modal damping term dC   is introduced. The modal damping 

matrix  dC  can be expressed as     ( )2 ,  1,2,...,d k kC diag k n = = , in which k  is the damping 

ratio and k  is the modal vibration frequency. 

Equations (4), (5), and (6) can be rewritten in terms of modal coordinates and as 

 
   

TJ F  + =
 (8) 

                      ( )  
1

2

T T
d a a a a a a aC F N B G V N f G V   + +  + = − − −  (9) 

 
              ( )  1 11

2

T T T
s s s s sV G C B N G C f N  − −   = + −   

 (10) 

where    
TF U N =   . It can be seen from the above derivation process that the motion equation 

of the flexible spacecraft, the vibration equation of the flexible structure, and the flexoelectric 

equation of the flexoelectric element are coupled. With the derived dynamic model, case studies 

can be carried out to explore the effects of vibration on the flexible appendage during the system's 

attitude motion, as well as the influence of vibration generated by the flexible appendage due to 

flexoelectricity on the attitude angle of the rigid body. 

Firstly, the resutls obtained from this work were compared with that in literautre[5]. During 

the simulation process, the rigid body is required to execute an attitude maneuver of 60° to fulfill 
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a specific task. As depicted in Fig. 2, both the model parameters utilized in this study and those 

employed in the comparative literature yield a system-stable convergence time of approximately 

25 seconds. This duration represents the time required for the system's attitude to adjust to the 

target attitude angle.  

  
a）angle b) angle rate 

Fig.2 Attitude maneuver simulation curve. 

 

Secondly, under open-loop control conditions, we also studied the control effects of different 

control voltages (0, 10, 50, 100 V) on the system, as shown in Fig. 3. 

  
a) Mode 1 b) Mode 2 

Fig. 3 Control efficiency of open-loop control of mode 1 and mode 2 vibration 

 

The comparison of Fig. 4 illustrates the relationship between the system's posture rotation and 

the vibration of the flexible appendage under the continuous and constant external control torque 

exerted on the central rigid body.   

  
a) attitude angle b) tip displacement 

Fig. 4  The effects of different control torques on attitude angle and tip displacement ( V=0 

V,  =1.0 N·m ). 
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To investigate whether the vibration of the flexible appendage, influenced by flexoelectricity, 

impacts the posture motion of the central rigid body, we conducted the following simulation 

calculations. Excluding other external excitation forces and control torques, we applied control 

voltages of 10V, 50V, and 100V solely to the flexoelectric actuator and observed the variations 

in the tip displacement and attitude angle of the flexible appendage. 

  
a) b) 

Fig. 5  Effect of tip displacement on rigid body attitude angle under different flexoelectric 

control voltages, a) Mode 1, b) Mode 2. 

 

In Fig. 5, the rigid body's attitude angle and tip displacement vary under different control 

voltages (10V, 50V, 100V) for flexible appendage modes 1 and 2. As voltage increases, both the 

attitude angle and tip displacement increase, indicating a direct correlation between control 

voltage and system response. These results confirm that flexoelectric-induced vibrations in 

flexible appendages affect the central rigid body's motion, demonstrating rigid-flexible coupling. 

Future research endeavors will extend this work to address the complexities of multi-body 

systems, nonlinear dynamics, and environmental disturbances. Experimental validations will be 

pursued to corroborate theoretical and numerical findings, providing insights into practical 

implementation challenges and limitations inherent to flexoelectricity in flexible spacecraft 

engineering. 
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Introduction 

When continuous systems (beam, plate, shell) are supported by translational and rotational springs, 
there are basically two analytical approaches. The first one is to solve the governing equation of 
motion by satisfying the boundary conditions involving relations of shear force and moment with 
reactions of the springs, but general solutions are unavailable in many problems of the continuous 
systems. More general way is the second approach to use the energy functional of strain and kinetic 
energies stored in the continuous system and to add the energies of elastic springs. In this latter case, 
so-called energy methods such as Ritz method and others are applicable. These energy methods have 
advantages in wide applicability, but the spring stiffness should be infinite when one considers 
continuous frequency increase, for example, from simply supported edge to the clamped edge. In 
practice, the infinitely large stiffness is replaced by a very large (non-dimensional) stiffness of 105 or 
106, and theoretically speaking such ambiguity is inevitable. Also use of very large stiffness values 
often causes numerical difficulty, as explained later, in the computation. 

The present author has analyzed vibration problems of plates and shells [1-8] by using polynomial 
displacement functions multiplied by the term of satisfying kinematical boundary conditions, and 
such modification is easily possible by use of “integer boundary index” in the function. With this, the 
displacement functions become easily manipulatable to satisfy the kinematical boundary conditions. 
In a simple case of beam bending vibration, for example, w(x)=xm(x-a)bc is used, i.e., to realize no 
constraint w(x)=xm at x=a for free edge, simple support w(x)=xm(x-a) and at the clamped edge, w(x) 
= xm(x-a)2. Such additional power term bc=0, 1, 2 (non-negative integer) used to be called “boundary 
index”． 

In the present paper, the restraint of the index being 
integer is removed. By extending the index to be in real 
number, an assumption is proposed to realize 
accordingly the physical condition between free and 
simple support with real index between bc=0 and 1, and 
similarly to realize the physical condition between 
simple support and clamp with the real number index 
between bc= 1 and 2. This extension is quite new and 
original in the theoretical aspect.   

Fig. 1. Test example: Uniform beam 
with translational and rotational springs. 
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Test example: bending vibration of a beam constrained by springs at both ends 

The idea of using non-integer boundary index can be applied to plates and shells. For testing here the 
validity of idea, one of the easiest example is introduced, i.e., a uniform beam elastically supported 
at both ends, as shown in Fig.1. An energy functional is given by  

22 22 2
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2 2
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where w is lateral deflection, ρ is density, A is area of cross-section, E is Young’s modulus and I is 

the second moment of cross-section. After assuming a free vibration solution w(x,t)=W(x)sinωt and 

applying principle of virtual work, one gets 
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 (2) 

As well known, this process results in a governing equation and two sets of boundary condition 

(specifically in this case, kinematical boundary conditions) to satisfy Eq.(2) being zero.       

Ritz method by using elastic energies of springs (conventional approach) 

When one analyzes vibration of beam, one must introduce amplitude function so that two kinematical 

boundary conditions on w and dw/dx are satisfied. Such amplitude function includes unknown 

coefficients, and minimization is carried out with respect to the coefficients. In the conventional 

approach, the energies stored in the translational and rotational springs are also considered in the 

functional in Eq.(1) as 
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  (3)  

and after introducing dimensionless coordinate (ξ=2x/ℓ), the amplitude has been proposed as 

     
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1 2
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1 1
M

bc bcm
m

m

W A   




      (4) 

where Am are unknown coefficients, bc1 and bc2 are the boundary index at left-hand and right-hand 

ends, respectively. When the left-hand edge is free, one sets bc1=0，and for simple support and clamp, 

bc1=1 and bc1=2 are inserted, respectively, to satisfy the kinematical boundary condition. When the 

left-hand end is constrained by translational spring (i.e., between free and simple support), the spring 

stiffness against translation kt,1 is increased with keeping bc1=0. Similarly, the constraint between 

simple support and clamp is made possible by setting bc1=1 and increasing the rotational stiffness 

kr,1 from zero to infinity. Thorough numerical results for the plate examples are summarized [7,8] and 

comparison with relevant literature by other authors is made including recent papers [9,10].  
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(a) Free beam with increasing translational stiffness  (b) Simply supported beam with increasing rotational stiffness    

Fig.2 Frequency variations of beams both ends supported by the springs (conventional approach). 

 

Ritz method by using non-integer boundary index (new approach) 

Non-integer index rbc1 and rbc2 (real number is used here), where “r” is added to bc to distinct “the 

real number index” from the conventional integer one. In this approach, amplitude is modified as  

     
1

1 2

0

1 1
M

rbc rbcm
m

m

W A   




      (5) 

Equations (4) and (5) may appear the same equation, but the energy of springs is replaced by new 
kinematical constraints by real index at the edges. Therefore, functional (1) is used instead of (3) 
because the effect of the spring energy is included in the amplitude function directly. When rbc1 and 
rbc2 happen to take integer, the new approach is the same as the conventional approach because 
integer is a subset of real number.  

(a) Frequency variations between F-F and S-S beams    (b) Frequency variations between S-S and C-C beams 

Fig.3 Frequency variations versus (a) 0<bcr<1 and (b) 1<bcr<2 (new approach). 

bcr bcr 
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Numerical examples  

Figure 2 presents frequency variations of beams constrained with the dimensionless translational 
stiffness k*=kl3/EI and rotational stiffness kr*=kl2/EI in the conventional approach. In (a), frequency 
parameters are plotted against the translational stiffness k* and the exact frequency values of simply 
supported beam are written in the box. The frequencies increase and become identical with the exact 
values for k*=106-108 but then for further increase of the stiffness, numerical problem occurs. Also 
in (b), where the rotational stiffness kr* is increased, numerical problem occurs for more than kr*=108. 
From these results, it is clear in the past (conventional method) that the dimensionless stiffness around 
k*= kr*= 104 or 105 has been used for convenience to claim the infinite stiffness k*= kr*=∞. 
 
In Eq. (4), it is possible to expand the amplitude into finite binomial expansion due to integer index 
(power) and to evaluate integrals exactly, but in Eq.(5) one has to expand it into infinite binomial 
expansion. One has to truncate the expansion with finite number of terms. It turned out in the 
numerical experiment that the convergence is observed with 20 or 30 terms. Figure 3(a) presents 
variation of frequency parameters Ω=ωℓ2(ρ/EI)1/2 from a F-F beam to a S-S beam with changing non-
integer boundary index for 0<rbc<1. It is observed here that the rapid increase of Ω takes place for 
0<rbc<0.4. In Fig.2(b), it depicts that the frequency parameters increase moderately for 1<rbc<2 
between the frequencies of simply supported beam and clamped beam. In both figures (a) and (b), 
the frequency variations show very natural and moderate increase, and agreement between new and 
conventional approach is found in one-to-one relation. 
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Summary

Hyperelastic soft materials are widely spread in engineering applications that mimic biological
systems thanks to their capacity to undergo fully elastic deformations. These materials are ex-
tensively used in designing artificial organs, vascular grafts, and soft robotic actuators, where
replicating the mechanical behavior of tissues is essential. Many biological tissues, such as skin,
tendons, and arteries, are fiber-reinforced laminated structures with anisotropic properties due to
their layered composition [1]. Accurately analyzing these structures requires advanced mathemat-
ical and numerical models that capture the full three-dimensional stress field at large strain and the
relative influence between fibers and the surrounding matrix across layers. Due to their enhanced
nonlinear behavior, accurate models are required to study the structural response under dynamic
conditions. The Finite Element Method (FEM) is a valuable tool in this context, providing a ver-
satile framework to simulate the dynamic and modal responses of such complex structures.

In the present work, high-order unified 2D plate model models for hyperelasticity and vibrations
around non-trivial equilibrium states are presented in the well-established Carrera Unified Formu-
lation (CUF). In this pure displacement-based FE model, the displacement field is expressed by a
recursive polynomial expansion of kinematic models and arbitrary thickness expansion functions:

u(x,y,z) = Fτ(z)Ni(x,y)qτi τ = 1,2, ...,M; i = 1,2, ..,Nn (1)

where Fτ(z) is the set of expansion functions representing the theory of structure approximation
adopted, Ni(x,y) is the set of 2D Lagrange polynomials adopted in the FEM discretization of the
reference surface, qτi are the final generalized displacement components, M is a function of the
structural theory adopted, and Nn is the total number of finite nodes adopted in the single element
discretization. In the present framework, the weak-form governing equations are written in terms
of Fundamental Nuclei (FN) [2], the elementary fundamental blocks of the present model, that
allow the definition of FE matrices independently of the mathematical model adopted. Recently,
high-order CUF models have been extended for the vibration analysis of a pre-stressed isotropic
beam [3] and the static analysis of fibre-reinforced structures [4, 5].
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The nonlinear governing equation for the static and linearized vibration problems (or undamped
vibration problems) are carried out through the Principle of Virtual Displacements (PVD):

δLint +δLine = δLext (2)

where δLint is the virtual variation of the internal work, δLine and δLext are the virtual variation
of the work done by inertia and external forces, respectively. Adopting the same index notation for
the full Green-Lagrange strain tensor, the FN of FE matrices stem from the equilibrium equations
[3], written as:

δuT
s jF

s j
int +δuT

s jM
τsi jüτi = δuT

s jF
s j
ext (3)

The FN of internal forces Fs j
int , external forces Fs j

ext and mass matrix Mτsi j are independent of the
kinematic model adopted and the theory of structure approximation considered; thus, Eq. (3) is
the final governing equation in a hierarchical form, where the global FE matrices are obtained ex-
ploiting the summation over the recursive indices expansion. For a quasi-static nonlinear analysis,
the numerical iterative scheme employed is a Newton-Raphson iterative scheme coupled with the
arc-length constraint [6]. Linearizing the equilibrium equation Eq. (3), the global incremental
equation is then obtained:

KT ∆u+M∆ü =−ϕres(u0, ü0, f0)+ I∆λ fri f (4)

The derivation of the FN of the tangent stiffness matrix can be found in [3]. Afterward, in the
neighborhood of a non-trivial equilibrium state, the linearized undamped vibration analysis is
defined by the linear eigenvalue problem adopting the tangent stiffness matrix:

(KT −ω
2M)ΦΦΦ = 0 (5)

After computing the tangent stiffness matrix at equilibrium, the linear eigenvalue problem is solved
to obtain natural frequencies and mode shapes around the non-trivial equilibrium state. This allows
one to investigate how the pre-stressed conditions affect the modal structural properties.

In this last paragraph, the numerical results obtained for a multilayered plate made of fibre-
reinforced biological tissue (iliac adventitial strips) considered in Gasser et al. [7] are presented.
The strain energy function model adopted is then:

Ψ =
K
2

(
J2 −1

2
− logJ

)
+

c
2
(Ī1 −3)+ ∑

j=4,6

k1

2k2

[
ek2(kĪ1+(1−3k)Ī j−1)2 −1

]
(6)

where c is the initial shear modulus of the Neo-Hookean model adopted for the isotropic ground
matrix, k1 and k2 are material constants calibrated from experimental data, K is the material bulk
modulus, and k is the fiber dispersion parameter [7]. The square plate is made of two equal thick-
nesses hl = 1 mm layers, while the lateral side of the plate is fixed to L= 100 mm. The geometrical
features are depicted in Fig. 1(a). The material constants are described in [7] considering an aortic
iliac material, for which c = 7.6400 kPa, k1 = 996.6000 kPa, k2 = 524.6000 and K = 3.8147 MPa,
considering then a typical density value of ρ = 1300 kg/m3. The clamped-clamped plate of fi-
brous soft tissues is considered with fibers oriented in the x−y plane with opening angles γ1 = 30◦

and γ2 = 45◦, as shown in Fig. 1(b). The first analysis considered is the global static nonlinear
analysis, in which a single quadratic piece-wise Lagrange LE2 expansion model for each layer and
a convergent 30×30 Q9 discretization of the reference mid-surface have been considered [4].

ISVCS14 - Page 43 of 91



x

z

y

L

p

h
ux= !uy= uz=

L

(a) Geometry and boundary conditions.

Top

2γBottom
 2γ

 

2γ
!

(b) Fibre distributions considered.

Figure 1: Multilayered biological cantilever plate: geometrical and material features considered.

The results obtained with high-order 2D CUF models are compared with a reference solution
obtained with ABAQUS commercial software, comparing the proposed equilibrium paths with
the load-displacement results obtained by fully 3D solutions. The ABAQUS models adopt 5000
C8D20R (20-node brick elements with reduced integrations). The proposed results obtained by
2D CUF models show a good agreement with the reference 3D solution. Thereafter, the free
vibration analysis around the trivial equilibrium state is performed, assessing the performance and
accuracy of the present model and analyzing the influence of the fibre dispersion parameter k on the
modal behavior. Table 1 shows the convergence analysis performed considering the dispersed fibre
distribution case, for which k = 0.226, analyzing the influence of the mid-surface discretization
and theory of structure approximation regarding the first five natural frequencies. The numerical
results obtained via 2D CUF models are again compared against a 3D reference solution obtained
by ABAQUS commercial software, reporting the relative percentage difference in brackets. The
same comparison is proposed in Table 2 regarding the case of perfectly aligned fibre (k = 0)
case. A stiffer behavior of the structure is observed in the perfectly aligned fibre case, as also
expected by the global equilibrium path shown in Fig. 2, concluding then that a softer behavior
of the structure is observed when dispersed fibre is considered, both in terms of static and modal
response. The constitutive behavior from a micro-mechanical level strongly influences the global
dynamical features of these materials. The capabilities of the present model to analyze the static
and modal behavior of biological tissues are intended to be applied for further research analysis in
the field of dynamical properties of biological tissue, pulsatile and harmonic mechanical response
under cyclic load, fatigue, and hysteresis.
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Figure 2: Biological doubly cantilever plate: equilibrium paths both for dispersed fibre (k = 0.226)
and perfectly aligned fibre (k = 0) cases. Comparison between high order 2D CUF models and 3D
ABAQUS reference solution.
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Parabolic LE-2 (three nodes) Cubic LE-3 (four nodes) ABQ 3D

Mode 10x10 20x20 30x30 10x10 20x20 30x30 C8D20

1 2.065(12.53%) 1.905(3.78%) 1.867(1.72%) 2.063(12.42%) 1.903(3.71%) 1.865(1.65%) 1.835
2 3.288(7.82%) 3.120(2.32%) 3.081(1.03%) 3.284(7.69%) 3.117(2.22%) 3.078(0.93%) 3.049
3 5.738(14.39%) 5.214(3.95%) 5.103(1.73%) 5.727(14.19%) 5.208(3.83%) 5.097(1.61%) 5.016
4 6.374(4.33%) 6.189(1.30%) 6.144(0.56%) 6.365(4.18%) 6.181(1.16%) 6.136(0.43%) 6.110
5 7.363(9.96%) 6.877(2.70%) 6.774(1.17%) 7.348(9.74%) 6.866(2.55%) 6.764(1.02%) 6.696

DOFs 3969 25215 55815 9261 35301 78141 84915

Table 1: Biological doubly cantilever plate: free vibration analysis around the trivial equilibrium
state, dispersed fibre (k = 0.226) case. Natural frequencies in [Hz].

Parabolic LE-2 (three nodes) Cubic LE-3 (four nodes) ABQ 3D

Mode 10x10 20x20 30x30 10x10 20x20 30x30 C8D20

1 4.193(6.86%) 4.028(2.64%) 3.980(1.43%) 4.182(6.56%) 4.016(2.34%) 3.968(1.13%) 3.924
2 7.329(2.40%) 7.228(0.99%) 7.202(0.62%) 7.305(2.07%) 7.205(0.67%) 7.178(0.29%) 7.157
3 10.817(6.48%) 10.397(2.34%) 10.286(1.25%) 10.765(5.97%) 10.346(1.84%) 10.235(0.75%) 10.159
4 13.812(0.85%) 13.764(0.50%) 13.753(0.42%) 13.757(0.45%) 13.708(0.09%) 13.697(0.01%) 13.695
5 14.375(3.25%) 14.092(1.21%) 14.025(0.73%) 14.300(2.71%) 14.017(0.68%) 13.950(0.19%) 13.923

DOFs 3969 25215 55815 9261 35301 78141 84915

Table 2: Biological doubly cantilever plate: free vibration analysis around the trivial equilibrium
state, perfectly aligned fibre (k = 0) case. Natural frequencies in [Hz].
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Summary 

Thin-walled structures are fundamental in various branches of structural engineering due to their 
high strength-to-weight ratio. For instance, in the aerospace industry, shells and plates are widely 
used in the structural components of aircraft fuselages and wings. Similarly, in the energy 
production sector, pipes and heat exchangers—often exposed to significant temperature 
gradients—are typically composed of thin-walled materials. Although plates and shells may 
appear structurally simple, their dynamic behavior is often highly complex in particular when 
subjected to random excitation. 
Random phenomena are prevalent across many scientific fields, including Engineering, Physics, 
Geophysics, and Medicine. These non-deterministic occurrences often arise from the natural 
variability inherent in physical processes. In Engineering [1,2,3], random vibrations can result 
from unpredictable external forces such as wind, seismic events, or ocean waves. Buildings may 
experience vibrations due to wind gusts or nearby traffic, while machines and engines exhibit 
randomness from manufacturing imperfections, wear, and component tolerances. In electronics 
and communications, acoustic noise or electromagnetic interference can induce mechanical 
vibrations in sensitive devices. Physics addresses randomness on both microscopic and 
macroscopic levels [4]. Quantum mechanics is fundamentally probabilistic, while 
thermodynamics and statistical mechanics also rely on the concept of randomness to describe 
complex systems. In Geophysics, random processes underlie phenomena such as seismic activity, 
volcanic eruptions, and weather patterns [5]. Earthquakes, for example, are driven by sudden, 
unpredictable shifts in tectonic plates. While long-term patterns may be studied, the precise timing 
and intensity of an earthquake remain uncertain. Medicine also deals with randomness, especially 
in biological systems, disease dynamics, and treatment responses [6]. Neurons, for instance, do 
not respond to stimuli in a strictly deterministic way. Their electrical activity fluctuates due to 
factors like ion channel noise, synaptic variability, and intrinsic membrane properties. These 
variations influence when and how frequently action potentials occur, even under constant 
stimuli. As a result, neural behavior is often modeled using stochastic approaches to capture this 
variability. In all these fields, embracing randomness is essential for understanding, predicting, 
and managing complex systems governed by uncertain dynamics. 
In the present work we report a wide experimental analysis of a polymeric shell subjected to a 
purely random excitation, characterized by a limited frequency band (almost monochromatic 
noise), which show the evidence that Extreme Events can take place also in structural systems. 
The system under investigation is a circular cylindrical shell, excited seismically from the base 
along its longitudinal axis. Such excitation gives direct forcing to axisymmetric modes and 
autoparametric excitation to the shell-like modes. Under extreme conditions, i.e. high forcing 
energy levels, the response to the random excitation exhibits unexpected Spikes, irregular both in 
amplitude and in temporal distribution. Such spikes present strong similitude with the phenomena 
observed in neuronal models, electronic circuits, laser waves and rough waves; therefore, models 
based on van der Pol, FitzHugh–Nagumo, Morris-Lecar, Langevin are extremely important for 
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interpreting the experimental evidence. The analysis of extreme events detected during the 
experiments revealed an oscillatory nature of spikes, with a spectral content coincident with the 
natural frequencies of the system, and a decay that appears to be similar to a transient response of 
the free oscillations of the structure. For this reason we call the events “ghost hammering”; indeed, 
is seems that an invisible impact excites the shell and generates the transient response.  
In the paper the experimental setup and the main characteristics of the system under investigation 
are described. A section is dedicated to the standard linear modal analysis that is fundamental for 
interpreting the subsequent section focused on the stochastic resonance and the main features of 
the extreme events. 
Figure 1a shows the experimental setup, a circular cylindrical shell clamped at the base on a 
shaker, which imposes a vertical motion; the top of the shell is closed with a rigid disk, where 
three tri-axial accelerometers are mounted to measure the vertical, tangential and radial 
acceleration. In Figure 1b the Laser measurement point is visible, a red spot; this allows to 
measure the radial vibration of the shell without perturbing the system. The physical properties 
and the dimensions of the shell and the upper disk are reported in Table 1. The shell material is 
PET (Polyethylene terephthalate) that has been selected due to the good flexibility, resilience to 
long heavy vibration test, and sensitivity to thermal conditions. The specimen is located inside a 
climate chamber to control the temperature during the tests. 
 
a) 

 

b) 

 
Figure 1. Test rig and detail of the measurement points 

 

Table 1. Specimen geometric dimensions and material properties. 

Shell 
Material PET 
Density !! 1366	kg/m" 

Young modulus * 3.2 ∙ 10#	Pa 
Length 1 0.135	m 

External radius 3$  0.040	m 
Thickness ℎ 0.38 ∙ 10%"	m 

Top disk 
Material Steel 

Mass !!  1.34 kg 
 
The system is excited from the base in the vertical direction, using a narrow band random signal; 
see Figs. 2a,b, the bandwidth is 230-700Hz. This band is selected for two reasons: i) a wider band 
was impossible due to limitations of the shaker power; ii) the frequency of the first axisymmetric 
mode at 0°C is 270Hz, allowing the excitation of the vertical top disk vibration. The amplification 
of the top disk is clearly visible form the three vertical accelerometric measurements, which show 
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a random spectrum, Fig 2c, having the character of a monocromatic noise centred at the 
resonance; the time history shows a standard random character. The lateral vibration (Figures 
2e,f), i.e. the shell vibration, is indirectly excited by: i) Poisson effect (very marginal); ii) 
autoparametric resonance. The latter indicates a high energy transfer to higher modes; such 
phenomenon was already observed in ref. [3]; however, here the time history shows an unexpected 
character, even though an almost uniform random forcing is given, the response is made by a 
sequence of spikes. The phenomenon has never been observed in structural systems but is known 
in literature as “Stochastic Resonance” or “Extreme Events”. A wide literature on such 
phenomena is present in studies of neuronal behaviour; typically, it is due to bi-stability of the 
system. 
 
a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 2. Response to random forcing, 0°C: a) base spectrum, b) base time response, c) top 
vertical spectrum, d) top vertical time response, e) lateral spectrum, f) lateral time response and 
zoom. 
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1 Introduction and problem statement

Bandsaw blades in metal cutting operations are subjected to different excitation sources, which
may increase wear, affect the accuracy of the cut or even induce violent resonant vibrations as
in regenerative chattering [1, 2]. Although lubrication is always used to avoid overheating and
decrease wear of the blade in practice, it is rarely taken into account in mechanical simulation
models. The present contribution aims to partially bridge this gap by considering a comparatively
simple planar fluid structure interaction problem featuring an axially moving Euler-Bernoulli beam
(the blade) that is moving trough a narrow fully lubricated gap (the sawing kerf), see Figure 1. The

N(t) N(t)
p0 p0

v vp2

p1 h1

h2w

y

xh0

Figure 1: Fluid structure interaction problem of an axially moving beam in a lubricated narrow
gap; geometric imperfections of the drive system may induce a parametric excitation
due to a periodic variation of the pre-tension force N.

purely mechanical model relies on the significant simplifying assumption that the fluid-problem is
governed by Reynold’s lubrication theory, i.e. Newtonian fluid, negligible fluid inertia, no pressure
gradient in thickness direction and uniaxial flow [3]. For this theory to hold, the lubrication film
must be intact at all times and the gap width must be small in comparison to its length but large in
comparison to the roughness of the kerf. Naturally, these prerequisites may be difficult to guarantee
in actual cutting operations.

The primary goal of the research is an estimation of the load bearing and damping properties
of a fully established lubrication film. We first conclude on these properties by performing the
modal analysis of the system about the undisturbed straight reference motion; the large pre-tension
N0 of the blade is taken into account by means of classic second order beam theory. Secondly,
the impact of the lubrication film on the dynamics of the blade is examined in a study on the
parametric excitation in terms of a periodic variation of the pre-tension force N(t), see [4, 5] for the
corresponding methodology. Semi-analytical models and non-material finite element formulations
are developed to perform the respective numerical computations.
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1.1 Governing equations and methodology

The variational problem of the structural part follows from Hamilton’s principle:∫ t2

t1

(
δT Σ −δUΣ +δAΣ

p
)

dt = 0. (1)

It contains variations of the total kinetic energy T Σ, the elastic strain energy UΣ as well as the
virtual work of fluid pressure forces δAΣ

p. The energy contributions are determined by means of an
integration over the active material volume currently residing in the open control domain x ∈ [0, ℓ]:

T Σ =
1
2

∫
ℓ

(
ẇ2

ρ
)

ds, UΣ =
1
2

∫
ℓ

(
aw′′2 +N(t)w′2)ds. (2)

Rotatory inertia is disregarded, ρ denotes the mass per unit reference length and a the bending
stiffness. The additional contribution to the strain energy accounts for von Kármán coupling of the
axial pre-tension with the bending deflection w. Owing to the axial motion with constant material
transport rate v, the conventional Lagrangian description in terms of the material coordinate s is
replaced with a Eulerian one in terms of x by means of:

s = x− vt. (3)

It follows that derivatives with respect to s and x are interchangeable and total time derivatives of
a field in Eulerian parametrisation may be split into local and convective parts. In particular, the
transverse particle velocity expands to:

ẇ = ∂tw+ vw′, (4)

where ∂t is introduced to denote time derivatives at fixed points in space (at x = const.).

As depicted in Figure 1, the deflection and inclination of the blade are constrained by linear guides
at the inlet and outlet, which also mark the boundary positions of the lubrication gap for the sake
of simplicity. The pressure distributions p1 and p2 in either gap are governed by the Reynold’s
equation of lubrication theory, whose solutions are stationary values of the following quasistatic
potential:

Π
Σ[pα ] =

∫
ℓ

(
h3

α p′2α
2η

+6vh′α pα +12pα∂thα

)
dx, (5)

where η denotes dynamic viscosity of the Newtonian fluid and α ∈ {1,2} is used to distinguish
the lower and upper gap, respectively. Environmental pressure p0 determines the values of the
pressure fields at the boundaries of the control domain. The gap thickness depends on the nominal
thickness of the kerf h0 and the transverse displacement at the given point:

h1 =
h0

2
+w, h2 =

h0

2
−w, (6)

which induces the fluid-structure interaction.

The finite element description utilizes a cubic Hermitian interpolation of the primary fields {w, p}
and originates from the above stated coupled variational problem, while the semi-analytical models
are derived from the corresponding strong form. A Eulerian parametrisation of the primary fields in
the spatial coordinate x is natural for the fluid problem and yields a particularly efficient description
for the axially moving blade, see [6, 7].

ISVCS14 - Page 51 of 91



Two sources of nonlinearity are present in the given problem, namely: the coupling of primary
variables in (5) and the follower-force action of the fluid on the structure in terms of a second
order expansion of the virtual work δAΣ

p. Naturally, these higher order effects do not enter the first
order system that governs the small vibration problem as obtained from a linearisation about the
straight reference motion. Let {qqq, ppp} denote the vectors of generalised variables for the primary
fields w and pα , respectively. Then, the direct solution of the correspondingly linearised fluid
problem facilitates substitution of ppp, which leads to a reduced problem for the structural variables
qqq, given by the following linear gyroscopic system:

M · q̈qq+(C+G) · q̇qq+(K+N) ·qqq = 0. (7)

The fluid pressure distribution contributes to the damping C, stiffness K and circulatoric N matri-
ces, but has no impact on the mass M and gyroscopic G matrices. The parametric excitation in
terms of a time-dependent action of the pre-tension force N(t) leads to a periodic variation of the
stiffness matrix. We perform a modal analysis of the homogeneous pre-tensioned problem, pro-
ceed with the analysis of the parametrically excited system and gradually extend the investigation
by incorporation of the aformentioned sources of nonlinearity.
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Summary 

The advent of various transducer materials/devices and the rapid progress in microelectronics 

have resulted in the fast development of embedded structural health monitoring (SHM) systems. 

Currently there are two main classes of methods in SHM utilizing structural dynamic responses: 

the vibration-based and the wave propagation-based.  The vibration-based methods utilize the 

change of global natural frequencies/modes as inputs. However, for this approach to be effective, 

the wavelength of the response measurement should be smaller than the characteristic length of 

the damage. Obviously, the vibration-based methods have low detection sensitivity. Alternatively, 

high-frequency ultrasonic wave-based methods have been studied, which use the change of 

transient wave propagations to infer damage occurrence.  Although this class of methods lead to 

high detection sensitivity due to the high-frequency nature, it is difficult to use the transient 

responses to identify the damage accurately and especially to quantify the severity.   

The piezoelectric transducers possess two-way electro-mechanical coupling, which has triggered 

the recent interest in developing a third type of embedded SHM methods, the piezoelectric 

impedance-based methods. In such an approach, the piezoelectric transducer is driven by a 

sinusoidal voltage sweep, and the electrical response (i.e., the resulted current) is measured to 

extract the impedance/admittance information. The change of piezoelectric 

impedance/admittance signature with respect to that under the undamaged baseline state can be 

used as the damage indicator. The piezoelectric impedance/admittance can be extracted in high-

frequency range (e.g., higher than 30 kHz), leading to much higher detection sensitivity. Here we 

report how to utilize piezoelectric impedance/admittance measurement as active interrogation to 

identify both the location and severity of damage in a structure. 

When a piezoelectric transducer is integrated to a host structure, the coupled structure-transducer 

interaction is characterized by the following finite element based equations [1], 

Q+ + + =12Mq Cq Kq K 0  (1a) 

12 in

T
cRQ k Q V+ + =K q      (1b) 

where q is the displacement vector, ck is the reciprocol of the piezoelectric capacitance; 12K is 

the electromechanical coupling vector, and K, C, and M are the stiffness, damping, and mass 

matrices, respectively. In this research, we use piezoelectric admittance which is the reciprocal of 

impedance as information carrier for damage identification. We apply frequency-sweeping 

harmonic voltage excitation, denoted as inV . Q is the electrical charge, and R is the resistance in 

the measurement circuitry. Here we measure the voltage drop across the resistor, which is denoted 

as outV , and subsequently obtain the current as out /Q V R= . We let the excitation frequency be 

denoted as  , and use overbar hereafter to indicate magnitude of the corresponding response 

variable. Under such an active interrogation, the piezoelectric admittance of the healthy structure 

can be derived, based on Equations (1a) and (1b) as  
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 ( )
( )

1
2

in in
12 12

h T
c

Q j Q jy
V V j R k j

 


  
−

= = =
+ − + −K K C M K

                                (2)  

where j is the imaginary unit. In a finite element model for damage identification, the structure is 

generally divided into n segments. As such, the stiffness matrix with structural damage 

occurrence, dK , can then be expressed as ( )
1

1
n

i
d h i

i


=

= −K K , in which 
i
hK   is stiffness matrix 

of the ith segment under the healthy status.  0,1i   is the damage index indicating the possible 

stiffness loss percentage of the ith segment, which is to be identified. The piezoelectric admittance 

corresponding to the damaged structure can thus be written as 

 ( )
( )

1
2

12 12

d T
c d

jy
j R k j




  
−

=
+ − + −K K C M K

                                     (3) 

Based on the assumption of damage being small in size, we apply the Taylor series expansion to 

the expression of the change of admittance and ignore the higher-order terms. In damage 

identification practice, we conduct frequency sweeping in the frequency-range of interest, and 

acquire a series of admittance changes ( )1y  , , ( )my  , under m different excitation 

frequencies 1 , , m . We introduce the following notations of excitation frequency vector, 

admittance change vector, and damage index vector, 

1[ , , ]
T

m =ω                                                               (4a) 

( ) ( ) ( )1 , ,
T

my y  =    y ω                                                (4b) 

1[ , , ]
T

n =α                                                               (4c) 

Based on Equations (2) and (3), we can then obtain the following relation [2], 

 

1

1

( )

( )

m n n

m

y

y





 

 
 

 = =
 
  

y T α                                                          (5) 

where T is the finite element-based sensitivity matrix that links the admittance change vector with 

the damage index vector. 

 

It is worth emphasizing that, while the damage index vector α  and the admittance change vector 

is related directly as shown in Equation (5), this equation for solving for the damage index vector 

is oftentimes under-determined. Structural damage manifests itself only in the vicinity of the 

resonant peaks in the admittance measurements, which means the information for damage 

inference is generally limited. Although one can increase the number of sweeping frequency 

points of admittance measurement, there is no guarantee that the additional measurement would 

lead to linearly independent information in Equation (5). In other words, simply increasing the 

number of measurement points does not necessarily increase the row rank of the sensitivity matrix 

T. Aiming at tackling this issue, in this research we cast the inverse identification into a multi-

objective optimization formulation. One objective is obvious, i.e., we need to minimize the 

difference between the measured admittance change, y , and the model prediction in damage 

parametric space, Tα . In practical situation, damage usually occurs within a small region of the 

structure, especially when the damage is at its beginning stage with small size. Therefore, we 

introduce another objective function that the damage index vector α  is sparse with small 0l  

norm. The optimization problem then takes the following form with two objective functions, 

Find: nα E , l i u    , 1,...,i n=                                                   (6a) 
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Minimize: 
1 2

f =  −y Tα  and 
2 0

f = α                                             (6b) 

where 
2
  and 

0
 denote, respectively, the 2l  norm and the 0l  norm. It is important to note that 

a multi-objective optimization problem generally produces multiple solutions. This may fit well 

the under-determined nature of damage identification. The multiple solutions can be used as 

foundation for decision making in operations and maintenance (O&M), e.g., to continue 

operation, to dispatch further sensing mechanisms, or to pause for immediate repair. 

 

Our goal is to develop an effective algorithm to solve the above multi-objective optimization for 

a solution set that is small and diverse. In recent years, significant attention has been paid to 

integrating metaheuristics into stochastic optimization algorithms. Here we specifically choose 

the multi-objective particle swarm optimization (MOPSO) as the basic approach, owing to its fast 

convergence and the capability of obtaining a set of trade-off solutions in a single run [3]. This 

offers the opportunity to significantly improve the solution quality and diversity for damage 

identification inverse analysis with sparsity. Particle swarm optimization employs a single search 

strategy to quickly converge to an optimal local region. In the absence of external interference, 

particles may become trapped in a valley with poor solution quality. On the other hand, while 

reinforcement learning [4] allows for the selection of desired actions, the absence of a fitness 

function in these methods makes it difficult to determine how quickly the agent (i.e., particle) can 

control the system’s state to achieve a set of goal states. To address this, we combine the features 

of reinforcement learning and the MOPSO process. This combination allows for action selection 

by incorporating the Q-Table [4] into the fitness assessment of the MOPSO. As a result, agents 

can find the optimal path and learn the environment more efficiently with less complexity. 

Throughout the solution process, we embed a sparse population generation technique into the 

MOPSO, which enables the initialization and guidance of the solution sparsity. 

 

 
Figure 1. Case study setup 

 

The experimental setup is shown in Figure 1. Without loss of generality, we acquire the 

admittance change information around two frequencies, 3,194.95 Hz (the 28th natural frequency) 

and 3,705.8 Hz (the 31st natural frequency). The first frequency range for admittance measurement 

is from 3,150 Hz to 3,230 Hz and the second is from 3,650 Hz to 3,730 Hz. Each range has 401 

frequency sweeping points. In order to facilitate precise identification of damage 

location/severity, we divide the plate structure into 120 segments, i.e., 120n = in Equations (4c) 

and (5). Two cases are examined. For Case 1, the true damage is positioned at the 97th segment 

with a local severity of 12.5%. For Case 2, damage is present at segments 59 and 97, exhibiting 

stiffness reductions of 9.8% and 12.5% respectively. The identification results for the two cases 

are presented in Figures 2 and 3. In these figures, the horizonal axis indicates the segment number 

or the damage location. 

 

Four distinct observations can be obtained. First, within the setting of multi-objective 

optimization, for both cases we have obtained a set of multiple solutions for the under-determined 

problem. Second, the sizes of the solution sets are generally small, which align with our goal of 
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having a small solution set. Third, in both cases each individual solution/prediction exhibits good 

sparsity, with the maximum number of identified damage locations being four, which is indeed a 

very small number compared with the potential 120 damage locations, indicating the effectiveness 

of our identification process. Forth, for Case 1, solution (a) matches well with the true damage 

scenario, and for Case 2, solution (b) matches well with the true damage scenario. Therefore, we 

can conclude that the proposed technique can successfully identify the damage location and 

severity. In actual practice, once we obtain mutiple (e.g., 4) solutions for eaither case, we may 

dispatch further inspection to elucidate the actual situation, or decide O&M actions.   

 

 
Figure 2 Case 1 identification result: solution (a) matches with true damage scenario 

 
Figure 3 Case 2 identification result: solution (b) matches with true damage scenario 
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Summary 

Synergistic integration of modern "smart" materials (Table 1), structures, machines, sensors, 

actuators, and control electronics can transform conventional passive structures and machines to 

active, multi-functional and adaptive "smart" structronic (structure+electronic) systems with 

inherent self-sensing, diagnosis, control, heal/repair capabilities, etc [1,2]. Table 1 summarizes 

conventional smart materials, including piezo-/flexo-/pyro-electric, shape-memory, electro-

/magneto-/photo-strictive, polyelectrolyte, electro-/magneto-rheological, superconducting, 

electro-luminescence, magneto-optical, etc. materials.  Starting with an overview of smart 

materials, smart structures and advanced distributed parameter systems (DPSs) (e.g., nozzles, 

rockets, blades, mirrors, reflectors, antennas, solar panels/collectors, etc.), this report focuses on 

1) multi-field coupling and photo-magneto-thermoelectromechanical responses of distributed

photo-magneto-piezoelectric-thermoelastic structronic shell systems and 2) distributed sensing,

energy generation and control of structronic shell systems.

Table 1. List of smart materials. 

The first topic focuses on distributed actuation and control using various smart materials. 

Actuation forces and moments defined by piezo-/flexo-electric, electro-/magneto-/photo-strictive, 

light-actuated shape-memory polymer (LaSMP) actuators are discussed, Figures 1-4 [1,3-8].  
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Figure 1. Hybrid piezoelectric/electrostriction.        Figure 2. Photostrictive actuation. 

 

 

Figure 3. Flexoelectric stresses and actuation.            Figure 4. LaSMP induced control actions. 

 

Figure 1 illustrates the governing actuation {T} relationship of a hybrid 

electrostrictive/piezoelectric actuator with control voltage inputs Ei [3,4]; Figure 2 shows the 

photostrictive actuation force/moment 𝑁𝑖𝑗
𝑎 /𝑀𝑖𝑗

𝑎  behaviours when subjected to ultraviolet (UV) 

lights [5]. Figure 3 presents the flexoelectric actuation forces/moments induced by electric field 

gradients 
𝜕𝐸𝑖

𝜕𝛼𝑖
⁄  [6] and Figure 4, furthermore, presents the control forces/moments 𝑁𝑖𝑗

𝑎/𝑀𝑖𝑗
𝑎  of 

an LaSMP actuator when subjected to UV lights [7,8].  

 

Imposing Hamilton’s principle and incorporating all mechanical, electric, photo, etc. energies, 

one can derive shell’s dynamic equations in three principle directions 𝛼1, 𝛼2 and 𝛼3 (Figure 5) 

and boundary conditions [1], where Nij and Mij are membrane forces and bending moments 

(including both elastic, actuator and temperature induced components respectively denoted by 

superscripts m, c and θ), A1 and A2 are Lamé parameters, R1 and R2 are radii of curvature, Fi 

(i=1,2,3) are the input mechanical forces, ui (i=1,2,3) are the displacements on the neutral surface. 

In practical applications, two design principles, i.e., the segmentation technique and the shaping 

technique, are proposed. 
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 Figure 5. Hamilton’s principle, three dynamic equations & von Karman nonlinearity of shells. 

 

 

Simplifications of the generic double-curvature shell equations, Figure 5, to other shell/non-shell 

engineering structures, e.g., parabolic, toroidal, spherical, conical, cylindrical shells, rings, 

circular/rectangular plates, beams, etc. with two radii of curvatures R1 and R2 and two Lamé 

parameters A1 and A2 of selected shell/non-shell structures are demonstrated, Figure 6 [1].  

 

 

 
 

Figure 6. Generic double-curvature structronic shells and their derivative geometries. 
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The second topic focuses on distributed sensing, energy conversion and control of structroinc 

shells, i.e., elastic shells coupled with distributed sensing and control layers, including piezo-

/flexo-electric, LaSMP, electro-/photo-strictive, etc. materials. Microscopic distributed energies, 

membrane control forces and control moments are evaluated. Practical applications to other 

shell/non-shell structures (Figure 6) are also discussed.    

Acknowledgement 

This work was supported by the National Natural Science Foundation of China (NOs. 12272175, 

12102182, 12472346 and 11872206), and the State Key Laboratory of Mechanics and Control of 

Aerospace Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-

E-0521G01). Previous supports from AFOSR, ARO, NASA and NSF in USA are also gratefully 

acknowlegded. 

 

References 

[1] Tzou, H.S.: Piezoelectric Shells (Sensing, Energy Harvesting and Distributed Control), 2nd 

Edition (ISBN 978 94-024-1256-7), Springer Nature Publishers, 2019.  

[2] Tzou, H.S.; Lee, H.-J. and Arnold, S.M.: Smart Materials, Precision Sensors/Actuators, 

Smart Structures and Structronic Systems. Mechanics of Advanced Materials and Structures, 

Vol.11, pp.367-393, 2004.  

[3] Tzou, H.S.; Chai, W.K.; Arnold, S.M.: Structronics and Actuation of Hybrid 

Electrostrictive/piezoelectric Thin Shells. ASME Journal of Vibration and Acoustics. 

Vol.128, pp.79-87, Feb.2006. 

[4] Chai, W.K.; Tzou, H.S.; Arnold, S.M.; Lee, H.J.: Magnetostrictive Micro-actuations and 

Modal Sensitivities of Thin Cylindrical Magnetoelastic Shells. ASME Transactions, Journal 

of Pressure Vessel Technology, Vol.130, pp.011206-011206-5, Feb.2008.  

[5] Jiang, J.; Yue, H.H.; Den, Z.Q.; Tzou, H.S.: Cylindrical Shell Control with Center- and 

Corner-Placed Photostrictive Skew-Quad Actuator Systems. ASME Journal of Vibration and 

Acoustics, Vol.134, Issue 2: 024503-024505, 2013. 

[6] Tzou, H. S.; Deng, B; Li, H.: Flexoelectric Actuation and Vibration Control of Ring Shells. 

ASME Journal of Vibration and Acoustics, Vol.139, No.3, pp.031014, 

doi:10.1115/1.4036097, April, 2017. 

[7] Wang, D. ; Fan, M.; Su, Z.; Tzou, H.S.: Vibration Control of Hemispherical Shells with 

Light-Activated Shape Memory Polymers. AIAA Journal, Vol.58, No.3, pp.1369-1376, 

doi:10.2514/1.J058948, October, 2020 

[8] Li, H.Y. ; Wang, D. ; Tzou,H.S. : Experimental Study of Frequency Control of LaSMP 

Laminated Beams. ASME Journal of Vibration and Acoustics, Vol.144, No.5, pp.051012, 

doi:10.1115/1.4054436, October, 2022. 

 

ISVCS14 - Page 60 of 91



ISVCS14, 14th International Symposium on Vibrations of Continuous Systems
Grundlsee, Salzkammergut, Austria, July 27 - August 2, 2025

Asymptotic justification of the energy approach for estimating changes
of natural frequencies of elastic structures due to damage

Yury Vetyukov

Institute of Mechanics and Mechatronics
TU Wien

Getreidemarkt 9, 1230 Vienna, Austria
yury.vetyukov@tuwien.ac.at

Introduction

Changes in an elastic structure, such as additional compliance due to local damage (cracks) or vari-
ation of inertial properties, influence the spectrum of natural frequencies. This allows to infer the
severity and location of the damage by measuring the evolution of the natural frequencies, which
is relevant for the goals of structural health monitoring and requires efficient prediction methods
[1, 2]. The energy approach [3] estimates the small frequency shifts when the vibration modes of
the unperturbed (original) structure are available, which greatly simplifies the solution of problems
of structural optimization and damage identification. The asymptotic proof of the relations of the
energy approach is easy in case of simple changes in mass distribution or stiffness [4]. Another
explanation, presented in [5], features the asymptotic study of the continuum problem of elasticity
for a 3D body with perturbations in the geometry, thus modeling a crack as a cutout. Things get
more sophisticated in structural mechanics, when the damaged structure possesses richer kinemat-
ics than the original one, i.e. when the perturbed vibration modes become incompatible with the
constraints of the original structure. Thus, it is common to model cracks in beams or plates by
local hinges with rotational springs, which essentially introduces new degrees of freedom [6, 7].
Another example is the correction of the vibration frequency due to shear flexibility compared to
a Bernoulli-Euler beam or Kirchhoff plate model. Elastic supports also fall into this category.

This conference talk provides a novel proof of the energy approach using methods of structural and
analytical mechanics. With an asymptotic procedure at the abstract level of a discretized model, we
capture the full variety of linearly elastic structures such as rods, plates, and shells. We show for
the first time that the simple relations of the energy approach lose their validity in the situation of
multiple (repeating) natural frequencies and must be replaced by a specially constructed eigenvalue
problem of reduced dimensionality. Furthermore, we investigate the practically relevant vibrations
of a plate with a crack of arbitrary shape, modeled as a rotational spring. Small frequency changes
are evaluated at a post-processing stage based on the vibration modes of the unperturbed plate.

While the mathematical details of the formal proof of the energy approach for structures with
damage will be demonstrated in the conference talk, in the following we illustrate the theoretical
conclusions by simple "toy models". These models demonstrate the asymptotic accuracy of the
linearized relations for frequency increments.

Energy approach for a beam with added mass

The energy approach states the following expression for the increment of a natural frequency of
an elastic structure because of added elastic and inertial elements:

ω1 =
ω0

2T0
(U1 −T1). (1)
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Figure 1: Natural vibration of a beam with concentrated mass in the middle (a), frequency response
as of the exact eigenvalue problem Eq. (2) and the energy approach Eq. (6) (b)

Here ω0 is a frequency of the unperturbed (original) structure and T0 is the maximum value of
its kinetic energy over the vibration period with the respective vibration mode. The maximum
strain energy of the added elastic elements U1 and the maximum kinetic energy of the added
inertial elements T1 are as well computed for the unperturbed vibration mode. A formal proof
on the level of a discretized model as well as using the relations of the theory of elasticity is
provided e.g. in [4]. We illustrate the theoretical considerations by a simple example of vibrations
of a simply supported Bernoulli-Euler beam with a concentrated mass in the middle, see Fig. 1a.
Non-dimensionalizing, seeking the deflection in the form w(x, t) = W (x)sinωt and considering
symmetric vibration modes only, for the amplitude W we obtain the homogeneous boundary value
problem (BVP) in the left half of the domain 0 ≤ x ≤ 1/2:

W IV = ω
2W, W (0) = 0, W ′′(0) = 0,

W ′(1/2) = 0, 2W ′′′(1/2)+ω
2
µW (1/2) = 0.

(2)

The first two boundary conditions express vanishing deflection and bending moment in the hinge
at x = 0 and the third one is the symmetry condition in the middle. The last (fourth) boundary
condition features the ratio of the added mass to the mass of the beam µ . Indeed, the beam acts on
the mass with the force Q =−w′′′ from the left and from the right, resulting into the acceleration
ẅ =−2Q/µ . From the harmonic oscillation law follows, however, ẅ =−ω2w, which results into
the last boundary condition for the amplitude W .

The BVP Eq. (2) allows for a non-trivial solution W ̸= 0 when the parameter ω belongs to the
frequency spectrum. To solve this eigenvalue problem, we insert the fundamental solution of
the differential equation into the boundary conditions. Equating the determinant of the system
of algebraic equations for four integration constants to zero, we obtain the lengthy characteristic
equation for ω . Solving the equation numerically, we obtain the exact frequency in dependence
on µ as depicted in Fig. 1b.

Now we apply the energy approach Eq. (1) and notice that U1 = 0 (no change in stiffness). With
the first frequency and vibration mode of the unperturbed beam

ω0 = π
2, W0(x) = sinπx (3)

we compute the maximum of the kinetic energy of the beam

T0 = ω
2
0

∫ 1

0

1
2

W 2
0 dx =

π4

4
(4)

and of the mass

T1 = ω
2
0

1
2

µW 2
0 (1/2) =

µπ4

2
(5)
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χ−1

xw(x, t) w0(x, t)

Figure 2: Natural vibration of a damaged beam with rotational spring w(x, t) (solid line) and of a
"healthy" beam w0(x, t) (dashed)

and find the linearized frequency correction:

⇒ ω1 =−π2µπ4/2
2π4/4

=−π
2
µ. (6)

The comparison in Fig. 1b confirms the first order accuracy of the energy approach for this case.

Additional flexibility associated with released kinematic constraints

Experience shows that the energy approach successfully provides frequency changes because of
cracks, modeled by introducing a hinge and a rotational spring. This might be a single spring in
case of a beam or it can be distributed along a line on the surface of a vibrating plate, see [3].
The only theoretical justification to date is given in [5] and features an asymptotic study of the
continuum problem of elasticity with a small change of the volume of the body. A rigorous justi-
fication on the level of structural mechanics is possible by considering a discretized model of the
perturbed problem featuring its richer kinematics: the discontinuities are included in the kinematic
description involving the set of the generalized coordinates. For a finite element model this means
decoupling the rotational degrees of freedom in the nodes on the crack, thus allowing for a slope
discontinuity and keeping the deflections C0 continuous. Furthermore, one might consider other
kinematic constraints of the original structure replaced by elastic elements in the perturbed one:
adding shear deformability to a Bernoulli-Euler beam, taking flexibility of the support conditions
into account, etc. The asymptotic procedure on the level of a discretized model results into an
expression for the frequency reduction

ω1 =−ω0U1

2T0
. (7)

Not only the negative sign differs Eq. (7) from Eq. (1) with T1 = 0. More essentially, U1 is no
longer related to kinematic variables, but rather computed as the complementary strain energy of
the added elastic elements available in terms of the reaction forces and internal force factors in the
vibration mode of the unperturbed "healthy" structure.

As an illustration we consider a simply supported beam with a crack in the middle, modeled by
a hinge and a rotational spring with the stiffness χ−1, see Fig. 2. The amplitude W (x) follows
from the BVP Eq. (2) with the last two boundary conditions in the middle x = 1/2 replaced by
the conditions of the absence of the transverse shear force in the middle of the beam Q(1/2) =
−W ′′′(1/2) = 0 (symmetry) and the balance of the bending moment W ′′(1/2) and the moment in
the spring, whose angular deformation equals 2W ′(1/2):

W ′′′(1/2) = 0, W ′′(1/2)+2χ
−1W ′(1/2) = 0. (8)
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The unperturbed solution Eq. (3) follows at vanishing compliance χ → 0. The complementary
energy of the rotational spring equals

U1 =
M2

0
2χ−1 =

χW ′′2
0 (1/2)

2
=

χπ4

2
, (9)

here M0 = W ′′
0 (1/2) stands for the amplitude of the bending moment in the middle of the un-

damaged beam. The unperturbed kinetic energy retains the expression Eq. (4), and the frequency
correction follows with Eq. (7) to

ω1 =−π
2 χπ4/2

2π4/4
=−π

2
χ. (10)

Noticeably, this equals the expression in Eq. (6) when the mass parameter µ is replaced by the
compliance χ . Moreover, it can be shown that the characteristic equation for the new BVP is
mathematically equivalent to the characteristic equation of the BVP Eq. (2) with µ = χ – as it was
already demonstrated for axial vibrations in [8]. This means that the exact frequency response in
the problem with additional compliance is also identical to the one depicted in Fig. 1b.
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Introduction

The body of this paper considers a clamped free Bernoulli-Euler beam from which the natural
frequencies corresponding to in-plane flexure can be determined easily. A discrete lateral nega-
tive stiffness support is applied to the cantilever at its free end. The effect of the spring support
is to reduce the first eigenvalue to below zero. This paper shows that by redefining the problem
as a vibrating beam on a distributed elastic foundation, providing rotational restraint, ensures the
first eigenvalue becomes positive. For the problem considered the elastic foundation is equivalent
to tensile loading. The modified problem leads to the first eigenvalue being positive. However
the first eigenvalue of the original problem can also be computed with certainty by solving the
original governing differential equation with no elastic foundation which will have an initial neg-
ative eigenvalue. Negative eigenvalues typically signal instability in structural systems — such as
buckling or divergence — and arise in practical scenarios ranging from slender aerospace compo-
nents under axial load to MEMS devices incorporating negative-stiffness elements for enhanced
sensitivity. These modes are also intentionally exploited in compliant mechanisms and metama-
terials designed for vibration isolation or energy absorption. Mathematically, such eigenvalues
correspond to bound states in quantum graphs, where they reflect localized or unstable modes in
a network of differential operators. This spectral analogy allows tools from quantum graph the-
ory to inform the analysis of engineered structures with non-standard supports, reinforcing the
interdisciplinary relevance of the methods developed in this paper.

Theory

Consider first the exact, fourth order differential equation governing the harmonic motion of an
axially loaded Bernoulli-Euler beam of length, L, that is supported on a two parameter, distributed
foundation, whose transverse and rotational restraining stiffnesses per unit length are ky and kθ ,
respectively. The resulting equation is well known, can be deduced easily from Howson and
Watson [1] and can be written in the following non-dimensional form

[D4 +σ
∗2D2 −b∗2]V = 0 (1)

where D = d/dξ , ξ = x/L is the non-dimensional length parameter and V is the amplitude of the
transverse displacement

σ
∗2 = σ

2 − k∗θ b∗2 = b2 − k∗y (2)
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σ
2 = PL2/EI k∗θ = kθ L2/EI b2 = ρAL4

ω
2/EI k∗y = kyL4/EI (3)

ρ and E are the density and Young’s modulus of the member material respectively, A and I are the
area and second moment of area of the cross-section, ω is the radian frequency of vibration and P is
the static axial load in the member, which is positive for compression, zero, or negative for tension.
In this paper no axial loading is applied and no lateral elastic foundation is present hence σ2 = 0
and ky = 0. In the absence of axial loading and lateral stiffness (σ 2 = 0, ky = 0), the composite
parameter σ∗2 becomes purely negative due to the presence of rotational stiffness — effectively
modelling a tensile effect. More generally equations (2) and (3) establish the non-dimensional
member parameters σ2 and b2, which uniquely define the member effects of static axial load and
frequency, respectively [2,3], together with σ⋆2 and b∗2 which define their interaction with the
non-dimensional foundation parameters.

Vibrating beam on a distributed elastic foundation

Examining the form of equations(1) and (2) shows that the σ⋆2 term includes both axial load and
the rotational elastic foundation parameters. In essence what this means is that an axial tensile
load is equivalent to a rotational elastic stiffness foundation. Thus the exact dynamic stiffness
matrix for a freely vibrating beam on an elastic foundation can be written using the well known
expressions for an axially loaded beam, as follows.

KKK⋆
mem =

EI
L


γ ν −ε δ

ν α −δ β

−ε −δ γ −ν

δ β −ν α

 (4)

The individual terms of the matrix in Eq. (4) are given as

α =
(p2 +q2)(pcosh psinq−qcosqsinh p)

D
(5a)

β =
(p2 +q2)(qsinh p− psinq)

D
(5b)

δ =
(p2 +q2)pq(cosh p− cosq)

D
(5c)

ν =
pq[(2pqsinh psinq− (p2 −q2)(cosh pcosq−1)]

D
(5d)

ε =
(p2 +q2)pq(psinh p+qsinq)

D
(5e)

p2 =−σ⋆2

2
+

√
σ⋆4

4
+λ (5f)
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q2 =
σ⋆2

2
+

√
σ⋆2

4
+λ (5g)

λ =

(
ρAω2

EI

)
L4 (5h)

The exact results presented in this paper are independently checked using a well tested computer
program [4]. The independent check is an analytical result using one element for the beam. It
should be noted, that for results computed in this paper with an elastic foundation −σ∗2, the
numerical value of stiffness in equations (5f) and (5g) is large enough so that the first eigenvalue is
positive. An alternative method is to solve the problem using no elastic foundation which results
in imaginary frequencies i.e negative eigenvalues. Results using this approach are shown in Table
(1) below.

Example: Cantilever with a negative stiffness spring support at the free end

Once the stiffness matrix for the member has been obtained it is possible to look at the case of
the cantilever. For this case the left hand node all degrees of freedom are constrained hence with
row and column elimination the system stiffness matrix is a reduced form of the member equation
Eq. (4) and is expressed as a 2x2 matrix:

KKKCF =
EI
L

(
γ −ν

−ν α

)
(6)

where KCF is the system matrix for a cantilever. By introducing a discrete rotational spring of
stiffness h at node 2, we modify the (2,2) term of the reduced stiffness matrix. This is equivalent
to a shift in the spectrum, particularly impactful for the first mode.

KKK⋆
CF =

EI
L

(
γ −ν

−ν α +h

)
(7)

In the absence of an elastic foundation i.e. kθ = 0 the first eigenvalue can be negative if the value
of h is sufficiently large and negative. Computation of these eigenvalues can be difficult until
it is realised that the spectrum for the cantilever supported on a spring with a negative stiffness
can be shifted to the right i.e. increased by the addition of a distributed elastic foundation. It
is seen that all eigenvalues are increased. Therefore provided the magnitude of the stiffness of
the elastic foundation is sufficient to result in the first eigenvalue being a positive value, this first
eigenvalue (and higher eigenvalues) can then be computed of the modified problem with the elastic
foundation.

The determinant of Eq. (7) is given as

|K⋆
CF |= (γ)(α +h)−ν

2 (8)

The first eigenvalue λ1 that causes this determinant to be zero must be a positive number, i.e. be
above zero when the beam is vibrating freely on an elastic foundation as illustrated in Table (1).
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Table 1: First three eigenvalues for a cantilever beam with a negative lateral spring of stiffness
h =−4 with and without an elastic foundation −σ∗2 as shown. All numbers are non-dimensional.

Eigen −σ∗2 λ

No.
1 0 -4.28331
2 0 469.958
3 0 3790.65
1 20 313.530
2 20 899.904
3 20 4931.45

The new frequencies are thus higher when the beam is vibrating on an elastic foundation of positive
stiffness and the first eigenvalue is positive.
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Summary 

This study explores the vibrational behavior of sandwich structures made from metamaterials 
using experimental methods. The focus is on honeycomb plate structures, with specimens 
fabricated via 3D printing to incorporate chiral geometries and a negative Poisson’s ratio within 
their cores. The aim is to evaluate dynamic properties—such as natural frequencies and 
damping—and how these characteristics vary with temperature. The core layers, constructed 
from polylactic acid (PLA), were produced using 3D printing. Two distinct core designs were 
examined to compare their dynamic responses. The experimental procedures include impact 
hammer tests and sinusoidal excitations. The former are used to identify natural frequencies and 
mode shapes, while the latter are carried out on a shaking table inside a climate chamber to 
simulate realistic thermal conditions. Temperature plays a critical role in affecting the elastic 
and damping properties of the materials, as well as the specific mechanical response of the 
metamaterial structures. 
Spacecraft and aircraft experience intense dynamic loads during takeoff, landing, and critical 
flight conditions, driving the ongoing need for advanced material solutions. Modern flight 
vehicles increasingly rely on composite materials and sandwich panels—lightweight structures 
known for their high impact resistance [1], thermal insulation, and cushioning capabilities [2]. 
Metamaterials, which are artificially engineered to exhibit specific physical properties derived 
from their unit cell geometry rather than their chemical composition or crystal structure, are 
gaining significant attention. Integrating metamaterials with composite materials has led to the 
emergence of a new class of sandwich structures known as composite mechanical metamaterials 
(CMMs). 
In this work, we investigate a sandwich plate composed of carbon fiber face sheets and a 3D-
printed honeycomb metamaterial core. The core structure is formed by the periodic arrangement 
of chiral unit cells exhibiting auxetic behavior, characterized by a negative Poisson’s ratio. After 
fabricating the test specimens, experimental modal analysis is performed using impact hammer 
tests to determine the structure’s mode shapes, natural frequencies, and damping ratios. 
Additionally, a series of shaking table tests are conducted within a climate chamber to assess 
how varying temperature conditions influence the dynamic response of the plate. 
We consider a sandwich plate shown in Figure 1; the plate is made by 3 layers, the external ones 
are carbon fiber/epoxy resin (CFRP) composites of thickness t1= t3=0.5 mm, with a 0/90° weft 
and warp stacking sequence. The intermediate layer, i.e. the core, has thickness t2=5 mm. 
Two core patterns are considered, see Figure 2. 

     Antonio Zippo*, Moslem Molaie*, Francesco Pellicano*
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Figure 1. Dimensions of the sandwich panel. 

 
(a) (b) 

  
Figure 2. Patterns of the core layer: (a) regular hexagonal and (b) hexachiral core layers. 

 
The experimental setup is shown in Figure 3, cantilever boundary conditions (CFFF) were 
imposed by rigidly clamping the lower edge of the plate using a vibration table adapter (VTA). 
Before conducting the shaking table tests, an impact modal analysis was carried out to identify 
the mode shapes of the samples. For this purpose, a PCB microhammer (model 086D80) with a 
vinyl tip was used to excite the structure, while a PCB monoaxial accelerometer (model 
352C22) measured the response. Specifically, a 20-point grid was marked on the sandwich 
panel, and the roving hammer technique was employed to obtain the frequency response 
functions (FRFs). 
 

 
Figure 3. Test setup. 

 
Samples with identical unit cell densities exhibited similar mode shapes, regardless of core 
topology, see Figure 4a. The first mode shape corresponds to the fundamental cantilever beam 
mode, while the second displays a torsional behavior. Variations are observed in the FRF 
amplitude, with the sandwich featuring a regular honeycomb core demonstrating higher 
damping ratios. 
Figure 4b summarizes the variation of natural frequencies and damping ratios as functions of 
test temperature. All samples exhibit a consistent trend, with natural frequencies decreasing 
monotonically as temperature increases. The damping ratio reaches its minimum at 0°C for the 
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sandwich with a regular core, and at 20°C for the sandwich incorporating a hexachiral 
intermediate layer. The key differences lie in the absolute values: the sandwich plate with an 
auxetic core shows higher natural frequencies but lower damping ratios compared to the 
sandwich with a regular honeycomb core 

a) b) 

Figure 4. Dynamic characteristics: a) room temperature tests, frequency response functions for 
hexagonal and chiral cores; b) natural frequencies and damping dependence on temperature. 
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Conclusions
This study presents an experimental investigation into the dynamic response of sandwich panels 
featuring both auxetic and non-auxetic cores. Detailed descriptions of the test specimens and the 
experimental setup—used for modal analysis and shaking table tests across various temperature 
conditions—are provided. Under cantilever boundary conditions, the mode shapes were 
identified. Shaking table tests performed in controlled thermohygrometric environments 
revealed clear distinctions in natural frequencies and damping ratios between the samples. 
Notably, the sandwich panel with an auxetic core demonstrated greater stiffness and lower 
damping compared to its counterpart with a regular honeycomb core. 
Acknowledgement: COMETA G6176
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Prof. Haim Abramovich 
Faculty of Aerospace Engineering 

Technion, I.LT., 32000, Haifa, ISRAEL. 
Email: haim@technion.ac.il; 

abramovich.haim@gmail.com 
Tel : +972 544 696566 

Obtained his B.Sc., M.Sc. and Ph.D. degrees from the Faculty of Aerospace Engineering, 
Technion, in 1975, 1979 and 1983, respectively. 

His Ph.D. thesis was entitled "The behavior of the Blade of a Darrieus Wind Turbine", 
while his M.Sc. thesis title was "Correlation between Vibrations and Buckling of Stiffened 
Shells with Realistic Boundary Conditions and Combined Loading". 

He has been with the Technion since 1987, and currently he is the head of the Aerospace 
Structures Laboratory. 

He spent three years with the Israeli industry and between 1996-1998 he was Guest 
Professor at ETH Zurich Institut fur Leichtbau und Seilbahntechnik, Switzerland, while 
from March-September 2018, he was at the Faculty of Aerospace Engineering, TU Delft, 
the Netherlands. 

His main fields of interest are: static and dynamic stability of thin walled structures, 
piezoelectric materials, laminated composite structures, dynamic buckling of thin walled 
structures, smart structures technologies, structural mechanics and energy harvesting using 
piezoelectric and pyroelectric materials . 

He has published more than 107 papers in well-known international journals on these 
quoted subjects. He is the author of 10 patents on piezoelectric harvesting devices. He is 
also the author of two new books with another one in progress: 

1. H. Abramovich, Intelligent Materials and Structures,© 2016 Walter de Gruyter
GmbH, Berlin/Boston, 386 p.

2. H. Abramovich, Stability and Vibrations of Thin Walled Composite Structures,©

2017 Woodhead Publishing Limited, 540 p.
3. H. Abramovich, Advanced Aerospace Materials - Aluminum-based and

Composite Materials, in progress, to be published by Walter de Gruyter GmbH,
Berlin/Boston.

Since 2017, Editor-in-Chief of The Open Aerospace Engineering Journal, Bentham Open. 
Since 2013, editorial board member of the International Journal of Composite Materials 
Since 2014, editorial board member for International Journal of Aeronautical Science & 
Aerospace Research (IJASAR). 
Since 2018, editorial board member for Actuators, MDPI. 
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     CV of Igor ANDRIANOV, RWTH Aachen University 

The academic history of Igor Andrianov consists of the following steps: 

1971- MSc, Mechanics, Dnepropetrovsk State University (DSU); 1975 - 

PhD, Physics and Mathematics, DSU; 1990 – DSc, Mechanics of Solids, 

Moscow Institute of Electronic Engineering; 1991 -Professor; 1996 - 

Soros Professor. 

He worked at DSU, Dnepropetrovsk Civil Engineering Institute, RWTH 

Aachen University. 

Co-author of 19 monographs published by various leading publishers. 

Editor of 3 books. Author or co-author of more than 300 papers in leading 

international journals. Speaker, invited speaker at numerous international 

conferences, organizer a large number of mini-symposiums. Recipient of 

scientific grants from the USA, Germany, the Netherlands, England. He 

supervised 25 PhD students. 

Scientific interests: Asymptotology, Nonlinear Dynamics, Composite 

Materials, Mechanics of Solids, Science popularization.  
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Professor J R Banerjee, Emeritus Professor of Structural Dynamics 

School of Science and Technology, City St George’s, University of London, United Kingdom 

Professor Ranjan Banerjee received his Bachelor’s and Master’s degrees in mechanical engineering 

from the University of Calcutta (1969) and the Indian Institute of Technology, Kharagpur (1971) 

respectively. He joined the Structural Engineering Division of the Indian Space Research Organisation, 

Trivandrum and worked there for four years (1971-75) first as a Structural Engineer and then as a Senior 

Structural Engineer. He was involved in the research and development of multistage solid propellant 

rocket structures with particular emphasis on dynamic response. Later in the year 1975 he was awarded 

a Commonwealth Scholarship by the Association of Commonwealth Universities to study for a PhD 

degree at Cranfield University where he researched within the areas of structural dynamics and 

aeroelasticity. He completed his PhD in 1978. An important spin-off from his PhD work is the 

development of an aeroelastic package called CALFUN (CALculation of Flutter speed Using Normal 

modes) which has been extensively used as a teaching and research tool in aeroelastic studies. 

Professor Banerjee joined the University of Cardiff as a Research Associate in 1979 and worked there 

for six years on vibration and buckling characteristics of space structures using the dynamic stiffness 

method. He worked in close collaboration with NASA, Langley Research Center, and was principally 

involved in the development of the well-established computer program BUNVIS (BUckling or Natural 

VIbration of Space Frames) which was later used by NASA and other organizations to analyse 

spacecraft structures. He was promoted to the position of Senior Research Associate in 1982. 

Professor Banerjee joined City, University of London in 1985 as a Lecturer in Aircraft Structures. He 

was promoted to Senior Lectureship and Readership in 1994 and 1998 respectively. In March 2003 he 

was promoted to Professorship. He was elected to the EPSRC Peer Review College in 1996 and served 

until 1999, and was re-elected in 2002, and is currently serving in the College. He has been conducting 

research within the technical areas of structural dynamics, aeroelasticity and composite materials for 

well over 40 years. To date he has published around two hundred and fifty papers in international 

journals and established conferences. In recognition of his research, he was awarded the degree of 

Doctor of Science (DSc) by City, University of London in 2017. Professor Banerjee is a Chartered 

Engineer and a Fellow of the Royal Aeronautical Society and the Institution of Structural Engineers 

and an Associate Fellow of the American Institute of Aeronautics and Astronautics.  
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Technion - Israel Inst. of Technology - Faculty of Civil Engineering 

Moshe Eisenberger

July 2023

Degrees 

B.Sc.    Civil Engineering, Technion, Haifa  1977 

M.Sc.    Civil Engineering, Stanford University, USA 1978 

Engineer Civil Engineering, Stanford University, USA 1979 

Ph.D. Civil Engineering, Stanford University, USA 1980 

Academic Appointments 

Lecturer Civil Engineering, Technion, Haifa 1980 

Senior Lecturer   Civil Engineering, Technion, Haifa 1985 

Tenure Senior Lecturer Civil Engineering, Technion, Haifa 1987 

Associate Professor  Civil Engineering, Technion, Haifa 1993 

Professor  Civil Engineering, Technion, Haifa 2003 

Professor Emeritus  Civil Engineering, Technion, Haifa 2020 

Publications and Supervision of Graduate Students 

Published over 100 Journal papers and 100 Conference papers 

Supervised 32 Ph.D. and MSc. Students 

Research Interests 

Main area is applied and computational mechanics including static, dynamic, and stability 

analysis of structures. In the last 20 years I have been working on Dynamic Stiffness Analysis 

of various elements. Recent years were devoted to the exact solution for plate and shell 

vibrations. 

Personal Interests 

I am an active cyclist both road and mountain, and hiker. In the last years before retirement I 

was on sabbatical leave in Argentina and Brazil. 
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Matteo Filippi is a Associate Professor of the Department of Mechanical and Aerospace Engineering at 

Politecnico di Torino, Turin, Italy. received a Bachelor's degree in Aerospace Engineering in 2009, 

followed by a Master's degree in 2011. He subsequently obtained his Ph.D. from the same university in 

2015. His research primarily focuses on the development of high-fidelity finite elements for stress and 

dynamic analyses of structures made of advanced materials, axial rotors, and rotary-wing 

configurations, as well as coupled thermoelastic formulations and geometric and dynamic stability 

analyses. Matteo has co-authored more than 100 scientific papers on these topics, which have been 

published in peer-reviewed international journals. He serves as editorial member of Mechanics of 

Advanced Materials and Structures and Shock and Vibration. 
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Alexander Humer is an Associate Professor at the Institute
of Technical Mechanics (chaired by Prof. Michael Krommer) at
Johannes Kepler University (JKU) Linz, Austria. He completed
his doctoral studies under the supervision of Prof. Hans Irschik,
focusing on nonlinear problems in the dynamics and stability of
beams, and received his PhD in 2013. Following a brief excur-
sion into non-university research, Alexander began his tenure as
assistant professor at JKU and was awarded the venia docendi (ha-
bilitation) in engineering mechanics in 2020. In parallel with his
academic career at JKU, he has been lecturing for over a decade
at the University of Arts Linz, where he teaches fundamentals of
engineering mechanics to design students.

His research spans a wide range of topics in structural and continuum mechanics as well
as the development of numerical methods. Notably, he has developed a generalized sliding
beam formulation to describe dynamic problems in structures exhibiting motion relative to
their supports—work inspired by the classical “spaghetti problem.” He also contributes to
the continuum modeling of electro-mechanically coupled systems, including the constitutive
modeling of poling processes in ferroelectric materials and the development of mixed finite
elements for thin-walled piezoelectric structures.

In the field of numerical methods, his recent work includes extending mixed finite ele-
ment formulations to problems in elasto-plasticity and creating low-regularity shell elements
for simulating viscoelastic plates and shells. His research further encompasses the design and
synthesis of compliant mechanisms capable of large deformations, utilizing multi-objective op-
timization. A hybrid structural/continuum approach integrates computational efficiency and
accuracy. Another focus of Alexander’s work lies in structural health monitoring, particularly
the real-time localization of impacts on thin-walled composite structures using state-of-the-art
AI techniques.

He serves on the editorial advisory board of Acta Mechanica and is an associate editor
for CMES – Computer Modeling in Engineering & Sciences. Since 2024, he has been a scien-
tific board member of the international conference on Design, Modelling and Experiments of
Advanced Structures and Systems. He was member of the organizing committee of the 11th
ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2025), which
was hosted by the Institute of Technical Mechanics in July 2025.
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Sinniah Ilanko, The University of Waikato/Te Whare Wananga o Waikato 

 
Ilanko was born in the north of Sri Lanka (Jaffna), and according to the common Tamil 

practice, he does not have/use a family name. Ilanko is his given name and Sinniah is his 

late father’s given name, and conveniently remains informal as ‘Ilanko’. 

 

He graduated from the University of Manchester (U.K) with a BSc in civil engineering 

and also obtained an MSc from the same university under the supervision of late Dr S.C. 

Tillman, investigating the effect of initial imperfections on in-plane loaded rectangular 

plates. He commenced doctoral studies at the University of Western Ontario under the 

supervision of Professor S.M. Dickinson, continuing on the same topic. Soon after 

completing his PhD, he worked as a postdoctoral fellow at the UWO briefly before 

joining the University of Canterbury (NZ) in 1986. He continued his academic career at 

Canterbury for nearly 20 years, in various positions, as lecturer, senior lecturer and 

associate professor until he joined the University of Waikato in 2006. In 2012 he became 

a full professor. He has served as the Chairperson and later the Head of School of 

Engineering from January 2013 to December 2015. He has also previously served as the 

Head of Mechanical Engineering Department at Canterbury (2001-2202). He retired from 

his professorial position at the University of Waikato, but continue to be associated with 

it as an Honorary Professor, working on joint research with colleagues and research 

students. 

 

His research areas include vibration and stability of continuous systems, numerical 

modelling and adaptive mechanisms. His most recent research projects include active 

control for adaptive stiffness foundations for earthquake isolation and crack detection 

using frequency measurements in structures with roving test bodies possessing rotary 

inertia. He has published 46 journal papers and in 2014 authored a book “The Rayleigh-

Ritz Method for Structural Analysis” jointly with Dr Luis Monterrubio and Dr Yusuke 

Mochida. He has served as the Subject Editor for Journal of Sound and Vibration (2009-

2020), for analytical methods for linear vibration and since 2021 he has been serving as  a 

Receiving Editor/Deputy Editor-in-Chief. He has secured two major grants, a Marsden 

grant for research into vibration analysis of complex structures and a grant by the New 

Zealand government’s Ministry of Business Innovation and Employment (Category 

Smart Ideas) to conduct research on the development of an omnidirectional base isolator. 
 

His current research topics include adaptive vibration isolation from vertical seismic 

excitation and crack detection. He is also interested in computer-aided learning and has 

developed and used several interactive lectures and tutorials for teaching Mechanics of 

Materials and Vibration, as well as computer-based interactive tutorials and games for 

learning/teaching Tamil language.  

 

ISVCS14 - Page 78 of 91

https://www.waikato.ac.nz/news-opinion/media/2011/negative-concepts-lead-to-positive-results-for-waikato-researcher
https://www.waikato.ac.nz/news-opinion/media/2011/negative-concepts-lead-to-positive-results-for-waikato-researcher
https://i.stuff.co.nz/national/107339393/Waikato-University-engineering-research-inspired-by-collapsing-plant


ZHAO JING             
 
Personal Data 
Professor Zhao Jing was born on 20th, January, 1989.  Currently work at 

School of Aeronautics, Northwestern Polytechnical University.  Hobbies 

include basketball, swimming, and hiking.  
 
Email: jingzhao@nwpu.edu.cn  

Website: https://teacher.nwpu.edu.cn/2019010151.html 

Google Scholar Profiles: https://scholar.google.com/citations?user=UHKpbYEAAAAJ&hl=zh-CN 

 
EDUCATIONAL BACKGROUND  
 
09/2011 – 01/2017  D.Eng. in Aircraft Design, Northwestern Polytechnical University 
03/2015 – 03/2016  Joint PhD training in Mechanical Engineering, Loughborough University, UK 
09/2007 – 06/2011  B.S. in Aircraft Design & Engineering, Northwestern Polytechnical University 
 
WORK EXPERIENCE 
 
07/2019- Present  

Associate Professor, School of Aeronautics, Northwestern Polytechnical University 

01/2017-06/2019  

Postdoctoral, Department of Mechanics, Huazhong University of Science and Technology 

 
RESEARCH INTERESTS 
 
His research spans a wide range of challenges lying at computational solid mechanics, mechanics 
of variable stiffness structures, composite structures optimization, aircraft structural design and 
lightweighting, plate and shell structural analytical methods and numerical techniques. 
He combines mathematics, experiments, mechanics theory, computer programming and 
simulations to develop innovative numerical methods and optimization techniques for simulations 
of structural behaviors with complex geometries and optimizations of large-scale composite 
structures. Currently working on developing a new numerical method, energy element method 
(EEM) /discrete Ritz method (DRM), combining extended interval integral, Gauss quadrature, 
variable stiffness, energy elements, and a global trial function to address the mechanical 
variational problems of structures on complex geometric domains. Simultaneously, he has 
developed several optimization algorithms based on mechanics of composite materials, i.e. two 
and three-dimensional sampling optimization algorithms, sequential permutation search, variable 
stiffness optimization algorithm, and global-shared layer blending method for design and 
optimization of large-scale composite structures.   
 
MAJOR ACCOMPLISHMENTS 
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Hosted the two National Natural Science Foundations, Qin Chuangyuan Construction of Two-Chain 
Integration Special Project, Aeronautical Science Foundation of China, Natural Science Foundation 
of Shaanxi Province, two Foundations of Central Universities.  Published more than 40 papers and 
authorized 5 national invention patents. Give more than 20 talks at int. conferences.  
In 2023, he obtained the Digital Simulation Youth Science and Technology Award (China Digital 
Simulation Society) for solving the problem that Ritz method (a variational method) could not be 
applied on complex geometric domains. In 2022, he obtained the first prize of the Shaanxi Higher 
Education Institutions Science and Technology Research Outstanding Achievements Award, the 
second prize of the China Composite Materials Association Science and Technology Award, and the 
2019 Shaanxi Province Excellent Doctoral Thesis and Excellent doctoral thesis from Northwestern 
Polytechnical University, for his research on large-scale composite structures optimization. 
 
Reviews of Journal papers  
 
AIAA Journal; Computer methods Applied in Mechanics and Engineering; Computers & Structures; 
Thin-walled Structures; Composite Structures; International Journal of Mechanical Science; 
Engineering Analysis with Boundary Elements; International Journal of Structural Stability and 
Dynamics;  Structures; Engineering Structures; Mathematics. 
 
SELECTED KEY PUBLICATIONS  

1. Jing, Z.* (2024): Energy Element Method for Three-Dimensional Vibration Analysis of Stiffened 
Plates with Complex Geometries. AIAA Journal. 62(11): 4189-4206. 

2. Jing, Z.* Liu Y, Duan L, et al. (2025):  Three-dimensional buckling analysis of stiffened plates with 
complex geometries using energy element method. International Journal of Solids and 
Structures. 306: 113105. 

3. Jing, Z.*, (2023): Variable stiffness discrete Ritz method for free vibration analysis of plates in 
arbitrary geometries. Journal of Sound and Vibration. 553, 117662.  

4. Jing, Z.*, Duan, L. (2024): Free vibration analysis of three-dimensional solids with arbitrary 
geometries using discrete Ritz method. Journal of Sound and Vibration. 571, 118132.  

 
5. Jing, Z.*, Duan, L., (2023): Discrete Ritz method for buckling analysis of arbitrarily shaped plates 

with arbitrary cutouts. Thin-Walled Structures. 193, 111294. 
 
6. Jing, Z.*, (2022): Lamination Parameter-Based Two-Dimension Sampling Optimization Method 

for Stacking Sequence Design of Composite Laminates. AIAA Journal. 60(5), 3225-3250. 
 
7. Jing, Z.*, (2020): Semi-analytical Optimal Solution for Maximum Buckling Load of Simply 

Supported Orthotropic Plates. International Journal of Mechanical Sciences. 187: 105930.  
 
8. Jing, Z.*, Duan, L., Wang, S., (2024): Buckling optimization of variable-stiffness composite plates 

with two circular holes using discrete Ritz method and potential flow. International Journal of 
Solids and Structures. 297: 112845.  
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Dr. Moslem Molaie Emamzadeh is a researcher in 

mechanical engineering with a strong focus on nonlinear 

dynamics, mechanical transmissions, and structural 

vibrations. He earned his Ph.D. in Mechanical Engineering 

from the University of Modena and Reggio Emilia, Italy, 

where he developed advanced models on the nonlinear 

dynamics of spiral bevel gears under the supervision of Prof. 

Francesco Pellicano. 

Prior to his doctoral studies, Dr. Molaie completed his M.Sc. 

and B.Sc. in Mechanical Engineering at Shahid Bahonar 

University of Kerman, Iran, specializing in applied mechanics and solid mechanics. His early 

research included simulation-based optimization of gear systems and advanced material 

processing in large-scale industrial settings, such as the Sarcheshmeh Copper Complex. 

Dr. Molaie has contributed to several international research projects in Italy and Iran, ranging 

from Industry 4.0 predictive maintenance platforms to gear life prognostics using advanced 

simulation tools like KISSsoft and Romax. He is currently involved in research projects on 

electromechanical actuators for e-mobility and sustainable retrofitting of industrial 

machinery. 

He is the author of over 20 peer-reviewed journal articles and numerous international 

conference papers, and has received honors such as the “Sir James Lighthill Student Best 

Paper Award” and the “CM 2024 Conference Attendance and Travel Award.” Dr. Molaie 

is also active in teaching and mentoring. He has served as a teaching assistant in subjects 

such as Vehicle Mechanics and Prognostics and Diagnostics, and previously worked as a lab 

manager for dynamics and vibration courses. 
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Dr. Fan Mu is an Associate Researcher at the College of Aerospace 

Engineering, Nanjing University of Aeronautics and Astronautics. He 

earned his Ph.D. in Engineering Mechanics from Nanyang 

Technological University, Singapore, and his bachelor’s degree in 

Aircraft Design from Harbin Institute of Technology. On December 7, 

2020, he was elected as a member of the Academic Committee of the 

American Society of Mechanical Engineers "Dynamics and Control of 

Systems and Structures (DCSS)", and in December 2022, he was elected as a member of the 

Academic Committee of the International Conference on Adaptive Structures and Technology 

of ICAST. He has published more than 50 academic papers, including mainstream journals in 

the fields of AIAA Journal, ASME Trans. JVA, JIMSS, etc. He hosted several coupling special 

sessions at the IMECE conference of the American Society of Mechanical Engineers 

(2019~2023) and co-organized the IDETC-CIE "Structural Electronic Systems and Precision 

Drives" WORKSHOP. He was approved for the Ministry of Science and Technology's High-end 

Foreign Experts Introduction Program, the National Natural Science Foundation (General, 

Youth), and the Jiangsu Natural Science Foundation. He participated in a number of 

cooperative technology development projects with scientific research institutes such as the 

First, Second, and Third Academy of Aerospace, and participated in 2 major national scientific 

and technological research projects. The research group currently has 6 graduate students. 

Most of the graduated students are employed in aerospace research institutes and 

central/state-owned enterprises. 
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Yoshi (Yoshihiro Narita) 

Hokkaido University (Prof. Emeritus), Sapporo, Japan 

   I am a retired professor of Mechanical Engineering at Hokkaido University (HU) Sapporo 

Japan and other institutions. I started my research on vibration of continuous systems when I 

was a PhD student under adviser Prof. Irie of HU in 1976, and had a chance to study one year 

in 1978-1979 under Prof.Leissa at the Ohio State University. I have attended all the ISVCS’s 

except for only once. I am very delighted to see old and new friends in Austria. I also hope to 

enjoy hiking this time (in 2024, I took surgeries to replace both of my knees with artificial 

mechanical joints). 

Let’s enjoy!  

<career> 

1951 Born in Sapporo, Japan (now, age 74) 

1980 PhD Hokkaido University 

1980-2004 Hokkaido Institute of Technology (Sapporo) 

2004-2017    Hokkaido University (Sapporo)(now, Professor Emeritus) 

2017-2020    JICA (Japan Intl. Corp. Agency) advisor for universities in east Indonesia 

2020-2023    Yamato University (Osaka) 

2023-present Board chairman of Hokkaido Lutheran Institution (running four kindergartens) 
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Alfonso Pagani is Professor in the Department of Mechanical and Aerospace 

Engineering at the Politecnico di Torino. He earned a PhD in Fluid Dynamics 

(Aeroelasticity) from the Politecnico di Torino in 2015 and later a PhD in 

Aerospace Engineering from City University of London. 

Dr. Pagani is associate editor for AIDAA Aerotecnica Missili & Spazio, Advances 

in Aircraft and Spacecraft Structures and the International Journal of Dynamics 

and Control. He conducts his research on Carrera Unified Formulation (CUF), 

structures, space mechanisms and advanced materials mechanics at the MUL2 

Lab (www.mul2.com). He has published over 200 scientific articles in leading 

international journals, contributing to both fundamental and applied aspects 

of aerospace engineering and structures. Recognizing his contributions to the 

field, he has indeed garnered several prestigious awards, including a Wiley Best Paper Award in 2023 and 

the Ian Marshall's Award in 2013.  

Dr. Pagani is the PI of the EU-H2020 ERC-StG project PRE-ECO, which aims to explore a novel approach to 

addressing the challenges associated with the design of variable stiffness structures for aerospace 

applications (www.pre-eco.eu). Additionally, he is the deputy for Spoke 8 in the Extended Partnership 

"Space It Up!", a program funded by the Italian Space Agency that focuses on advancing human and robotic 

space exploration. 

In 2018, Alfonso joined the California Institute of Technology as a Visiting Associate to work on the acoustics 

of metamaterials. He has also conducted research at Purdue University in 2016, where he worked on the 

micromechanics of fiber-reinforced composites; at RMIT in Melbourne in 2014; and at the University of 

Porto in 2013.  

Since 2013 in Courmayeur, Alfonso has been a regular attendee of the ISVCS. 
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CV of Jakob Scheidl
Institute of Mechanics and Mechatronics, Mechanics of Solids,
TU Wien

Dr. Jakob Scheidl is a tenure track holder at the
research unit Mechanics of Solids at the Institute of
Mechanics and Mechatronics at TU Wien, Austria.

He obtained his master’s and doctoral degrees in
mechanical engineering at TU Wien. His primary
field of expertise is structural mechanics, with par-
ticular focus on dynamics and quasistatics of mov-
ing structures, distributed frictionless and frictional
contact of thin structures with solid counterparts,
and structures that exhibit in-elastic material be-
haviour such as plasticity.

Jakob Scheidl currently leads a nationally funded research project on the simulation of contin-
uous roll forming of thin metal sheets. For this sake, special algorithms are combined with an
application-oriented shell finite element model, including contact and plasticity, to facilitate the
efficient simulation of the continuous forming process.

As a prospective member of the editorial board, Jakob Scheidl frequently acts as a reviewer for
Acta Mechanica. He has organised mini-symposia with regards to dynamics and large deforma-
tions of structures and acts as local co-organiser of this years ISVCS symposium in Austria.
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Bio: Dr. Jiong Tang is the Pratt & Whitney Chair Professor in Design 

and Manufacturing at School of Mechanical, Aerospace, and 

Manufacturing Engineering, University of Connecticut (UConn), USA. 

Dr. Tang’s principal teaching and research interests are in the general 

areas of dynamics and vibrations, control, sensing and automation.  He 

received the B.S. and M.S. degrees in Applied Mechanics from Fudan 

University, China, in 1989 and 1992, respectively, and the Ph.D. degree 

in Mechanical Engineering from the Pennsylvania State University in 

2001. Prior to joining UConn in 2002, he worked in GE Research Center 

as a research engineer. Dr. Tang’s research has been supported 

extensively by federal agencies including NSF, DOD, NASA, DOT etc, 

and by industries, with total amount exceeding $30M. He has published over 270 journal articles and 

conference papers. Dr. Tang is a Fellow of the ASME and an elected member of the Connecticut Academy 

of Science and Engineering. He received the N.O. Myklestad Award of ASME in 2024, in recognition of 

major innovative contribution to vibration engineering.  
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  Hornsen (HS) TZOU, Nanjing Univ. of Aeronautics and 

Astronautics, Nanjing, PRC;  Univ. of Kentucky, USA. 

Hornsen (HS) TZOU is an ASME Fellow, British RSA Life-fellow, ScholarGPS Highly Ranked 

Scholar worldwide #6 in Vibration Control and #10 in Piezoelectricity, Professor Emeritus of 

the University of Kentucky, the 1st-round Chinese QR Fellow of China (2008) and was the 

Director of Interdisciplinary Research Institute of Aero. & Astronautics in College of 

Aerospace Engineering at Nanjing University of Aeronautics and Astronautics, a 

Chair-Professor at Zhejiang University etc. He was among the pioneers in “smart structures 

and structronic systems.” His research and teaching interests encompass smart structures 

and structronic systems, multi-field photo/electro/magnetic/elastic/temp. coupling and 

distributed control, design and precision-actuation of devices, sensors and actuators, etc.  

He worked/visited at IBM, Wright Laboratory, the Institute of Space and Astronautical 

Science (Japan), Tohoku University, the Otto-von-Guericke University of Magdeburg and 

German Aerospace Research Establishment (DLR), Amway Research R&D, Tokyo Institute of 

Technology, NASA-Levis, Harbin Institute of Technology, Natl. Taiwan University, etc. Dr. Tzou 

has won many ASME/AIAA Best-Paper Awards, ASME Outstanding Service Awards and NASA 

Class-1 New Technology Disclosure Awards, etc. He has published over 500 technical 

publications, authored Piezoelectric Shells (Sensing, Energy Harvesting and Distributed 

Control), Distributed Control of Nonlinear Structronic Shells and Design of Smart Structures, 

Devices and Structronic Systems, and edited seven other books.  

He was the Chair of ASME Board on Technical Knowledge 

Dissemination, Executive Member of Technical Communities 

Operating Board and Chair of the Interdisciplinary Councils, a 

founding member of the ASME Adaptive Structures and Material 

Systems Committee (now a Division), a life-member of ASME 

Dynamics and Control of Structures and Systems committee, ICAST 

IOC member, Chief-editor of J. of Aerospace Sc. and Technology, etc. 
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Prof. Yury Vetyukov 

Biosketch 

Yury Vetyukov studied applied mechanics at St. Petersburg State 

Polytechnical University, Russia and graduated  in 2000 with distinction. 

His master thesis was devoted to large spatial deformations of thin 

curved rods. As a doctoral student of the same university he studied self-

excited axial-torsional vibrations of rotating drillstrings at deep oilwell 

drilling and obtained his PhD in 2004. Between 2002 and 2004 he worked 

as a research assistant at the Johannes Kepler University Linz, Austria. 

From 2004 until 2008 he was an assistant professor in St. Petersburg. 

Here he started his career as a university teacher and independent 

researcher, focusing on nonlinear mechanics of thin-walled structures (elastic shells, rods and thin-

walled rods). In 2008 he returned to Linz as a post-doctoral researcher and stayed there until 2015, 

working in various basic and industrial research projects. A monograph entitled “Nonlinear 

mechanics of thin-walled structures: asymptotics, direct approach and numerical analysis” was 

published by him in 2014 at Springer. Since 2015 Yury Vetyukov is working at the Institute of 

Mechanics and Mechatronics at Technische Universitaet Wien (formerly known as Vienna University 

of Technology), Austria. Here he received his venia docendi in 2017. Having started as a post-

doctoral researcher, in 2021 he was appointed as a full university professor and is currently the head 

of division of mechanics of solids. 

Research interests of Yury Vetyukov comprise various aspects of structural mechanics and thin-

walled structures. He actively puts into practice analytical methods based on direct tensor calculus, 

asymptotic techniques and analytical mechanics. Problem specific novel numerical approaches also 

stay in the focus of his basic and applied research. In the recent years, he mainly deals with axially 

moving structures such as flexible belts, elevator cables or moving metal sheets during forming 

processes. Nonlinear effects of material inelasticity, various contact phenomena and dynamics along 

with the motion of the structure across various qualitatively different domains make respective 

problem formulations often inaccessible for conventional methods of analysis or by means of 

commercial software. Along with several novel analytical solutions, Yury Vetyukov and his colleagues 

are developing problem-specific numerical approaches featuring non-material kinematic description 

in the framework of mixed Eulerian-Lagrangian formulation. 
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Andrew Watson 

Lecturer of Aerospace Structures 

Department of Aeronautical and Automotive Engineering 

Loughborough University, United Kingdom

Andrew obtained his undergraduate and higher degrees from Cardiff University.  His 
PhD looked at the stability analysis and optimisation of light weight structures.  After 
two post-doctoral appointments at Cardiff Andrew joined Loughborough University as 
a member of academic staff in 2004. 

His research includes buckling and postbuckling of aerospace panels and vibration 
of Timoshenko beams.  Buckling and vibration problems can be approached by 
using the Dynamic Stiffness Method along with the Wittrick-Williams algorithm. 
Vibrating structures can be modelled as quantum graphs and Andrew is currently 
researching higher order graphs to obtain the spectral results of tree shaped graphs 
all using the DSM.   

Outside of this research Andrew has been looking at fossil fuels and other finite 
resources.  To facilitate this he is developing analytical methods to optimise 
structures where the objective function can be mass, energy costs or environmental 
degradation.  Jaguar Land Rover are funding a research studentship looking at 
thermal management of electric vehicles. 

In his spare time he likes to keep up with current affairs and enjoys walking and 
swimming.   
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Professor  is a mechanical engineer with PhD in "Advanced Mechanics and 
Vehicle Techniques", he is currently an Associate Professor of Mechanism and Machine Theory, 
Applied Mechanics and Mechanical Vibration since 1 June 2023 at "Enzo Ferrari" Department of 
Engineering, University of Modena and Reggio Emilia - UNIMORE. 
He has received the following funding for research activities: 
• FAR2022 - Identification, modelling and analysis of nonlinear EMG signals of pathological
tremor - University Research Fund 2022 for financing departmental development plans in the field
of research. 27/07/2022 €10,000
• Funding from CONSORZIO FUTURO IN RESEARCH for research on "MODELLING AND
EXPERIMENTAL MEASUREMENTS OF NON-LINEAR COMPLEX SYSTEMS AIMED AT THE ACTIVE
CONTROL OF ESSENTIAL AND PARKINSONIAN TREMOR" 01/05/2022 €30870
• Project "International Higher Education School in NVH for Industry 4.0 Higher Education
school in NVH for Industry 4.0" from 22/11/2021 to 31/12/2023 13750 €
• Individual funding of 3000€ for basic research activities REFERRED to ARTICLE 1,
PARAGRAPHS 295 AND FOLLOWING OF LAW NO. 232 OF 11 DECEMBER 2016
He has participated in various international, European and national research projects:
• 2019 “DiaPro4.0 Diagnostic-Prognostic multi-sensor cost-effective system integrated in
mechanical drives of Industry 4.0”, POR-FESR 2014-2020ER
• 2018 “Omnidirectional earthquake isolation system”, Ministry of Business, Innovation &
Employment (New Zealand);
• 2016 "Integrated platform for the design and advanced production of industrial gearboxes
- MetAGEAR" (PG/2015/732270) POR-FESR 2014-2020ER
• 2014 “FORTISSIMO, Experiment: HPGA”, FP7 (applications for high performance
computing);
• 2013 INDGEAR, FP7-SME (condition monitoring);
He teaches the courses of multibody dynamics in the master's degree course in mechanical
engineering (industry 4.0 curriculum), Mechanical Vibration in the master's degree course
Advanced Automotive Engineering and Mechanics of the Vehicle in the bachelor’s degree course
in vehicle engineering.
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He has published 85 articles, has an h-index of 13 with  445 citations, and was nationally 
qualified for Full Professor in 2023

His research activities are in experimental tests, modelling and numerical simulations in complex 
nonlinear dynamics, linear and nonlinear vibration analysis of mechanical systems and nonlinear 
vibrations of structures and control. His research focused on chaos and nonlinear time series 
analysis, non-smooth dynamics, diagnostic, prognostic, predictive maintenance and condition 
monitoring of complex systems, fluid-structure interaction, the effect of thermal gradients and 
bioengineering. He is part of the Vibration, NVH and Powertrain Laboratory of the Department of 
Engineering "Enzo Ferrari".
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