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Preface

The Intemational Symposium on Vibrations of Continuous Systems is a forum for leading researchers
from across the globe to meet with their colleagues and present both old and new ideas on the field. Each
participant has been encouraged to either present results of recent, significant research or to reflect on some
aspect of the vibration of continuous systems which is particularly interesting, unexpected or unusual. This
latter type of presentation—-of which there are several in the program-was proposed to encourage participants
to draw on understanding obtained through—in many cases—decades of research.

The location chosen for the 2d Symposium is one of the most beautiful villages in Europe. Nestled
in the Bernese Alps, Grindelwald offers spectacular views without even leaving the village. Because of the
location, momings of the Symposium have been kept free to permit hiking, sightseeing and mountain climbing.

This Proceedings contains short summaries of the presentations to be made at the Symposium. An
accompanying addendum is a collection of short biographical sketches submitted by many of the participants.
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Controversial Aspects of Free Vibration
of Shear-Deformable Beams

Charles W. Bert
School of Aerospace and Mechanical Engineering
The University of Oklahoma, Norman, OK 73019-0601

Introduction

The motivation for this paper was the recent work of Hutchinson' on circular plates. By comparison with
an exact series solution, he showed that the appropriate value of the shear coefficient (K) in Mindlin plate

theory depends not only on Poisson’s ratio (v) but also the vibration mode and the geometry (thickness-to-
diameter ratio). The objective here is to study the various suggestions for K appropriate for a prismatic beam
of solid rectangular cross section.

Theories for the Shear Coefficient

The first theory to include both transverse shear deformation and rotatory inertia was due to Bresse? in
1859. However, the concept of a shear coefficient was introduced by Timoshenko® in 1922. Originally’ he
proposed the value of 2/3, but one year later,* he proposed 0.889 based on Filon’s photoelastic experiments.®

Based on elementary shear theory, Goens® proposed 5/6 (~0833).

Apparently, the first to include the effect of Poisson’s ratio on K was Olsson,” who obtained
K =(5/6X1+v)/[1+(5/8)v]. This can be generalized to K =(5/6)1+v)/(1+av). Using static analysis,
Cowper"® and Kaneko® obtained @ =11/12 and 5/6 , respectively.

Mindlin'® developed two different dynamic expressions for K: an explicit one, K = n?/12 ~ 0822, based
on thickness-shear waves and an implicit one,

16(1- oK )(1- K)=(2- K)*,

based on short-wavelength flexural waves. Since K thus obtained did not depend on the aspect ratio
(width/depth) of the cross section, the same value could be used for plates as well as beams. Later Mindlin
found that the value of 0.822 agreed with experiments on quartz plates. Hutchinson'' and Wittrick'?

independently obtained K =5/(6-v). Kaneko’ compared various predictions with experimental data for
0.13<v <038 and found his expression (@ =5/6) gave the best agreement. In a very important study,
Hutchinson and Zillmer" used an exact series solution of the dynamic elasticity equations and worked
backward to find K to match frequencies. The coefficient K thus obtained depended upon v, mode number,
and width/depth and depth/length ratios.

Since there is current interest in foam materials with negative Poisson’s ratios, in Table 1, values of X are
given for the entire theoretical range (—1to +0.5) for isotropic materials.

Table 1. Values of shear coefficient X
Poisson’s ratio, v

Theory Ref. -1 -0.5 0 0.3 0.5

Olsson 7 0 0.606 0.833 0.912 0.952
Cowper 8 0 0.769 0.833 0.850 0.857
Kaneko 9 0 0.714 0.833 0.866 0.882
Mindlin (II) 10 0.475 0.600 0.764 0.860 0.913
Hutchinson 11 0.714 0.769 0.833 0.877 0.909




Jensen' concluded from an extensive finite-strip-method solution that if a consistent formulation for K
as proposed by Cowper® or Stephen'® is used, then very high accuracies in the natural frequencies can
normally be expected even for wavelengths of the same magnitude as the transverse dimension of the beam.
He also emphasized that no reduction in the moment of inertia due to shear lag effects must be included since
this effect is implicitly included in consistent formulations of K.

Finally, it should be mentioned that equations alternative to the Timoshenko equations are the Love
equations (Love'® and Abramovich and Elishakoff'’). Also, an extensive survey of Timoshenko beams was
presented by Laura et al.'®

The Second Frequency Spectrum

Although not discovered by Timoshenko himself,** a second frequency spectrum was implied in the
work of Goens,” who obtained two solutions to the differential equations of motion, one involving both
trigonometric and hyperbolic functions and the other just trigonometric functions, which suggested a change
in vibration mode above a certain frequency. Anderson,” Traill-Nash and Collar,”’ and Dolph®! interpreted
the mode change as a second frequency spectrum. There was little or no mention of this second spectrum in
experiments with the exception of the work of Barr™> who noticed two frequencies with the same number of
nodal points in vibration of free-free beams. Experimentally, Downs> found a deflectionless mode having

the frequency ® =a(KG/pl )1’!2 , where A= area, G = shear modulus, /= areamoment of inertia, and
p= density. Strangely the very high K value of 1.04 was associated with the experiment.

Using a finite element model, Abbas and Thomas™ explained the behavior of different frequency curves
on the basis of coupling of various independent modes. They concluded that many of the earlier
investigations were interpreted incorrectly and that there is no separate second frequency spectrum except in
the case of a hinged-hinged beam. Further work in this area was undertaken by Bhashyam and Prathap,”
Levinson and Cooke,”® Stephen,”” and Prathap.?®

Higher-Order Theories

Due to the poor ability of the Timoshenko beam analysis (Cowper”) to predict moments and shear
forces, and thus stresses, very accurately, several higher-order theories have been proposed. Two-parameter
theories were introduced by Aalami and Atzori*° and by Stephen and Levinson.>' Other higher-order theories
were presented by Levinson,’*> Bickford,”® Heyliger and Reddy,** Leung,®® and Senthilnathan and Lee.*
Since the shear stress distribution at high frequencies (wave length ~ beam depth) is not parabolic
(Prescott’), even the higher-order theories are very inaccurate in this instance.
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VIBRATION OF STRUCTURES USING BOUNDARY CHARACTERISTIC
ORTHOGONAL POLYNOMIALS IN THE RAYLEIGH-RITZ METHOD

R.B. Bhat
Professor of Mechanical Engineering
Concordia University, Montreal, Canada

Vibration of plate type structures of various configurations and boundary conditions have
been extensively studied over the past several years. Excellent reviews of such studies are
available in Leissa (1969, 1977, 1981, 1987). Closed form solutions are available for some
simple cases and boundary conditions in Timoshenko and Woinowsky (1959), Gorman
(1975, 1982), Soedel (1981), Meirovitch (1967, 1986).

The Rayleigh-Ritz method is a very powerful technique that has been used by various
researchers to predict the natural frequencies and mode shapes of vibrating structures,
Leissa (1969). The method requires a linear combination of assumed deflection shapes that
individually satisfy at least the geometrical boundary conditions. Expressions for the
maximum kinetic and potential energies are obtained in terms of the arbitrary constants in
the deflection expression. By equating the maximum potential and kinetic energies an
expression for the natural frequency can be formed. Applying the condition of stationarity
of natural frequencies at the natural modes, the variation of natural frequencies with
respect to the arbitrary constants is equated to zero to obtain an eigenvalue problem.
Solution of this eigenvalue problem provides the natural frequencies and mode shapes.

One Dimensional Boundary Characteristic Orthogonal Polynomials(BCOP) :

The BCOP were first proposed by Bhat (1985) to study vibration of rectangular plates in
the Rayleigh-Ritz method. The first member of the BCOP set is constructed SO as to
satisfy all the boundary conditions, both geometric and natural. The higher members of the
set {¢, (x)} are then constructed using the well-known three term recurrence relation as

given in Chihara (1978) as,
ber(X) = (d,x +€,)6,(x) + p,g ., (x), k=012, (1)

where the coefficients d, € Pys k=0,1,2,.. can be found out using the orthogonality
property. It can be easily verified that the higher members of the set satisfy the geometrical
boundary conditions. The method is described in the Appendix of Bhat (1985) for a
rectangular plate with four types of boundary conditions at the edges. After the
publication of this paper a series of research work has been done using this method to
analyze vibration problems of various types of structural members with variety of
conditions and applications.

Two Dimensional BCOP :

As proposed by Bhat ( 1987), the two dimensional orthogonal polynomials were
constructed by orthogonalizing the k-th polynomial with all the (k-1) polynomials
previously. constructed, unlike the one dimensional BCOP where a three term recurrence



relation is available to generate them. Very recently Bhat et al. (1998) have proposed a
recurrence scheme for the generation of two dimensional BCOP involving three classes of
polynomials. The polynomials are first organised into following classes forming a pyramid

given by
p

@) @
¢ 2
4( 3) ¢5(3J 6(3}
4 4 4
¢ ¢ ¢ ¢
(n) (n) _ _ (n) 4™
tl(’;;”-(n-m {ﬂ'-;-’—‘-’~cn—z)} {”‘—’;‘2—1} {f";’—”}

where, superscript in 4 denotes the class number J to which it belongs.

Now, in general, class j will have J orthogonal polynomials, and those can be generated
by the recurrence scheme given by Bhat et al. (1998).

Condensation in Rayleigh-Ritz Method :

A mass condensation scheme is proposed here in order to reduce the order of the
eigenvalue problem in the Rayleigh-Ritz method,

('_CUZM * K)nxn {C} = {0}: (2)

Identifying the required order of eigenvalue problem as mxm, m<n, it is possible to
express the M and K matrices as

Amxm Amx(n—m) :[ (3)

[Alnxn =
A(nHm) xm A(n —m)x(n-m)

. ool Cm a
wit {}— C(n_m) = b , say.

The condensation is done from (2) and (3) as follows,

(K1 ‘szn) (K1, _@2M12) {a}z{o} (4)
(Ky - @®My)) (K, — @’ M) (b 2

Ignoring the inertia terms in the second row of equations

(b} =[Kp, ™" Ky, 1{a},



1
e {Kzz_l KZI}{G}

Finally we have the mxm condensed eigenvalue problem,

T
1 1
; [K—fon]{ y }={0} (5)
{KZZ IKZI} K22 1KZI

Example : Consider a cantilever beam with 2 term shape functions in the form of two
BCOP given by g =x? and @, =5x2 - 6x°. With only one term we get
@ =4472]1. If two terms are considered then we have @;=35331 and
@, =34443. Using the present Condensation scheme and reducing it to a single
coordinate, we have @, = 3.5328.
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VIBROACOUSTIC MODELLING OF A SIMPLIFIED FUSELAGE

L. Cheng and J. Missaoui
Department of Mechanical Engineering, Laval University, Quebec, Canada, G1K 7P4

1. Simulation Model

Structures based on cylindrical shell have been widely used as a simplified aircraft fuselage model
to understand the fundamental phenomena either on the dynamic behavior or the noise transmission
into the fuselage cabin. A more realistic model requires the consideration of the floor. Compared
to the cylindrical shells, the addition of the floor introduces more complex mechanical coupling. On
top of this, the acoustic space inside the cabin no longer has a simple regular cylindrical shape. Due
to both structural and acoustic modifications, most methods based on modal decompositions can no
longer be used. More powerful and efficient simulation models must therefore be developed and aimed
to give some physical insight into the system and to offer a flexibility in the design process. This paper
summarizes our research work in this filed over the past few years.

A structural model has been developed on the free and forced vibrations of a shell-floor system
as shown in Figure 1. The mechanical coupling between sub-structures was modelled using artificial
springs. A virtual set of distributed spring system is introduced at the structural junction for every
permitted degree of freedom. Physically, by allowing different values of the spring stiffness, various
connections can be simulated. Mathematically, the use of artificial springs at the junctions replaces
the geometrical conditions (continuity of the motion) by corresponding dynamic conditions (strain
energy of the springs). As a result, the choice of the trial functions is simplified, since the later has
only to verify the geometrical boundary conditions at the non-connected regions. The whole system is
characterized using the classical Hamilton’s principle, which needs the calculation of the kinetic and
the strain energies of the combined system, as well as the work done by the external driving forces.
The resulting Hamiltonian is then substituted into the Lagrange’s equations to yield the governing
equations of motion.

As far as acoustic modelling is concerned, an Integro-Modal approach for computing the acoustic
properties of cavities of arbitrary shape has been developed. The approach was based on a discretization
of the total cavity into mixed sub-cavities of either regular or irregular shape, interconnected by virtual
elastic membranes. As illustrated in Figure 2, the cavity investigated can be divided into a regular
(Figure 2(b)) and an irregular (Figure 2(c)) sub-cavities. The junction between the two sub-cavities is
replaced by a vibrating membrane. Continuity of both the pressure and the pressure gradient at the
boundaries of the interconnected regions was ensured by considering membranes with zero mass and
stiffness. The modal characteristics of regular sub-cavities are obtained analytically while the irregu-
lar sub-cavities are treated using a modal expansion over the mode shapes of their regular bounding
cavities. The internal pressure in each sub-cavity is obtained by using a modal basis of the bounding
sub-cavity or envelope.

A complete vibroacoustic formulation of the shell-floor-cavity configuration has then been carried
out by coupling the structural and acoustical models. Firstly, the cavity of the shell-floor system is
discretized into N sub-cavities, the Integro-Modal solution is obtained using either a direct method
(requiring no calculation of the acoustic modes of the real cavity) or an indirect one (with modal
synthesis of the real cavity). With the last method, the system to be solved is of reduced size, since
modal characteristics of the whole cavity (natural frequency, generalized mass and mode shape) should



be calculated a priori using the Integro-modal approach. Secondly, the vibroacoustic parameters are
chosen to characterize the structural and acoustical responses of the system. In fact, at each excitation
frequency, the motion of each sub-structure is characterized by the quadratic velocity for the shell and
the floor. For the cavity, an average quadratic pressure is defined to quantify the noise level.

2. Structural-acoustic analysis

Various shell-floor connections are firstly simulated. The comparison with other available ap-
proaches shows that, with the proper assignation to the spring stiffness, the formulation allows an
accurate simulation of the rigid attachment using high values of spring stiffnesses. A modal analysis
shows three types of modes: floor dominated, shell dominated and coupled modes in which the two
sub-structures vibrate with comparable levels. As far as the effect of the spring stiffness in different
directions is concerned, the mode is most sensitive to the direction in which the impedance mismatch
is most strong between the shell and the floor. The in-plane motion of the floor seems to be negligible
for lower-order modes, except for antisymmetric ones which include the horizontal rigid body motion.
At low and middle frequency range, the floor is strongly coupled to the shell with comparable vibration
level. With the increase of the frequency, the coupling is weaken and the shell which is directly excited
is more active than the floor.

The Integro-Modal formulation is shown to be general and flexible enough to handle different cavity
configurations and can be easily extended to a vibroacoustic study. The proposed formulation permits
the use of irregular-shaped sub-cavities, thus making the approach more powerful using fewer number
of sub-cavities. Efficiency and the accuracy of the approach have been demonstrated by comparison
with results presented in the literature.

The previously established methods (Artificial Spring technique and the Integro-Modal approach)
were finally combined into a complete vibroacoustic model. Experiments were carried out to assess the
established model. Although further improvements are still needed, numerical predictions seem to agree
reasonably well with experimental data (Figure 3 to Figure 6). Numerical analyzes were performed to
highlight the structural (Figure 7) and acoustic effects (Figure 8) of the floor on the sound field. It was
noted that in any case, shell vibration plays an important role in the sound radiation into the cavity.
When the excitation is applied to the shell, the floor becomes a very weak sound radiator. In this case,
the effect of the floor is limited to a change in the shape of the cylindrical acoustic cavity, leading to
significant differences in terms of sound level compared to what would have been predicted using a
purely cylindrical shell configuration. Using the present configuration, analyzes of the modal radiation
efficiency (Figure 9) were also performed and revealed a possible cancellation process between cells of
opposite phase in circumferential direction (Figure 10).

3. Conclusion

Theoretical and numerical study of structural, acoustic and vibroacoustic behavior of a shell-floor-
cavity system have been presented. The validation of the vibroacoustic model was achieved by com-
parison with laboratory experimentations. Vibro-acoustic parameters have been used to discuss the
acoustic, structural effects of the cabin floor and joint condition on the noise level. The proposed model
seems to be powerful and accurate enough to simulate most dominate phenomena encountered in such
structure.
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Limit Cycle Oscillations Of Delta Wing Models
In Low Subsonic Flow

Deman Tang, James K. Henry and Earl H. Dowell
Duke University, Durham

A nonlinear, aeroelastic analysis of a low aspect, delta wing modeled as a plate of constant
thickness demonstrates that limit cycle oscillations (LCO) of the order of the plate thickness are
possible. The structural nonlinearity arises from double bending in both the chordwise and spanwise
directions. The present results using a vortex lattice aerodynamic model for a low Mach number
flow complement earlier studies for rectangular wing platforms that showed similar qualitative
results. The theoretical results for the flutter boundary (beyond which LCO occurs) have been
validated by comparison to the experimental data reported by other investigators for low aspect ratio
delta wings. Also the limit cycle oscillations found experimentally by previous investigators (but
not previously quantified prior to the present work) are consistent with the theoretical results
reported here. Reduced order aerodynamic and structural models are used to substantially decrease
computational cost with no loss in accuracy. Without the use of reduced order models, calculations
of the LCO would be impractical. A wind tunnel model is tested to provide a quantitative
experimental correlation with the theoretical results for the LCO response itself.

Linear and nonlinear aeroelastic responses of panels or plates with fixed supports on all four
sides have been studied for many years from subsonic to supersonic flow, see Ref. [1] and [2].
More recently plates with free edges have been studied and these results (Ref.[3]-[4]) have provided
good physical understanding of the flutter and limit cycle oscillation characteristics for such plates
in a high Mach number supersonic flow. In particular, it has been demonstrated that even with only
a single edge of a plate restrained, bending tension or geometrical nonlinearities can produce limit
cycle oscillation amplitudes of the order of the plate thickness. For low subsonic flow speeds Ref.
[5] used a three-dimensional time doman vortex lattice aerodynamic model and reduced order
aerodynamic technique [6], [7] to investigate the flutter and limit cycle oscillation characteristics of
a cantilevered low aspect ratio, rectangular wing-panel structure. Again limit cycle oscillations were
found.

Following the work of Ref. [5], in the present paper we also use the vortex lattice
aerodynamic model to investigate the flutter and limit cycle oscillation characteristics of a low aspect
ratio delta wing structure at low subsonic flow speeds. The theoretical results are consistent with
the experimental results of Doggett and Solstmann [8] who previously studied the flutter of low
aspect ratio delta wings.

In order to validate the theoretically predicted limit cycle oscillation characteristics of the
delta wing, an experimental investigation has been carried out in the Duke wind tunnel using an
Ometron VPI 4000 Scanning Laser Vibrometer system [11] to measure deflections (velocities) of
the delta wing. The VPI sensor is a non-contacting transducer that uses optical interferometry and
electronic frequency measurements to determine the frequency shift of a beam of light reflected from
a moving surface.

Theoretical and experimental results show good agreement. The present results suggest a
new approach to retaining structural integrity of flexible wings in a post-flutter environment.
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Dynamic Stiffness Matrix for High Order Beam Theory

Vibration Analysis

Moshe Eisenberger
Faculty of Civil Engineering
Technion - Israel Intitute of Technology
Technion City 32000

Israel

May 16, 1999

Abstract

The analysis of beams has been performed over the years mostly using the Bernoulli-Euler beam theory.
This theory is based on the assumption that plane sections of the cross section remain plane and per-
pendicular to the beam axis. A more refined beam theory is the Timoshenko beam theory which relaxes
the restriction on the angle of shearing deformations that exist in the simpler theory. In recent years,
due to the increase in the use of composite materials the shear deformation theory has been limited in
the accuracy of computation for many situations, and although some remedies were devised, locking in
the numerical analysis has become a main issue and higher order theories have emerged.

In these theories, the restriction on the warping of the cross section is relaxed, and allow variation
in the longitudinal direction of the beam which is cubic. This results, for homogenous materials in the

following set of equations:
e,t) = uo(e, )+ 62,0 - § (5)° (61,0 + 2420 (1)

W(I,f.) = wﬂ(x!t) (2)
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where ug(z,t) and wo(z,t) are the axial and lateral displacements of the beam centerline, ¢(z,t) repre-
sents the rotation of a normal to the axis of the beam, and h is the depth of the beam.

Using this displacement field we arrive at the equilibrium equations for a beam segment as

8GA (3¢ 62w) EI 8*w 16EI 8%¢ Pw pl 8w 16pI 8%¢

5 \3z T322) " 21 928 T 105 922~ P02 T 916:7082 105 92002 (3)

_68E162¢+16E163w+8GA (é dw __espfa?¢+1ﬁp1 & w q
105 dz2 105 &z3 15 dz ) — 105 62 105 Jzdt? (4)

For the derivation of the stiffness matrix the right hand side of the above equations is taken as zero,
i.e. static case. If one uses the exact solution of the differential equations as the shape functions, the
resulting stiffness matrix is exact. The solution of these coupled differential equations is given in terms

of six constants as

w(z) = C1 + C2z + C3 2% + C4 2° + Cs [cosh(az) + sinh(az)] + Cs [cosh(az) — sinh(az)] (5)
b = w2 E*;';GA O3 G =80+ 41 Cs & [cosh{az) + sinh(az)]
—% Cs a [cosh(az) — sinh(az)] (6)
with
GA
a=Vi0\/ == (7

Applying the appropriate boundary conditions we can derive the dynamic shape functions for this
beam model, and then the exact terms in the dynamic stiffness matrix, which are frequency dependent.
Once all the stifness terms are known, the natural frequencies are found as the values of the frequency
that cause the matrix to become singular.

The results of this analysis are compared with the results from the Bernoulli-Euler and Timoshenko
beam theories and special attention will be devoted to the shear modes of vibration, also known as the

second frequency spectra for Timoshenko beams.
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A STUDY OF MULTI-SPAN BRIDGE DECK FREE VIBRATION BY
THE METHOD OF SUPERPOSITION

by
D. J. Gorman and Luigi Garibaldi
Dept. of Mechanical Engineering Dipartimento di Meccanica
University of Ottawa, Canada Politecnico di Torino, Italy

1.Introduction

An ongoing study of the dynamic behaviour of multi-span bridges is being conducted by the
second author and his colleagues at the Dipartmento di Meccanica of the Politecnico di Torino in Italy.
Ultimate goals are to predict bridge response to travelling loads, etc., but as a first step it is required to
obtain highly accurate solutions for the bridge deck natural frequencies and mode shapes. Accuracy is
particularly important, not only because these mode shapes are utilised in the modal analysis of bridge
behaviour, but it is found that some frequencies are very close to each other. Furthermore, since
experimental measurements are taken along the edges of the bridge deck, and several modes may be
excited, accurate mode shapes and natural frequencies must be known in order to correctly interpret
these experimental measurements.

At the suggestion of the second author an analysis of multi-span continuous isotropic plate free
vibration has been initiated utilising the superposition method. In fact, two quite different approaches
are described. Excellent agreement between results obtained by the two approaches has been obtained.

2.The Multi-Span Approach

For illustrative purposes we have chosen to analyse the triple span bridge deck as shown
schematicallyin figure 1. The letter “F” in the figure indicates free edges. Other external edges are given
simple support with essentially simple line support being provided at the span interfaces over which the
main plate passes continuously.

2 a £ A E_ as x.§
~F = S T
b W, (&,7m) W,(&m) W;(&,m)
g F F
Y. M ly' n .M
Y Y

Fig 1. Triple Span Bridge Deck.
In order to conduct a free vibration analysis of the system by the superposition method a set of
building blocks (forced vibration solutions) are assigned to each span. Assigned to the first span are the
building blocks of figure 2.

The first building block has simple support along its opposite non-driven edges. The other non-
driven edge is given slip-shear support, i.e, vertical edge reaction and slope are zero along this edge.
Vertical edge reaction is also zero along the driven edge. This edge is driven by a distributed harmonic
edge rotation.

A levy type solution for the first building block is expressed as,
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WD = I Ya(r)sin(m) (1)

e 300000t

4P
<P
o) o]
o o]
ln .
Y

Fig 2. First Span Building Blocks.
Substituting into the governing differential equation, and separating the variables, we obtain a
fourth order ordinary homogeneous differential equation governing the functions Y, (1)).
The series on the right below represents the spatial distribution of the imposed edge rotation.

cW(&n)
TLI

An exact solution is available for response of the first building block. The response of the second
building block is easily extracted from that of the first.

= 3 Emsin(mmd )

m=1.2

The third building block has slip-shear conditions imposed along its two opposite non-driven
edges, the other non-driven edge being given simple support. Lateral displacement is forbidden along
the driven edge which is subjected to a harmonic moment represented by a cosine series. A solution for
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Fig 3. Schematic Representation of Eigenvalue Matrix.



response of this building block is obtained in manner identical to that described for the first. These are
the only types of building blocks utilised in the entire analysis.

3.Development of Eigenvalue Matrix

A schematic representation of the eigenvalue matrix is presented in figure 3. The three groups
of building blocks employed for the three spans are shown along the top of the figure. We note that four
building blocks are assigned to the central span. Even though ten building blocks are shown the two
adjacent building blocks at each inter-span location are not independent. This is because of moment
continuity. Utilizing Fourier expansions we constrain the driving coefficients so as to satisfy boundary
and continuity conditions.

4.Analysis By Means of Single Rectangular Plate Resting on line Supports

An alternate approach to the above problem is to consider the overall plate system of figure 1.
as a single plate with the two long edges free, the other two being given simple support. We then analyse
plate behaviour subject to the condition that two distributed harmonic line forces act in the region of
interior bridge support. We require, of course, that there should be zero net lateral displacement along
the lines of these distributed forces.

The entire analysis of the three span bridge is conducted with the two building blocks shown in
figure 4, coupled with the first two of the previous analysis, whose aspect ratio, b/a, will now be
different.

3 3
> g i = -
b W3 I{Eﬂ?) i[ w;z{ 5:7?)
a, o E 0 Q;+ a5
o o]
Ui Y,
Y Y
§
e 5 i s <£
b W“(f,'q) E w4z(‘f;?})
g,+a, o ! 0 ds
) )
K 7
v Y

Fig 4. Building Blocks for Alternate Approach.

5. Discussion and Results

It is fortunate that exact eigenvalues for this problem are available from the theory of simply
supported plates, when all three spans of the continuous plate have equal aspect ratios. Both solutions
and procedures discussed above have been verified through comparison with those known results.
Virtually exact agreement between the two analytical procedures has been obtained. Relative advantages
of both procedures are discussed.
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Mathematical Model for Vortex Excited Oscillations in Bundled Conductor
of Transmission Lines

Peter Hagedorn
Dept. of Applied Mechanics
Darmstadt University of Technology
Darmstadt, Germany
hagedorn@mechanik.tu-darmstadt.de

Abstract

Wind excited oscillations of the conductors constitute the most important of the different
mechanical vibration phenomena in high voltage overhead transmission lines. The most
common of these wind excited vibrations are those generated by vortex shedding. Other types
of wind excited vibrations include the low frequency galloping, an aeroelastic instability
sometimes observed in winter, when ice deposits on the conductors, changing the cross
section to a noncircular form.

Besides the wind excited oscillations there are also other interesting mechanical phenomena
in the conductors of overhead transmission lines, which only occur under special
circumstances but can nevertheless have dramatic consequences. This includes short circuit
phenomena, which are due to the electromagnetic forces between the individual conductors.
Under normal conditions these forces are extremely weak and therefore negligible. Whenever
the currents in the conductors reach very large values, as e.g. during a short circuit, possibly
due to lightening, these forces may become extremely large. Even if they last for only say 20
milliseconds, they may cause very large oscillations leading to impacts between the individual
conductors, sometimes causing permanent damage.

This paper is devoted exclusively to vortex excited oscillations. The physical phenomenon

can be explained as follows. If a rigid cylinder is immersed in a planar steady laminar flow for
a wide range of Reynolds numbers, vortices will form alternately at the upper and lower edge
of the cylinder. Von Karman studied the stability of this vortex street. He found that it is
stable only for a frequency of about 0.2*v/D, where v is the unperturbed fluid velocity
upstream to the cylinder and D its diameter. The vortices separating alternately from the upper
and lower edge produce a force on the cylinder which is periodic in time with a direction
orthogonal to the fluid’s unperturbed velocity. In first approximation this force can be
assumed as harmonic.

For an elastically suspended cylinder these forces will generate vibrations in a direction
orthogonal to the flow. In this case however, the vortex generation is complicated by the
motion of the cylinder, and a lock-in phenomenon is observed, i.e. the frequency of the vortex
generation tends to lock into the eigenfrequency of the cylinder. Similar vibrations are
observed in a taut string subjected to a steady transverse flow, although in reality the flow is
then no longer planar. In wind tunnel experiments the aerodynamic forces acting on an
oscillating cylinder have been measured, and in the case of the vortex induced oscillations of

a string, the power imparted by the fluid to the string has been determined as a function of the
vibration amplitudes (wind power).
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Such vortex excited oscillations do of course occur in the conductors of overhead
transmission lines. Although they are not highly visible due to their low amplitude (less than a
conductor diameter), they are however extremely common and may lead to conductor fatigue.
Mathematical models are therefore necessary for the computation of these vibrations for the
evaluation of the risk of damage to the line as well as for studying the effectiveness of
damping measures.

For single conductor lines the so called energy balance method gives good results. The
problem becomes more involved for bundled conductors, which are commonly used in high
power transmission, and this problem is addressed in the present paper. The conductors are
modeled as taut strings by the linear wave equation, possibly with some provision for an
additional small bending stiffness. The damping devices as well as the spacers are in a first
approximation treated as linear systems and are modeled by mechanical impedance matrices
which have to be obtained from laboratory experiments or by other means, for example using
a multi-body approach. Next, the free vibration problem of a bundled conductor is formulated.
If the continuous system is discretized in the standard way, this leads to a rather large and
poorly conditioned matrix eigenvalue problem. The problem becomes somewhat more
manageable if the known solutions of the wave equation are used. This does however lead to a
matrix eigenvalue problem in which the matrix elements are transcendental functions of the
eigenvalues. The spectrum of this eigenvalue problem is very dense. No completely
satisfactory technique for the numerical solution of this eigenvalue problem is presently
known by the author.

Once the complex eigenvectors and eigenvalues are found, it is assumed that the weak
aerodynamic forces, associated to the vortex street, excite conductor vibrations in resonance
and that the shape of these forced vibrations corresponds to the eigenfunctions. In each mode,
only one algebraic parameter representative of the amplitudes has to be calculated and this is
done using energy balance.

This relatively coarse mathematical model seems reasonable from an engineering point of
view, since any more detailed model of the aerodynamic forces requires information on wind
velocity spectra, their correlation in space and time, etc. Such more elaborate models have
been tried for single conductor lines, but they have not really led to new insights. The simple
energy balance approach, on the other hand, gives results which agree well with field
experiments, in the sense of a worst case hypothesis, for single conductor lines. For bundled
conductors hopefully the mathematical model here presented will also provide a practical
engineering tool. The numerical techniques used in the solution of the eigenvalue problem
will have to be further developed to this end.

A different interesting and important problem is that of the optimal placement of dampers
along the line. Usually, in a given frequency range as many modes as possible should be
sufficiently well damped using a number of dampers as small as possible. This problem will
also be addressed in the paper.
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FREE VIBRATION ANALYSIS OF LAMINATED SHALLOW
CYLINDRICAL SHELLS OF RECTANGULAR PLANFORM

Kenji HOSOKAWA and Toshiyuki SAKATA
Department of Mechanical Engineering
Chubu University
1200 Matsumotocho, Kasugai, Aichi 487-8501 Japan

1. Introduction

Since a laminated shallow shell is an important structural member, many studies on the free vibrations
of a laminated shallow shell have been reported in the literature. On the other hand, the authors proposed
a numerical approach for analyzing the free vibrations of a laminated FRP ( fiber reinforced plastic )
composite plate [1-3]. In the present paper, this approach is modified for application to a symmetrically
laminated shallow cylindrical shell of rectangular planform. To justify the numerical results, the vibration
tests of the clamped symmetrically laminated shallow cylindrical shell of square planform are carried out.
And the calculated natural frequencies and mode shapes are compared with the experimental ones.

2. Numerical Approach
2.1 Frequency Equation
On the basis of Donnell’s shell theory, by neglecting the body force, rotatory effect, and inplane inertia
effect, the free vibration of a symmetrically laminated shallow cylindrical shell of rectangular planform is
governed by

LU, V,w)=0
Ly(U,V,W)=0 (1)

Ly(U,V,W) - 0> phW =0

where A is the thickness, U(¢,4) and V(¢,A) are displacements, W(£,4) is the transverse deflection, @
is the radian frequency, p is the density, and L;( ),Ls( ), and Ly( ) are the differential operators for

the static bending problem of the shallow cylindrical shell.
By dividing the shallow cylindrical shell as shown in Fig. 1 and using the function G3({,4,¢,,4,) for the

static bending problem, the frequency equation is expressed as

@, )

(a) Neutral plane (b) Dividing pattern
Fig.1 Laminated shallow cylindrical shell of rectangular planform
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where &, ,, is Kronecker’s &, A4S, is the area of the »th small region of the shallow cylindrical shell
shown in Fig. 1. The functions Gy (£, 4,4y, 4,) » Go(&, 4,8, An), and G3(£, 4,4, 4y) for the static bending
problem satisfy the boundary condition of the shallow cylindrical shell and the differential equation
represented by

L(6,G3,6G3)=0

Ly(Gy,Gg,G3)=0 @)

L3(G]rGQJG3)=5(§_;n)'5(A_An)

where &( ) is Dirac’s delta function.

2.2 Estimation of Functions G, Gy, and G;
The functions are assumed in a power series form as the following equations, respectively,

I

GG AED = TAED GG @
i=1
I
i=1
I

G3(& A Em = YCiEM wa& A A ®)
i=1

where A;(&,7), B;(&,n), and C;(&,n) are constants determined by the position (&,7) where unit load
acts, k and ! are non-negative integers determined according to the positive integer 7. The functions
v1(§A), vel(l,A), and w3(L,A) are determined such that the functions Gy, Gy, and Gz satisfy the
boundary conditions of the shallow cylindrical shell, respectively. In case of the clamped shallow cylindrical
shell shown in Fig. 1, the functions y({,4), ws({,4), and y3({,4) may be expressed as

w16 A) = oL, A) =L - DA~ B) 7
wa (A =3¢ -2 2 (- B)° @®)

By applying Galerkin’s method to equation (3), one gets A;(&,7), B;(,7), and C;(&,n). By substituting
A; (&), Bi(&n), and C;(&,n) into the equations (4), (5), and (6), respectively, one can obtain the
functions Gy, Gg, and Gg3.

3. Comparison of Numerical and Experimental Results
To justify the numerical results, experimental studies are carried out for a eight layered
([0°5/90°5,/90°5/0°5 1) shallow cylindrical shell of square planform (¢=b=0.2[m], R=0.4[m]). The

shallow cylindrical shell with shell thickness h=1.60 x 1070 [m] is used. Each layer material is a carbon
fiber reinforced plastic (CFRP). The measured material properties of the lamina are : E; = 95.4 [GPa],
E; =6.35[GPal], G5 =5.22[GPa], vj3=0.32,p=1495 [kg/m*]. As shown in Fig. 2, the shallow
cylindrical shell is clamped to a rigid clamping fixture. Natural frequencies and mode shapes of the shallow
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cylindrical shell are obtained by using the experimental modal analysis technique. Figure 3 shows the
natural frequencies and mode shapes obtained numerically and experimentally. As the vibration pick-up, a
strain gage is affixed at the location where nodal lines disappear. From this figure, one can see that the
difference between experimental and numerical natural frequencies is about 9% at the most. In Fig. 3, the
narrow line represents the nodal line obtained by the experimental modal analysis technique and the heavy
line shows those calculated by the numerical approach. From this figure, one can see the good agreement
between numerical and experimental nodal patterns.

4. Conclusions

The numerical approach for analyzing the free vibrations of a symmetrically laminated shallow
cylindrical shell of rectangular planform was proposed. This approach was applied to the clamped
symmetrically laminated shallow cylindrical shell of square planform. Furthermore, by the vibration tests
of the clamped symmetrically laminated shallow cylindrical shell of square planform, natural frequencies
and mode shapes were obtained. From the comparison of numerical and experimental results, one can see
the good agreements between these results. Accordingly, it follows that one can accurately estimate
natural frequencies and mode shapes by using the numerical approach proposed by the authors.

References
1. K.HOSOKAWA, T. YADA and T. SAKATA 1993 JSME International Journal Series C 36, 296-300.
Free vibrations of symmetrically laminated composite plates.
2. K. HOSOKAWA, Y. TERADA and T. SAKATA 1996 Journal of Sound and Vibration 189, 525-533.
Free vibrations of clamped symmetrically laminated skew plates.
3. K. HOSOKAWA, Y. YAMADA and T. SAKATA 1998 Journal of Applied Mechanics 65, 341-345.
Free-vibration analysis of clamped antisymmetrically laminated elliptical plates.

Fig. 2 Vibration test of clamped shallow cylindrical shell of square planform
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1st mode 2nd mode 3rd mode 4th mode
Experiment 699.9[Hz] 846.6[Hz] 1296[Hz] 1315[Hz]
Analysis 762.6[Hz] 844.4[Hz] 1332[Hz] 1362[Hz]

Fig. 3 Natural frequencies and nodal patterns of clamped eight layered shallow
cylindrical shell of square planform
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On the Vibration of Composite Cylinders

James R. Hutchinson
Civil and Environmental Engineering Department
University of California, Davis CA 95616

Introduction

The cylinders considered in this paper are composed of concentric layers of different isotropic
materials. The three dimensional elasticity solution is for infinitely long cylinders, which can be
interpreted as finite length cylinders with very specific end boundary conditions. The cylinders can be
either fixed or free at the inner and outer radii. The inner material can be solid (i.e.. no hole).
Comparisons are made to previous research, and plots of a specific example are presented.

Background

The infinitely long solid cylinder was first investigated by Pochhammer in 1876 and independently by
Chree in 1889. The work of Armenakas Gazis and Herrmann (1) gives extensive numerical results for
infinitely long hollow cylinders which are free on the inner and outer radii, as well as results for solid
cylinders. In the 1960's several authors considered cylinders with fixed outer radii among these is my
work (2). In 1969 Armenakas (3) considered the vibrations of an infinitely long composite cylindrical
rod. His composite was a solid core with one surrounding sleeve which was free on its outer radius.

Solution

Tables of solution forms were published in a number of my previous papers e.g. (4). These solution
forms represent solutions of the three dimensional equations of isotropic linear elasticity. A slightly
modified version of these previous tables is shown in Table 1.

Table 1. Solution of elasticity equations. J, denotes the nh order Bessel function of the first
kind. Identical solutions exist for the Bessel functions of the second kind (substitute Y for J). G
is the shear modulus, p is the density and v is Poisson's ratio. Primes denote differentiation
with respect to the argument. k = p@?Vv/(1-v)/G_and the wave numbers c, f, 6 and the
frequency o are related by o2 + 2 = pw?/G and o2 + & = pw?(1-2v)/2/(1-v)/G. The wave
number n equals 0, 1, 2, ... The three basic forms have a common multiplier in the last column.

Form 1 Form 2 Form 3 Multiplier
r 6Jy,'(or) -BJ,'(Br) -nJul( Brifr sin(oz) cos(n6)
Uz o y(0r) [32]”( pr)/o 0 - .. | cos(az) cos(nB)
“8 -nn(Sr)/r ndn(Br)/r BJn'(Br) sin(0z) sin(n6)
2G&7,(or) ] ” 2Gnpl, (Brir :
Or -kJG:( &) 2G2J,"(Br) oy njnfzﬁr) 2 sin(az) cos(nb)
T 2Gadl,'(ér) G(B?-02)BJ,'(Br)/o -Gnody(Bri/r cos(0z) cos(n8)
-2Gnél,'(or)r 2GnpJ,'(Br)/r- GB4J,"(Br)-GBIn(Brifr | :
O | 2GRy 8rir? 2Gnl,(Bri/r? £ Gn2J,( r)7r2ﬁ || sin(a2) sin(n6)
2GoT,'(or)r -2GBTn'(Br)/r 2Gnpl, (Br)/r :
% | _Glk+2n/r2)]y( &) +2Gn2]y(Brf? 2Gny( Br)ir? si{az) con(nd)
o, | -Glk+202)],(5r) -2G2J(Br) 0 sin(czz) cos(n6)
To: -2Gnod ,(6r)/r -Gn([B-02)Jn( Pr)/r/a Gaply,'(Pr) cos(0z) sin(n6)

From Table 1 & can be determined from the relation that oL = 7 where L is the wave length. For a
given L, radius r, physical properties and value of n the tabulated values are a function of the
frequency alone. The solution for a wavelength of L can also be interpreted as the solution of a
cylinder of length L and end boundary conditions of either u,, ug and o, equal zero or uz, Tr; and 7,9
equal zero.
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For multiple layers, the layers and interface face radii are numbered from the outside in. The outer
radius is r; and the outer layer is material 1. For example the radius r3 is the interface radius between
material 2 and material 3.

A 3x3 displacement matrix Dj is formed using the first three rows and columns of the functions listed
in Table 1 (without the multiplier). Two more subscripts are attached to this matrix, the first denoting
the material number and the second denoting the radius number. Thus Dj34 would refer to the first
three rows of Table 1 for the third material at radius r4. A similar matrix Dy is formed where ¥
replaces J in Table 1. A stress matrix Sy is formed using the next three rows of Table 1. These are the
stress components which appear on the interface of the materials. The stress matrix Sy is formed in
the same way but with Y replacing J. To satisfy boundary and interface conditions it is simply a matter
of combining these matrices. As an example the characteristic matrix for solution of a three layered
shell which is free at the inner and outer radius is,

Sin Sy
Snz2 Syi2 Sy Sy
Dj;; Dyj; Dy Dy
Sp23 Syaz —Spz —Syss
Djy3 Dyj3 —Dyz3 —Dyss
Sz Syss |

{C}={0} (1)

The matrices in the first row make the stress on the outer boundary equal zero. The matrices in the
second row are for the matching of the stress at the interface of the outer layer and its adjacent layer.
The matrices in the third row are for matching of the displacements at the interface of the outer row and
its adjacent layer. Subsequent rows of matrices are for interface matching. The matrices in the last
row make the stress at the inner radius equal zero. To solve the problem of a fixed outer boundary the
matrices in the first row Syj1 Sy are replaced with Dy1q and Dy;. Similarly, if the inner radius
were fixed the matrices in the last row Sj34 Sy34 would be replaced with Dy34 and Dy34. To solve a
solid cylinder (one layer) only the matrix Sy in the upper left corner is used. To solve a single
layered hollow cylinder the two by two set of matrices in the upper left is used. To solve a two layered
cylinder with a solid core the three by three is used. To solve a two layered hollow cylinder the four
by four set is used. To solve a three layered solid core system the five by five is used and so on. It
can be seen that the assembly process for any number of layers follows a simple pattern and the
imposition of free or fixed conditions at the inner or outer boundaries is also easily accomplished.

The above description is for n greater than zero. For n equal zero it is necessary to split the matrices
into the axisymmetric case and the torsion case. For the axisymmetric case the matrices D and S
become 2x2 matrices which are the upper left 2x2 terms in the 3x3's previously defined from Table 1.
For the torsion case the D and S become the single lower right term in the 3x3's previously defined.
Thus Dy is BJ,,'(Br). The assembly for these smaller matrices follows the same procedure as for the
3x3's as shown in Equation 1.

Numerical results

Extensive comparisons were made with reference (1) the answers were in complete agreement to the 5
place accuracy given in that reference. Complete agreement was found for the fixed outer boundary
solutions in reference (2). There was also complete agreement with the two layer composite solutions
given in reference (3), although, in that paper only plots were given.

Plots

The plots shown below compare a 5 layered cylinder with a one layered cylinder. In both cases the
cylinder has an inner radius of half the outer radius. The 5 layered cylinder has interface radii at 0.9,
0.8, 0.7, and 0.6 of the outer radius. The Poisson's ratio for all layers is 0.3. The shear modulus and
the density of layers 1, 3 and 5 are the same. Layers 2 and 4 have a shear modulus and density of half
that of layers 1,3 and 5. The dimensionless frequency parameter in the plots is the frequency times the
outer radius divided by the shear wave velocity (yG/p). Note, for this example the shear wave
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velocity is the same for each layer. These frequency parameter vs. diameter to wavelength plots show
the eight lowest frequencies. The solid lines are the 5 layered cylinder and the dashed lines are the
single layered cylinder. Some of the frequencies for the five layer solution coincide or nearly coincide
with the frequencies for the one layered system. This is true of the first (lowest) frequency and the
sixth frequency in Figure 1 and the second frequencies in Figures 3 and 4.
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Conclusions

It can be seen that in this example the lower frequencies for the five layered system differ little from the
one layered system; whereas, for the higher frequencies there is marked difference. In this brief paper
it was not possible to consider all of the many parameters which might be of importance. The method
of solution; however, is straight forward and applicable to any number of layers. The FORTRAN
program used in this paper is available to serious researchers by email at jrhutchinson @ucdavis.edu.
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NONLINEAR VIBRATION ANALYSIS OF CROSS-PLY LAMINATED SHALLOW SHELLS

Yukinori KOBAYASHI, Gen YAMADA and Masahiro SATOH
Division of Mechanical Science, Hokkaido University, Sapporo, 060-8628 ,Japan

INTRODUCTION

This paper presents a nonlinear vibration analysis of cross-ply laminated shallow shells. Governing equations
of the system are derived by the Hamilton's principle considering geometrical nonlinearity. Applying
Galerkin's procedure to the equations, we can obtain ordinal differential equations with a quadratic nonlinear
term as well as cubic one. The obtained equations are solved by the method of multiple scales. When we
analyze the second primary resonance, we must use the first mode function as well as the second one.
Applying the method to simply supported shells subjected to lateral harmonic force, nonlinear steady state
response of shells is obtained numerically.

ANALYSIS

Figure 1 shows a shallow shell which has a rectangular boundary and principal curvature radii R, and R,.
The thickness of the shell is 4 and lengths of edges are a and b. The displacement components are , v and w
in the x, y and z directions, respectively. The principal directions of elasticity are denoted as 1- and 2-axes
and the 3-axis is coincident to the z-axis. The angle between 1- and x- axes is £. Assuming the
uniformely distributed lateral force g,cos{)’ ¢ and 1+z/R;=1 (i=x, ), the equations of motion of the shell are
derived as

oN, Ny 1 oM, My _ N, N, 1(oM, oM\ |
ax oy R ax  ay & oy R\ ax 3y )
2 *M_, M N
LA YN PR P YRR PR P Ll B R
ax ay ax ady ax dxdy ay R, R 1)
) Pw  aw
+quoos£2:=ph3t—:,—+c¥,

where c is a viscous damping coefficient, p is the mass density of the shell, N, , N, , N,, are inplane force
resultants and M, , M, , M., are moment resultants, respectively. In-plane and rotational inertia terms are
neglected in the above equations. Following nondimensional parameters are introduced to simplify the
analysis:

§=:’f.
‘ @)

Ry Rx
Fig.1 Coordinate System of a Shallow Shell
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where 7is nondimensional time, and E, is the Young's modulus in the direction of 2-axis and v;, and vy, are

Poisson's ratios.

We assume that the shell is simply supported along edges. Applying Galerkin's procedure and
eliminating variables except transverse displacement, the governing equations are reduced as follows:

d*W, .4V,
ar +Ctraii+ 2'&*"’% +,E"'fmwpr"2 = Fcos Qr, 3)
1K=l P

where

. 1 1 M N - -
W} = Wi Wy W s E=4a’ [ [ Y sin(mag)sin(nam)dnde.
m=] n=1

Coefficients @, , r;, s; and F; express linear natural frequency, coefficients of second and third order
nonlinear terms and amplitude of external load, respectively. ~ When the external load is so weak as to
induce the amplitude of responses smaller than the thickness of the shell, equation (3) is rewritten as

d*X , dX 2 2 2

%+ 2¢ Lrw, X, +€ Y1 XX, +¢€ Spipe X1 X , X, = 2€° f, cos Qr, -

) u it ;Zl k<L j Ak I.;—l ipg 1A pig f, 4)

where
W, =¢X, C=2*u, F,=2¢f,
and ¢ is a non-dimensional small parameter.
We apply the method of multiple scales to solve the equation (4) and use the detuning parameter o
Q=w,+e0 (5)
and the time scale
T =¢'t (n=0,12,-). (6)
Considering the first and second modes of vibration and following the procedure of the method of multiple
scales, the steady state responses of the shell are obtained as
Primary resonance of the first mode :
W, = a,cos(Qr -7,)+ egwl—‘%af[oos(zgr -27,)-3}, N
W, =0,

Primary resonance of the second mode :

"Vl - R122 GE[
2

a 1
=CoS(22T - 2y,)+—5 |,
w; 4w o ?')+w;:l

®
W, = a,cos(Qr -7,),
where
)‘;n:UTZ‘.}’n’ ank=rnjk+rnkj'

Coefficients a, and a, express the amplitudes of response which are dependent on the strength of the external
load f, and 7y, is the phase. While the response W, is independent of coefficients Ry for the primary
resonance of the first mode and W, =0 in eq. (7), the response W, is induced by the effect of the coefficient
R, in eq. (8) when we analyze the primary resonance of the second mode, even if we do not assume any

internal resonance.
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RESULTS AND DISCUSSION

Three layered cross-ply laminated shells (0°/90°/0°) made of graphite/epoxy are treated in the
following numerical examples. Each lamina is assumed made of graphite/epoxy whose material properties

are

L o154, Groo39, Snogs, v, =03
E, E, E,

and the thickness of the shell is H=0.01.

Figure 2(a) and (b) show the resonances W, for f,=23 and W, for f,=30, respectively, around the first and
second natural frequencies and the comparison between results obtained by the single-mode analysis and
two-mode analysis. Abscissa denotes the detuning parameter from each natural frequency. The response
of the first mode W, is determined from eq. (7). Result for the first mode shows the soft spring behavior
and there is no differece between the results by the single- and two-mode analyses. In Fig.2(b), dotted line
denotes the result obtained by the single mode analysis neglecting R,,, in eq. (8) and solid line denotes the
result of two-mode analysis considering the effect of R;;,. While the result of single-mode analysis shows
hard spring behavior in Fig.2(b), that of two-mode analysis shows soft spring behavior. This is similar to
the results for a beam resting on a nonlinear elastic foundation using the direct method by Nayfeh and
Lacarbonara®.

Figure 3 shows the responses for various ratios of r,/r, by the two-mode analysis when f,=30. The
amplitude of the first mode W, is very small, it is however induced by R,,, in eq. (8). As seen from the
figure, responses of the first and second modes for the spherical shell (r,/r,=1) show the soft spring behavior.
With a decreasse in the ratio r,/r,, the response curves change from soft spring behavior to hard one.

]-0 T S T T T u-u: L] L] L] T T
Two-mode (a) — pafry=1 0.5 0 (a)
08 —— Single-mode i 0.5 B
0.02 E
-— 0-6 -
2 Y
0.4
0.01
0.2
0.0 00=
13 0.00°
1.0 T T T T : 1.0
—— Two-mode (b)
08F — Single-mode = 0.8
. 06
-
0.4
0.2
0.0
Fig.2 Frequency-response curves for the primary Fig.3 Frequency-response curves of second primary
resonances (a) first mode (b) second mode resonance for various curvature ratios
(0%79070°, @=1, re=ry=10, 4=0.50, (a) fi=23, (b) f:=30) (0°790°/0°, @=1, re=10, £#=0.50, f:=30)
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Modal Interaction of a Randomly Excited
Hinged—Clamped Beam
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Reactor Mechanical Engineering Department,
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A straight beam with fixed ends experiences mid-plane stretching when deflected. The
influence of this stretching on the dynamic response increases with the amplitude of the
response. This situation can be described with nonlinear strain-displacement equations and
a linear stress-strain law which give us the nonlinear beam equation. Nonlinear dynamic
responses of a straight beam with fixed ends have been studied by many authors. Under
harmonic excitation, Nayfeh and his colleagues(1,2), and Lee and his colleagues(3-5)
considered two or three mode interaction to study the steady state responses of a
hinged-clamped beam. Lee and Soh(3]) showed that there exists no significant difference
between two and three mode interactions” influences on the responses.

On the other hand, Ibrahim and his colleagues(6.7) have studied the stochastic
bifurcation of the unexcited mode of a clamped-clamped beam under wide band random
excitation when initial static axial load is applied to the beam. When the axial static
does not exceed the Euler buckling load(6), the Gaussian closure failed to predict
bifurcation of unexcited second mode. But both non-Gaussian closure and Monte Carlo
simulation predicted second mode bifurcation. When the axial static exceeds the Euler
buckling load(7). The Gaussian closure and Monte Carlo simulation solutions predicted
the bifurcation points of the second mode at relatively higher excitation level than the
non-Gaussian closure.

In this study. we investigate the
modal interaction of a hinged-clamped
beam with a random excitation as
shown in Fig. 1.

Ch
b Using  Galerkin’s  method, the
governing equation of motion of the
L. < 4 hinged-clamped beam(3) in terms of
e r - dimensionless variable is reduced to a
system of coupled nonlinear ordinary
Fig. 1 A schematic diagram of a hinged-clamped differential equations as follows:

beam
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du,

-?-+wiz_t,,=e[ —2C; at +s,¢u?+s,1u¥u2+s,¢u,u§+s,ﬁug+s,ﬁufu3+s,ﬁu1uzu3 )

+ Setius + Squ Ul + sgupul + seus +Fu(8)], n=1,2,3.
where e= 2/(I'/2) = (2h/I')?/12, I=T/(I" /2)* =2 = nondimentialized length of beam. ¢, =
damping coefficients, s; = nonlinear coefficients, @, = natural frequencies

!
(0 =3.855, 0 = 12.491, 03 = %6.062), F,(t)= [ P(x,t)g,(x)dv=random excitation. P(z,¢)=

(P12 /(PFPEAP (2, t°). £=0o(l)2)(EAt, ¢,(x)=-eigenfunctions. k= thickness of beam,
I’ = length of beam, E= Young’s modulus, »= radius of gyration, p= density of beam.

To investigate influences of the energy transfer from the externally excited modes
(u,, u3) to the unexcited mode (%;) through nonlinear coupling, we select the node of the

second natural mode as external excitation point. In this case, the excitation corresponding
to each mode is as follows:

F\(t) = AWt), Fyt)=f£,Wt), Fi(t)= f;M¢)

Wt) = P(0.885,t), fi=e(xw) =1.063, fo= o(xw) =0, f3= es(xy)=0.979.

Random excitation W(¢) is assumed to be zero mean white noise having the
autocorrelation function

Ryl 4t) = El W) W( ¢+ 4t)] = 2D 8(4t) (3)
where 2D represents the spectral density when we express the frequency by f(=w/27x),
and &(4¢) is the Dirac delta function.

Equation (1) can be transformed into the Fokker-Planck equation for the joint
probability density function p(x,¢) as follows:

2 hx. )= = Flalx. 06x. 0]+ % B 2525 [baCx. 0x. 1) (4)

ax,- ax*

(2)

where a;( x,#) and bu( x,t) are the drift and diffusion coefficients, respectively.
It is impossible to obtain the exact solution p(x,#) to the Fokker-Planck equation (4).
However, equations for the moments of #(x,#) of any order # may be obtained by

@y @y a5 ay

multplying equation (4) by al'x xyxi'xsxg, wheren=a,+a,+a;+a;+as+as. and
integrating by over the entire state space —o<{x;{o . Equations for the moments constitute

a set of infinite coupled equations because the differential equation of order = contains
moment terms of order n+1 and =n+2. In order to obtain the response statistics we
truncate these equations by using Gaussian and non-Gaussian closure schemes. The
Gaussian closure is based on the assumption that the response process is nearly Gaussian
and is carried out by setting third- and fourth-order cumulants to zero. In this case we
can generate a system with 14 coupled differential equations for first- and second-order
moments. For non-Gaussian processes the cumulants of order greater than the second do
not vanish. However, their contribution diminishes as their order increases if the process
is slightly deviate from Gaussian. Thus the non-Gaussian closure is carried out by setting
fifth- and sixth-order cumulants to zero. In this case we can obtain a system with 69
coupled differential equations.

We investigate the long-term behavior of the moments by integrating numerically
the ordinary differential equation obtained by Gaussian and non-Gaussian closure. Fig.

2 represents limits of mean square responses as function of the 2&°D proportional to
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Fig. 2 Limits of mean square response plotted against 2&?D according to Gaussian

closure, non-Gaussian closure, and Monte Carlo simulation

(e = ¢y = ¢3=100,&=0.0001).
mean square excitation of, and represents the results of linearized system. two and
three mode interactions by the Gaussian closure, two mode interaction by the
non-Gaussian closure, and two and three mode interactions by Monte Carlo simulation.
The non-Gaussian closure scheme doesn’t give us any reliable results beyond the
excitation level z-z. The mean square response of the second mode which is not excited
directly increases as 2&’D or o%. The first mode response predicted by Monte Carlo
simulation is in good agreement with those predicted by two analytical schemes. The
second mode response predicted by Monte Carlo simulation is in good agreement with
that predicted by non-Gaussian closure scheme up to 2&°D=2000. These results show
that there exists no difference between two and three mode interactions.
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CURVE VEERING REVISITED

Arthur W. Leissa, Professor
Applied Mechanics Program, Ohio State University

Three decades ago, while studying the approximately 500
references that were included in his plate vibration monograph
[1], the writer encountered theoretical curves for free vibration
frequencies which would appear to cross, as a certain geometrical
parameter (e.g., aspect ratio, or thickness ratio) was varied,
but did not. Instead, they veered sharply away from each other
as the apparent crossing point was approached.

The question arose in the writer’s mind as to whether these
veerings were realistic, or induced by approximations in the
solution method or the theory. Some years later he showed [2]
conclusively that the veering could be the result of an approxi-
mate solution method. The Galerkin method was used to obtain
free vibration frequencies for a classical, taut, rectangular
membrane as its aspect ratio (b/a) was varied. The well known
exact solution yields straight line frequency curves which cross;
the Galerkin method produced a sharp veering.

The writer continued to ponder this "curve veering"
phenomenon subsequently. Some aspects of it were investigated
several years ago by one of his graduate students [3]. In the
present paper it is first demonstrated in exact solutions of some
one-dimensional problems----vibrations and buckling of beams
having interior springs attached. Then the two-dimensional
membrane problem of [2] is revisited, with more accurate Galerkin
solutions being used, resulting in more acute curve veering. But
approximate solutions by the finite difference method do not
produce veering.  Finite difference results for plate vibration
frequencies are also shown and discussed. Curves of frequency
versus b/a are found to cross when exact solutions exist, but
veer when they are not exact (variables separable exact solutions
do not exist which satisfy the boundary conditions).
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Stationary Random Vibration of Continuous Systems

Andrew Y. T. Leung

School of Engineering, Manchester University, M13 SPL, UK
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For a continuous member under stationary random excitation which is time and spatially
correlated, the number of spatial and time co-ordinates is doubled. An Euler beam is
taken as an example. The Fourier transformed governing equation is a fourth order
partial differential equation (PDE) in the two correlated spatial co-ordinates. Methods to

solve this PDE and to integrate over the frequency to give the standard deviations are
suggested.
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Investigating the Limit of Turbomachinery Blade Modelling with Linear Pretwist
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1. Introduction

Structures with an initial angle of pretwist have
been widely used in many engineering applica-
tions ranging from huge civil structures to minute
components of micro-electro-mechanical systems,
commonly known as MEMS. Recent development
in MEMS has indicated that the size of a turbine
or a motor can be reduced to the size smaller than
the diameter of a human hair. As such, the struc-
tural integrity and performance of the turbine or
motor blades are critical. Precise modelling of tur-
bomachinery blades is becoming more demanding.

Vibration and buckling analysis of turboma-
chinery blades has had a considerable history of
research both in theory and experiment [1-4]. Tur-
bomachinery blades were once modelled as beams
with an initial angle of pretwist. However, ac-
tual turbomachinery blades do not always feature
a large length-to-width aspect ratio thus rendering
a pretwisted beam model unsatisfactory. Research
in plate and shell modelling of blades were con-
ducted after the eighties [2-8] in experiments and
using the finite element method [2-4]; and also em-
ploying an energy method with admissible poly-
nomial shape functions [5-8]. Although accurate
vibration frequencies and greater numerical effi-
ciency as compared to the finite element method
have been reported, the mathematical models in
these analyses are only valid for plates or shallow
shells with a small angle of pretwist. Noting that
a turbomachinery blade normally features a large
angle of pretwist (> 45°), the plate and shallow
shell models are certainly inadequate.

In this study, a natural orthogonal twisting co-
ordinate system is formulated based on curvilinear
coordinate transformation. As there is no geome-
try discretization or approximation, exact turbine
midsurface is represented in this analysis. Unlike
the plate and shallow shell models [5-8], this analy-
sis is valid for an arbitrary angle of pretwist. Fur-
thermore, the twisting curvature is nonlinear in
the direction perpendicular to the twisting axis,
although the angle of pretwist is uniform or the
rate of change of angle of pretwist is a constant.

2. Theory and Formulation

The midsurface of a pretwisted plate with
length a, radius R, projected angle 6,, thickness
h is shown in Figs. 1 and 2. A curvilinear co-
ordinate system tangential and perpendicular to
the helix and lying in the osculating plane of
(7,07/08) is adopted. Together with the binor-
mal vector to the helix, it forms an orthogonal
coordinate system.
\z

Figs. 1 and 2. Geometries of a helix and the
helicoidal midsurface of a pretwisted plate with
a/2R =1 and 6, = 45°.

The coordinate transformation between such a
helicoidal system (r,f) and the Cartesian system
(2.3,k) is

- oo, @
F=r=r(cos€1+sin93)+;k (1)
where ¢ = §,/a is the rate of change of projected
angle 6 along the z-axis.

In accordance with the theory of surfaces, a
pretwisted surface as illustrated in Fig. 2 has infi-
nite radius of curvature with respect to the coordi-
nates of the twisting surface. However, the surface
is geometrically twisted and the dimensional and
dimensionless radii of twist can be deréved as
i A IR )
Ry 1+463(r/a)

which is also defined as the torsion of the space
curve r. For pr € 1 or p K 1/,
1 b,

—_— = ——

R.s a

Rrs 1+ @212 )

(3)
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The relationship of |a/R.¢| with respect to 7/a
and 6, is illustrated in Figs. 3 and 4. It is obvi-
ous that the twisting curvature is nonlinear and
it decreases in the direction perpendicular to the
axis of twist z, with the highest curvature being
along the axis of twist, 7 = 0. It is interesting to
note that if the angle of twist of a helix with con-
stant r/a is increased steadily, its twisting curva-
ture does not increase correspondingly. Rather, a
maximum twisting curvature is reached at a cer-
tain 6, and |a/R,¢| decreases beyond this value.
It suggests that we can not derive higher twist-
ing curvature of a helix by increasing the angle of
twist. Upon differentiating |a/R,4| with respect
to 6, and setting it to zero, the maximum twist-
ing curvature a [ (4)

R 2

mazx

occurs at &
90||afﬁ,.gt:maz = ; (5)
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From Fig. 3, it is obvious there exists two in-
herent approximations in assuming ﬁ X —p =
—tan [5-8], the first being ¢ = tan¢ and the
second @r < 1. An error analysis shows that an
approximately 10% error will incur for 6, = 30°
according to the first assumption while for the sec-
ond assumption, f,(r/a) = 0.26 € 1 forr/a = 0.5
(aspect ratio 1) is also far less than satisfactory.

Let the orthogonal displacement components be
u,, ug in the osculating plane and and u, in the
binormal direction, the normal and shear strains
can be expressed as

_ Our 1 0up | Tur
_ 31&9 TUg 1 3’(&, 211.5
10 = B " =F he 80 oh2 (6¢)
_ 3 Oup 3rug B 0%y 1 % (6d)
frr = TOph2 Or | 2phi  0r2 | 20h3 96
gD Ot 1w e T OW
% = T20h3 86 k2 007 2phy hj Or
1 Ow
T 5oh2 or (6e)
oMU O 1 dw L 0w
0 ha 3:39 B3 B0  @hl Or  ohy 06
E (,a_h‘; (6)

where hy = (1/¢)V1+ m2¢2.

The strain and kinetic energy components are
formulated in this twisting coordinate system. For
linear, elastic free vibration, the maximum strain
energy in a vibratory cycle is

Uma:c= (Us) e + (Ub) = [70')
(U,) m“= Gh—? /A [ef - eg + 2ve.€p
gz ”735] hedrdd  (7b)
(U;,) = % .//.4 [Kf + Kj + 2UK Ky

+2(1- V)‘rz] hgdrdd  (7c)

where U, and U, are the stretching and bending
strain energy components. The kinetic energy is

2
Tz = ph;" ffA (U2 + U2+ UR) hodrds (8)

where A is the pretwisted midsurface area, p the
mass density per unit volume and w the angular
frequency.
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By representing displacement components as
admissible polynomial functions, the energy com-
ponents can be minimized in accordance with the
Ritz method to obtain the following governing

eigenvalue equation
(K - X*M) {C} = {0} (9a)

e waa/%’ (9b)

where the eigenvalue A represents the nondimen-
sional frequency parameter.

3. Discussion

It has been shown that the assumption of con-
stant twisting curvature 1/R,s = —tany for a
pretwisted midsurface is subjected to two restric-
tions and it is only valid for a small angle of
pretwisted. Analytical and computational free
natural vibration solutions based on this assump-
tion have been presented for pretwist angles as
large as 6, = 45° [5-8]. However, no analysis on
the limits and validity of the application of that
assumption has been investigated. Although fi-
nite element and experimental results are avail-
able for turbomachinery blades with 6, < 60°,
there is a.wide spectrum of results [1-4]. Re-
sults for 8, > 60° are rare. An analysis using
a natural twisting coordinate system to model
the pretwisted midsurface, such as that presented
here, is certainly necessary in providing bench-
mark solutions for comparison.

A comparison of solutions by various methods
is presented in Table 1. In particular, an energy
method assuming constant twisting curvature was
employed in [5] and [6]. Apparently, discrepancy
of results is larger for large ¢ as predicted. A
detailed error analysis will follow.
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Table 1: Comparison of A = wa(2R)+\/(ph/D) for a CFFF thin pretwisted plate with v = 0.3, b/h = 20.0 and a/b = 1.0.
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AXISYMMETRIC VIBRATION ANALYSIS OF ROTATING
ANNULAR PLATES BY A 3-D FINITE ELEMENT

Chorng-Fuh Liu
Department of Mechanical Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R. O. C.

Axisymmetric vibration of spinning annular disks is analyzed by a modified axisymmetric
finite element in the present study. This element is based on the three-dimensional elasticity and
is a modification of the conventional axisymmetric finite element by including the
circumferential displacement. Therefore, axisymmetric circumferential vibration modes can be
revealed, as well as the other vibration modes. The present study represents a first attempt, to the
author’s knowledge, to analyze the vibration of rotating annular plates by a 3-D approach.. The
major differences between the conventional methods and the present one are that the rotation-
induced nonzero stresses of the former are G ,6,,64and T, instead of only the in-plane G,
and o, by the conventional approaches, and that all the inertial terms in the axial,
circumferential and thickness directions are included in the kinetic energy in the present
formulation while only transverse velocity is considered conventionally. In addition to the above,
the present method is able to impose the displacement boundary condition exactly.

The formulation follows that in [1], except that the circumferential displacement is present now.
So, YandY,, and their corresponding terms appear in the strain energy. The velocities in the
three coordinate directions are u—Qv, (r+u)Q+Vvand w where Q is the rotational speed of
the plate. The rotation-induced stresses are derived from Hamilton’s principle and the finite
element method by solving the obtained matrix equation with the time-dependent terms dropped.
Integration of the products of the induced stresses and the nonlinear strains produces the
geometric matrix [G] and we then end up with the system equation as follows,

MK+ [chu}+ K]+ [6) = {F)

Since [C] can be neglected[2], the system equation, after dropping the forcing term {F},
becomes

(K]+[6h{u}= o* MU}

where o is the natural frequency of axisymmetric vibration of the rotating annular plate. A
closer examination of the above equation will show that the motion in the radial and the
thickness directions are uncoupled from those in the circumferential direction and can be solved
separately.

Table 1 shows the first nondimensional frequencies of transverse vibration of annular plates
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with various combinations of ratios of inner-to-outer radius, radius-to-thickness ratios, boundary
conditions and rotational speeds. h, a, and b are the plate thickness, outer radius and inner radius,
respectively, and Q is the nondimensional, rotational speed of the plate. The boundary
conditions used are shown in Fig. 1.

From the results shown, we may find that the most remarkable differences between the present
method and a conventional one[3],which used a plate-theory-based approach with Mindlin’s
transverse shear deformation and rotary inertia terms considered, are: 1. The trends of «; with
the changing of a/h when Q becomes larger are different for C-F boundary condition. 2. The
difference in nondimensional frequencies obtained by the two methods is getting larger for large
Q. small a/h and small b/a. 3. Results with SS3-F are quite different from those with the
conventional simply supported boundary condition. It is also noteworthy that some
circumferentially vibrating modes(in-plane torsional modes) are revealed and even appear as the
lowest modes in some cases. Fig. 2 shows one of them.

More complete results will be shown in [4].

1. Liu,C.F. and Chen, G.T.(1995). A simple finite element analysis of axisymmetric vibration
of annular and circular plates. Int. J. Mech. Sci. 8, 861-871. )
2. Leissa, A.W.(1984). Coriolis effects on the vibrations of rotating beams and plates. Proc.
12* Southeast Conf. Theoret. Appl. Mech., 508-513.
_ Sinha, S.K.(1987). Determination of natural frequencies of a thick spinning disk using a
numerical Rayleigh-Ritz’s trial function. J. Acoust. Soc. Am., 81, 357-369.
4. Liu, CF,, Lee, J.F. and Lee, Y.T.(1999). Axisymmetric vibration analysis of rotating annular
plates by a 3-D finite element. Int. J. Solids Struc.(in revision).

(V)

Ul ;//

Fig. 1 : Boundary Conditions

SS1-F SS3-F
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b/a=0.1 b/a=0.25 b/a=0.5
a [l s 0w 20 50 | s o 20 s | s 0 20 50

C-F |3950" 4167 4225 4241 | 5455 5747 5825 5842 | 1161 1265 1297 1303  present
556 576 583 | 1197 127 13.02  Sinha 1987

0 | SSI-F|3.208* 3392 3436 3448 | 3232 3329 3352 3359 | 3985 4088 4013 4020  Present
333 335 337 | 409 415 4.16  Sinha 1987

SS3-F | 3.505* 3.788* 3.899 3.969 | 4.135* 4431 4616 4712 | 6211 6720 7.045 7.167  Present

C-F [5906* 6.163* 6241 6262 | 7.865 8.140 8.221 8238 | 1422 1516 1546 1552  Present

787 8.1 821 | 1447 1517 15.51  Sinha 1987

Z | SSI-F | 4.963* 5231% 5323 5381 | 5833 6048 6.179 6246 | 8301 8.655 8.856 8932  Present
632 629 630 | 9.3 902 899  Sinha 1987

SSI-F | 5.031* 5.593* 5737 5818 | 6.088* 6447 6608 6692 | 8304 8801 9076 9.181  Present

C-F |9611* 9738 9830 9858 | 1271° 1278 1284 1285 | 2025 2093 2120 21.26 Present
1233 12.65 12.81 | 2021  20.83 21.23  Sinha 1987

4 | SSI-F | 8277 8476* 8624 8765 [ 10.59* 1069 1092 1105 | 1556 1587 1622 1637  Present
1124 1116 .14 | 1681 1655 1647  Sinha 1987

SS3-F | 7.434% 8.664* 8921* 9.023 | 9.656* 10.18 1032 1039 | 1295 1322 1341 1349  Present

(To be continued)

b/a=0. | b/a=0.25 ba=0.5
Q g 5 0 20 50 5 10 20 50 5 0 20 50

CF 17.87* 17.56* 17.52 23.65° 2322 2314 3577 3574 3574  present
2246 2279 23.07 | 3479  3s.10 3570  Sinha 1987

8 | SSI.F 16.03* 1590* 16.15 2132 2119 2132 31.68 3176 3193  present
21,70 21.53 2149 | 3291 3229 3211 Sinha 1987

S§S3-F IS.11*  15.59* 15.67 18.69* 1849 1843 2440 2384 2375  present

C-F 27.67* 25.66* 2530 3641* 3417 3370 5269 5148 5124 present
3301 3327 3364 | 5061 5045 51.19  Sinha 1987

12 | ssI-F 2532 2370 2379 34.03* 3199 3181 4941 4778 4769  present
3233 32.08 3200 | 49.21 4821 4791  Sinha 1987

$S3-F 22.35%  2244* 2233 29.00* 2709  26.64 39.79 3516 3451  present

C-F 4096* 34.28* 33.16° 52.59* '45.71* 44,39 71.85* 6784 67.03  present
4370 43.89 4434 | 6682  66.16 66.98  Sinha 1987

16 | SSI-F 38.16 32.08* 31.59* 5098* 4342* 4244 6432 6357  present
4299 4267 42.57 | 6557 64.17 63.76  Sinha 1987

SS3-F LIS 29.64*  29.03° 4343 3632%  34.96 4746 4548 present
Tablel : Nondimensionalized frequencies of the first axisymmetric transverse vibration mode, E,’s, of rotating annular plates.

Fig.2: An axisymmetric circumferential vibrating mode (in-plane torsional mode),

@ =6.568 . for C-F boundary condition, b/a=0.1, #/h=10and {1 = 4 (u=w=0.0)
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Time-Domain Simulations of Nonlinear, Unsteady, Aeroelastic Behavior
by

S. Preidikman*, B. Hall, and D. Mook
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia USA 24061

A method for simulating unsteady, nonlinear, subsonic aeroelastic behavior of an aircraft

wing is described. The flowing air and deforming structure are treated as the elements of
a single dynamic system, and all of the governing equations are integrated numerically,
simultaneously, and interactively in the time domain. Our version of the general
nonlinear, unsteady, vortex-lattice method, which is capable of simulating arbitrary
subsonic maneuvers of the wing and accounts for the history of the motion, is used to
predict the aerodynamic forces. A linear finite-element model of the wing, which can be
derived from MSC/NASTRAN, is used to predict the deformations of the wing. A
control system is also modeled in some cases. The models are coupled in such a way that
the structural and aerodynamic grids can be chosen arbitrarily. The deformation of the
wing is expressed as an expansion in terms of the linear free-vibration modes obtained
from the finite-element model, and the time-dependent coefficients in the expansion serve
as the generalized coordinates for the entire dynamic system. A predictor-corrector
method is adapted to solve the equations governing the generalized coordinates. The
arrangement is modular and allows independent modifications to the aerodynamic,
structural, and control subsystems. The simulations are not restricted to periodic motions
or simple geometries. To illustrate the technique, two examples are considered: the first
uses a wing similar to those found on modern business jets and the second uses a wing
similar to those found on High-Altitude, Long-Endurance (HALE) aircraft. The results
clearly show that, when the speed is low, the responses to initial disturbances decay, but
that the responses become more organized as the speed increases. Finally, at the onset of
flutter, all of the modes, after an initial transient period, respond at the same frequency. It
appears that the flutter-causing instability is a supercritical Hopf bifurcation. At and
above the critical speed, the amplitudes of the responses appear to grow linearly with
time initially, but then the responses become limit cycles. The amplitudes of the limit
cycles grow as the speed increases, and eventually it appears that the limit cycles
experience a secondary supercritical Hopf bifurcation and become unstable; their
amplitudes and phases modulate. In some cases, the simulation includes a controller that
responds to changes in the loads and bending moments on the wing via a distributed
actuator (e.g., piezoelectric elements) that applies a distributed torque along the span of
the wing to reduce the angle of attack. In the simulations, flutter is readily suppressed,
but peak gust loads are only marginally reduced.

* Currently, Profesor de Ingenieria Mecanica, La Universidad Nacional de Rio Cuarto,
Rio Cuarto, Provincia de Cordoba, Argentina
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Some Problems in Applying the Plate and Shell Theories to

Vibration Optimization of Laminated Components

Yoshihiro Narita
Department of Mechanical Engineering
Hokkaido Institute of Technology
7-15 Maeda, Teine-ku, Sapporo 006-8585, Japan
e-mail: parita@hit.ac.jp, fax: +81-11-681-3622

Laminated composite materials are known as “tailored material”, because designers
can consider optimization of structural behaviors by properly choosing the fiber orientation
angle and layer thickness as design variables. Generally speaking, structural optimization
consists of two parts, i.e., structural analysis and optimization method. When one attempts
to optimize vibration behaviors of laminated plates and shells, typically maximizing the
fundamental frequencies, one of various plate and shell theories is inevitably used in the
structural analysis part.

In the plate and shell theories, there are discrepancies that stem from different
approximations in evaluating effects of transverse shear, cross-elasticity term, strain-
displacement relation and so on. As expected, natural frequencies are obtained somewhat
differently depending on the theories and this difference may affect numerically the optimal
solutions. Although a number of previous publications are found dealing with effects of
different plate and shell theories on calculated frequencies, little attention has been given to
the effect of using various theories on the optimal solution.

Some topics relating the above problem are considered in this presentation. A
symmetric laminate with angle-ply [(8 /-8)uls (: fiber orientation angle, L: number of plies,
S: symmetric) is taken as a numerical example, and an optimal fiber angle 8, is searched to
give the maximized fundamental frequency. A typical configuration is shown in Figure 1 in
the case of shallow shell.

Figure 1. Laminated shallow shell and co-ordinate system.
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The followings will be discussed.
(1) Effect of the cross-elasticity terms in the optimization of laminated plates and shallow shells

In the moment-curvature relation {\ }=[Dl{x}, there are terms D) and Dy, (sometimes
called, cross-elasticity stiffness) in [Z] which couple normal moments with twisting curvature,
and the values of D; and Dy are nonzero for angle-ply laminates. When one solves the
differential equations governing vibration of laminated plates and ghells, it is often desirable to
neglect terms with the stiffness. To clarify the validity of this reduction, frequency equations are
derived by using the Ritz approach for laminated plates and shallow shells. Two sets of natural
frequencies are calculated with/without the Dig and Dy terms, and effects of the cross-elasticity
terms are evaluated quantitatively.

(2) Effect of the thickness shear in the optimization of laminated shallow shells

The classical theory (CT) is widely accepted in the vibration analysis of laminated plates
and shells, but the transverse shear deformation sometimes should be taken into account for
laminated FRP composites. The first order shear deformation theory (FSDT) is relatively simple,
and it can consider the thickness shear by assuming that normals to the middle surface still
remain straight during bending and their rotation angles are independent. Here four types of
vibration solutions are derived by using CT and FSDT, and in addition the inplane inertia effect
is included or neglected in each theory. Discrepancies among the optimal fiber angles caused by
using the four different solutions are clarified for an angle-ply laminated shallow shell.

(3) Effect of different approximation in the shell theories in optimizing laminated cylindrical
shells

Unlike in the plate theories, there are different kinds of deep shell theories, such as Fliugge
theory, Love theory and Donnell theory, with respect to approximation in the strain-displacement
relation. Calculated natural frequencies somewhat vary depending on the theories, and such
effect of using different theories in optimization is not known. Analytical solutions are derived
here by using the above-mentioned theories and the optimal solutions are calculated for a angle-
ply laminated cylindrical shell simply supported at both ends. Then optimal fiber angles and
frequencies are compared each other to study the effect of using the different shell theories in the
vibration optimization.
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Verification of Chaotic Oscillations of a Post-buckled Beam
with a Concentrated Mass

Ken-ichi Nagai
Department of Mechanical Engineering,
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Takao Yamaguchi
SUBARU Research Center Co, Ltd., Ota, Gunma, 373-0026, JAPAN
Hakubo Hattori and Hisashi Suzuki
Gunma University, Kiryu, Gunma, 376-8515, JAPAN

1. Introduction

This paper presents detailed analytical results for chaotic oscillations of a post-buckled beam
carrying a concentrated mass to compare with the experimental results®’. Governing equation of the
beam with both ends clamped includes the effects of an initial constraint and an initial imperfection.

Introducing the mode shape function multiplied with truncated power series and trigonometric
function to the Galerkin procedure, ordinary differential equation with a multiple-degree of freedom
system is reduced. Steady state response is calculated by the harmonic balance method. Detailed
numerical results of the chaotic response are obtained by the Runge-Kutta-Gill method. The analytical
results agreed fairly well to the experimental results.

2. Governing Equation of Motion

As shown in Figure 1, the post-buckled beam is excited laterally by a periodic acceleration.
w(E, 1), wy(&) and u(&, 7) denote the non-dimensional total deflection, initial deflection and axial
displacement, respectively. The non-dimensional governing equation is given by

1! |
[14+B&E-E)IW, 77 +(w — wp), eege —[—uct EJO (w,§ - wg, g,)dé]w, £E
=P~ 488 — [P +q X E-Eplcoswr=0 (1)

where, §¢-§)) is the Kronecker's delta function. f is mass ratio of the concentrated mass to the
whole mass of the beam. u_is the non-dimensional displacement of axial compression. ps and p,
are the non-dimensional intensities of distributed loads. g, and g, are the non-dimensional
concentrated loads. @ and 7 are the non-dimensional exciting frequency and time, respectively.

3. Procedure of Analytical Solution
To satisfy the clamped edges of the beam, we introduced the mode shape function as;
v, wol = 2 [b(2), a 1{6), (= 12.3,..)
6(8) =fi)e(8). f&) =£>- 28°+&%, e(E)=cos(j-1)7& (2)
Using foregoing function, the Galerkin method reduces the governing equation (1) to a coupled
nonlinear differential equation®. Omitting the dynamical terms in the equation, the static deflection

can be obtained. Using the linear natural frequency g, and the corresponding natural modes of

vibration .. a set of coupled ordinary equations with a linear normal coordinate / can be
transformed to; :

bicct2€0bi +5’,-2 b;+S3Dyb; b WEESE bbb -pyGreosor=0 (iki=123...)  (3)
Jk J k1

where, linear damping term is introduced. The chaotic responses of the beam are confirmed by
the Fourier spectrum analysis, the Poincaré projection onto phase plane and the maximum Lyapunov
exponent. Moreover, interactions of the mode of vibration generated in the chaos are discussed for
the location of the concentrated mass on the beam.
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4. Experimental Procedure

A test beam is cut from a duralumin sheet of thickness 4 = 0,506 mm to breathe p — 30,0 mm
and length [ = 180 mm. To increase an effect of damping to the beam, vinyl tapes are pasted to the
both surfaces of the beam. To get the post-buckled form of the beam, the initial displacement is
controlled by the thermal elongation of the beam to the base frame. Initial deflection of the beam is
found to be less than 3 percent of the fundamental mode of static deformation. The beam was excited
periodically by an electro-magnetic vibrator. Measuring the relative deflection of the beam to the base
frame by two laser displacement sensors, the chaotic responses of the beam are recorded®.

5. Results and Discussions

To find the regions of chaotic oscillations are excited, frequency response curves are examined.
Figure 2 shows both experimental and analytical results. In the figure, the regions of the chaotic
vibration are assigned by the symbol C . Subscripts m and n denotes the generated mode of
vibration and the type of resonance, respectively. For example, C, 1> means the chaos bifurcated
from the subharmonic resonance of 1/2 order cooperated mainly with the fundamental mode of
vibration. (m, n:) denotes the steady-state resonance response. In Figures 3, the Poincaré maps of the
chaos are recorded. The analytical results show the figure in each phase delay 6 degree measured
from the maximum amplitude of the exciting force. Both results coincide very well. Changing the
position of the concentrated mass on the beam, the Lyapunov exponents 3 (r=1,2,3) are calculated
in the equation (3). Positive Lyapunov exponent indicates the chaos. The variations of the Lyapunov
exponents in the frequency domain are shown in Figure4. Astheconcentrated mass traverses from the
end to the midspan of the beam, the positive maximum Lyapunov exponent also degreases.
Changing the excitation amplitude p,, instability regions of chaotic responses are obtained as shown
in Figure 5. On the higher frequency of the instability boundary, the chaotic response and the steady
state response are mixed in the narrow region. It exists so-called 'the window of the chaos'.

6. Conclusion

The analytical results are examined to the experimental results for the chaotic oscillations of the
post-buckledbeam with the concentrated mass. The main results can be summarized as follows:

(1) The chaos bifurcates from each resonance response of subharmonic resonance both of 1/2 and 1/3
orders, super harmonic resonance of 2nd order and ultra subharmononic resonance of 5/4 order.
(2) Chaotic attractor and the Lyapunov exponents of the system are well simulated by adopting more

than three fundamental modes of vibration.
(3) The wide instability region of the chaos generated in the frequency range is corresponding to the
response of subharmonic resonance of both 1/2 and 1/3 orders.
(4) The concentrated mass on the beam decreases both the modes of vibration and the Maximum
Lyapunov exponent contributed to the chaos.
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Stability of “Stiff” Gravity Pendulums and of Centrifugal
Pendulums.

S. Naguleswaran
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.

Summary

Consider an uniform beam OB pinned or clamped at the end O and with a rigid pendulum bob
attached to the end B. The beam is of flexural rigidity EJ, mass per unit length m and length L.
The bob is of mass M, and of moment of inertia J about the centre of mass G which is at a
distance e from B. e is considered positive if OG > OB and negative if OG < OB. The vibration
and stability of this unit in a uniform gravity field (gravity pendulum) and in a centrifugal field
(centrifugal pendulum) are discussed in this paper.

Euler-Bernoulli theory of bending and d’ Alembert’s principle are used to derive the
differential equation of motion. If O is chosen as the origin and if 7{x) is the tension at abscissa
x, then for the gravity pendulum, i.e. the unit in vertical ‘hanging” position under gravity,

I(x) = (Me+ mL)g —mgx,

and for the centrifugal pendulum, i.e. if the unit is attached radially in outward configuration to a
hub of radius R, and rotating at a speed p,

T(x) = Mp’(R, + L + e) + mp’(R,+L/2)L - mp*(R,+x/2)x.

For free vibration of the unit at frequency @ (for centrifugal pendulum vibrations normal to the
plane of rotation i.e. out-of-plane vibrations) the amplitude of vibration y(x), bending moment
M(x) and shearing force O(x), then one has

M(x) = Eld’y(x)/dx’, Ok) = - dM(x)/dx + T(x)dy(x)/dx, dQ(x)/dx + mely(x) = 0.
The boundary conditions at O are:
if clamped: y(0) = 0 = dy(0)/d, or if pinned: y(0) = 0 = Eld’y(0)/dx’
and the boundary conditions at the end B are:

OL) -M.o’[y(I) + edy(L)/dc] =0,  e[Q(L) - T(L)dy(L)/dx] - M(L) + Jardy(L)/dx = 0.
Introduction of the dimensionless variables X = x/Z, ¥(X) = y(x)/L, operators D" = d'/dX" and
M(X) = m(x)L/EI, O(X) = Q()L’/EI, KX) = T(x)L’/EI, ¥ = ma’L*/EI  will result in

M(X) = D’Y(X), 0X) = -D’Y(X) + BX)D(X),
D*Y(X) - D[BX)DY(X)] - ZY(X) = 0.
The dimensionless mode shape differential equation is subject to the boundary conditions,
if clamped at O: Y(0) =0 & DY(0) = 0, or if pinned: ¥(0) =0 & D’Y(0) =0 and
D’Y(1) + [6@ - B1)]DY(1) + 82Y(1) =0 and £¥°(1) + D°Y(1) - AXDY(1) = 0,
in which e=e¢/L, §=MJmL, A= J/mL’.
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For the gravity pendulum
LX) = (6+ Dy- X, in which y = mgL’/El
and for the centrifugal pendulum
BX) = Si(1+p+e + m(p+1/2) - i (p+X/2)X, inwhich p=RJ/L 17° =mp’LY/EL

The mode shape differential equation to be solved is

D*Y(X) - b.D’¥(X) ~ b:D[XDY(X)] - b:D[X'Y(X)] - <X ¥(X) = 0.
For the gravity pendulum

bo=(1+8y by=-y% and b,=10
while for the for the centrifugal pendulum
bo =81 (1+p+g) + '(p+1/2), by=-1’p and b;=-17/2.

Details of the solution of the differential equation by the method of Frobenius will be submitted in

the main paper presentation where it will be shown that the solutionis  ¥Y(X) = 2C.Y(X,¢c),
where C,, (¢ =0, 1, 2, 3) are the four constants of integration and the coefficients of the

polynomials ¥Y(X,¢c) = 2a,1(c)X°™" m=0,1,2 ...... ) are chosen with a;(¢c) = I and the
recursive relationship (conditional to a coefficient being zero if the subscript is zero or negative) is

(c+n)(c+n-1)(c+n-2)(c+n-3)an. )(c) = bofc+n-2)(c+n-3)ani(c) + bi(c+n-3)’a,c)
+ [boc+n-4)(c+n-3) + Z]ans(c).

The derivatives of the four functions are 'similar’ polynomials obtained by differentiation of
individual terms. The polynomials and derivatives converged.

The frequency equation is of the form,  a;,a2;—aj2a;; = 0, in which if O is clamped,

a; = D’Y(1,2) + [62e- KI)]DY(1,2) + 8&2FY(1,2), axn=e)’Y(l1,2)+ D*¥(,2)- APDY(l,2),
a;; = D’Y(1,3) + [62e- KI)]DY(1,3) + &2Y(1,3), ay = e>’Y(1,3) + DY(1,3) - AQPDY(1,3),
orif O is pinned,

a; = D’Y(1,1) + [6@Pe- K1)]DY(1,1) + 82Y(1,1), ax= eD’Y(1,1) + D’Y(1,1) - AZDY(1,1),
a; = D’Y(1,3) + [6P - B(1)]DY(1,3) + 82Y(1,3), az = eD’¥(1,3) + D’Y(1,3) - AZDY(1,3).

The roots of the frequency equation were determined by detecting sign changes in (a;;a;; — a;az;)
followed by an iterative procedure. Details will be included in the main paper presentation.

The parameters (common to both pendulums) which influence the frequencies are the mass
parameter 6, moment of inertia parameter A and centre of mass offset parameter & The
additional parameter for the gravity pendulum is the gravity parameter y and for the centrifugal

pendulum the additional parameters are the root offset parameter p and the rotational speed
parameter 7.

For the two pendulums, the first three values of 2 tabulated for £=-0.1, 0 & 0.1 and for
various combinations of the system parameters will be shown in the main paper presentation.

For the gravity pendulum it was found that for negative values of & increase in y results in
decrease in 2, and for a critical value of % £2, = 0, i.e. the system is on the threshhold of
instability although the distribution of tension in the beam is wholly tensile. The critical . is
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independent of 4 but dependson & and & Tables of y for combinations of & and & will be
presented in the main paper. Also presented will be Tables of & for combinations of & and y
and of 8. for combinations of y and &

The frequency equations of the centrifugal pendulum exhibited trends ‘similar’ to those of the
gravity pendulum. Here, in place of y, thereare 7 and pand so there is an additional
phenomenon, viz a ‘tuned’ frequency when a natural frequency coincided with the rotational
speed, i.e. £, = 7. This is similar to whirling of shafts. The 'tuned' rotational speeds 7, depend
on 8,4, p and & 'Tuned' frequencies will not occur if 4 = 0. Tables of the first 7, will be
included in the main paper presentation.

For the centrifugal pendulum it was found that for negative values of €, increase in 1 results in
decrease in €2, and for a critical value of 7, £2; =0, i.e. the system is on the threshhold of
instability although the distribution of tension in the beam is wholly tensile. The critical nc is
independent of 4 but depends on &, p and & A Table of 7. for combinations of &, 7 and ¢, a

Table of & for combinations of &, p and 7 and a Table of & for combinations of 7, p and &
will be discussed in the main paper presentation.

Vibrations of the centrifugal pendulum in the plane of rotation (in-plane vibrations) will be ‘similar’
to that of out-of-plane vibrations.

For both pendulums, A had a greater influence on the frequencies compared to & An apparent
crossover of the first and second mode frequencies will be discussed.

For the case when the pendulums are clamped at O, it was found that for some combinations of
the system parameters, the second mode was nodeless.

The inherent limitation on the precision in the VAX computer admitted calculations to only certain
ranges of the system parameters. Most of the results for presentation were obtained with double
precision. Some needed computation in quadruple precision (e.g the range 500 < y < 1000) and
for some even this was insufficient (e.g 7> 15 and p> 2)

It was possible to calculate only the first value of a parameter for the condition of onset of
instability (i.e when a natural frequency is zero) and the first value of ‘tuned’ rotational speed
although second and higher values exist.

Reviews and comments on several references are made in the main paper. Some of the references
are listed below.

Selected References
B. SCHAFER 1985 Ingenieur-Archiv 55, 66-80. The vibrations of a gravity loaded clamped-free beam.

2. S.NAGULESWARAN 1996 Journal of Sound and Vibration 191, 1-14. The vibration of a “stff’
gravity pendulum with a particle bob.

3. C.H.J.FOX and J. S. BURDESS 1979 Journal of Sound and Vibration 65, 151-158. The natural
frequencies of a thin rotating cantilever with offset root.

4. A.D.WRIGHT, C.E. SMITHR, W. THRESHER and J. L. C. WANG 1982 Journal of Applied
Mechanics 49, 197-202. Vibration modes of centrifugally stiffened beams.

5. S.NAGULESWARAN 1994 Journal of Sound and Vibration 175, 613-624. Lateral vibration of a
centrifugally tensioned Euler-Bernoulli beam.
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On the Discretization of Spatially Continuous Systems with
Quadratic and Cubic Nonlinearities

Ali H. NAYFEH
Department of Engineering Science and Mechanics, MC 0219
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Methods for the study of weakly nonlinear continuous (distributed-parameter) systems are discussed.
Approximate solution procedures treating reduced-order models of systems with quadratic and cubic non-
linearities obtained with the Galerkin procedure are contrasted with direct application of the method of
multiple scales to the governing partial-differential equations and boundary conditions. By means of several
examples, it is shown that low-order reduced models of nonlinear continuous systems can lead to erroneous
results.

Lacarbonara, Nayfeh, and Kreider carried out an experiment to validate the suitability of reduction
methods for studying nonlinear vibrations of distributed-parameter system. They analyzed nonlinear planar
vibrations of a clamped-clamped buckled beam about its first post-buckling configuration. They investigated
the case of primary resonance of the nth mode of the beam, when no internal resonances involving this mode
are active. They obtained approximate solutions by applying the method of multiple scales to a single-
mode model discretized via the Galerkin procedure and by directly attacking the governing integro-partial-
differential equation and boundary conditions with the method of multiple scales. Frequency-response curves
for the case of primary resonance of the first mode were generated using both approaches for several buckling
levels and were contrasted with experimentally obtained frequency-response curves for two test beams. For
high buckling levels above the first crossover point of the beam, the computed frequency-response curves
are qualitatively as well as quantitatively different. The experimentally obtained frequency-response curves
for the directly excited first mode are in agreement with those obtained with the direct approach and in
disagreement with those obtained with the single-mode discretization approach.

A method for producing reduced-order models that overcome the shortcomings of the Galerkin procedure
is discussed. Treatment of these models yields results in agreement with those obtained experimentally and
those obtained by directly attacking the continuous system. Convergence of the reduced-order models as the
order increases is also discussed.

Key words: Buckled beam, experiment, Galerkin method, direct approach, method of multiple scales.
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On the Displacement Functions in Vibration Analysis
of FRP Laminated Composite Thick Plates

Yoshiki OHTA
Department of Mechanical Engineering
Hokkaido Institute of Technology, Sapporo, JAPAN

Introduction

Recently Fiber Reinforced Plastics (FRP) are being increasingly used in the structural applications
due to the technical merits of high strength-weight ratio and stiffness-weight ratio of the FRP materials.
It is known that anisotropic property in FRP materials considerably affects the dynamic characteristics of
structural elements such as plates and shells, and thus a large number of theoretical and experimental
studies have been conducted on the dynamic problems of FRP composite laminates. In most of the
theoretical analyses, the FRP laminated plate is macroscopically modeled as a thin plate of general
anisotropy, and is analyzed by using Classical Plate Theory (CPT)® or First-order Shear Deformation
Theory (FSDT)%**. Reddy" also has proposed Higher-order Shear Deformation Theory (HSDT).

The purpose of this paper is to examine the assumptions of displacement functions employed in
vibration analysis of FRP laminated thick plates. For this purpose, the strain and kinetic energies of a
cross—ply laminated plate are evaluated analytically, and the displacement functions of the rectangular
plate, which is simply-supported at all edges, are expanded into the polynomial forms of arbitrary order
with respect to thickness coordinate. A frequency equation is derived by using the energy approach of
minimizing a Lagrangian. In numerical calculations, natural frequencies, stress distributions along the
thickness and modal damping ratios are obtained for various plates with different stacking sequence and
thickness ratios by using sets of different displacement functions. Then not only the validity of the
assumption of displacements but also the applicability of the plate theories applied to the FRP laminated
plate are discussed by comparing the numerical results.

Analysis
We consider a N—layer laminated rectangular plate (@ Xb X H), which is simply-supported at all edges.
In the present analysis, the Cartesian coordinate system (x, y, 2) is taken at the middle surface of the
laminated plate. The maximum displacements (vibration amplitudes) of the plate in the x, y and z
directions are denoted by #, v and w, respectively.
Maximum strain and kinetic energies of the plate are expressed as follows :

1
r
U max E v (stx +G}'E}- +0.€. +Ty:y,r: +T.Y » +t,ryyxy )dV

T o =;—ﬁ‘pmw3(uz +v:+w? v

where p,, is a mean mass density of FRP material and w means a circular frequency.

(1)
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For the generality of the present analysis, the following nondimensional quantities are introduced :

% b% Z H b
== = = - s l=—
§ a d b 2 H/2 a a (2)
= = — 4 2
u=—u—, v=1, w=i, Al=p’"Haw
H H D,

where D, means a reference bending stiffness.
For cross-ply laminated plates simply-supported at all edges, displacements can be assumed as
follows :

u = cos ma& sin nxg 2 Un"
v = sin ma& cos nzg 2 V' (3)

w = sin mz& sin nac 2 Wn'
ye

where m and » are half wave numbers in x and y direction, respectively, and U,, V;and W;are unknown
coefficients.

By substituting Eqgs.(2) and (3) into Eq.(1), and minimizing the Lagrangian (L=7,,,.— U,,..) with respect
to the unknown coefficients U;, V;and W, for a stationary value,

L 9L 4L
oU, oV, oW

J

=0 (i=12,c ¢ I1;j=12,> ¢+ +J) (4)

a following frequency equation is derived :

K]~ 7 [m]

The determinant of the coefficient matrix of Eq.(5) is set equal to zero, which yields frequency

=( (5)

parameters, and substituting each eigenvalue back into Eq.(5) gives the corresponding unknown
coefficients (vibration mode) in the usual manner. Modal damping ratios are also obtained form the
complex frequency parameters by introducing complex elastic constants with loss factors.

Numerical Results

Numerical studies are carried out for cross— ply laminated square plates (/=1) with different stacking
sequence and thickness ratios. In numerical calculations, frequency parameters, stress distributions and
modal damping ratios of the plates are obtained by using the displacements with different 7 and J terms in
the displacement functions [Eq.(3)]. This means that each result is calculated from the displacement
functions that have polynomial forms of (I-1)-th and (/-1)-th order for in—plane and transverse
displacements, respectively. A graphite/epoxy, which is highly orthotropic fiber reinforced plastics
material, is chosen and the material properties used in calculations are E/E,=20, G,/E,=0.65,
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G/E,=0.5, v,,=0.25, v,;=0.25.

Table 1 and 2 show the convergence of frequency parameters for 2-layered [0°/90°] and 3-layered
[0°/90°/0°] square plates, respectively, when the number (/ and J) of terms employed in displacement
functions are increased, respectively. It is found for each plate from the results that frequency
parameters are converged increasing the number of terms, and also that the displacement functions with
the terms more than /=4 and J=3 give the converged frequencies. However, higher order functions for
in-plane displacements is needed for the 2-layered, non-symmetrically laminated plates than for the 3-

layered plates.

Table 1 Frequency parameters of 2-layer laminated plate

[0° /90° | (m=n=1,[=1, h=0.1)
E2 F3 F4 F5 F6 ET
JF2 31.39 3131 31.19 31.14 31.12 3l.12
J3 31.00 3092 30.82 30.77 30.75  30.75
F4 31.00 30.92 30.82 30.77  30.75  30.75
J5 31.00 30.92 30.82 30.77  30.75  30.75
J6 31.00 3092 30.82 30.77 30.75  30.75

Table2 Frequency parameters of 3-layer laminated plate

[0° /90° /0° ]

(m=n=1, I=1, h=0.1)

E2 E3 F4 E5 F6 E1
JF2 43.34 43.34 42.30 42.30 42.28 42.28
U= 43.05 43.05 42.06 42.06 42.04  42.04
J4 43.05  43.05 42.06 42.06 42.04 42.04
S5 43.05 43.05 42.06 42.06 42.04  42.04
J6 43.05 43.05 42.06 42.06 42.04 42.04
Reference

(1) Vinson, J.R. and Sierakowski, R.L., 1986, "The Behavior of Structures Composed of Composite

Materials," Martinus Nijhoff Publishers, Dordrecht.

(2) Dong, S.B. and Tso F.K.W., 1972, ASME J. Appl. Mech., Vol. 39, No. 4, pp. 1091— 1097.
(3) Whitney, J.M. and Pagano, N.J., 1970, ASME J. Appl. Mech., Vol. 37, No. 4, pp. 1031-1036.
(4) Yang, P.C., Norris, C.H. and Stavsky, Y., 1966, Int. J. Solids Struc., Vol. 2, pp. 665— 684.

(5) Reddy, J.N., 1984, ASME J. Appl. Mech., Vol. 51, No. 4, pp. 745-752.
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VIBRATORY PHENOMENA IN ROTATING DISK-SPINDLE SYSTEMS

Robert G. Parker
Department of Mechanical Engineering
Ohio State University
206 W. 18th Ave.
Columbus, OH 43210-1107
parker.242 @osu.edu

High-speed machinery applications such as turbomachinery, disk drives, rotor dynamics, cutting tools, and
geared transmissions have motivated substantial research on the dynamics of spinning systems. Research on
the dynamics of these and similar applications has generated two major bodies of literature on spinning sys-
tems: spinning shafts and spinning disks. Developments in these two areas have occurred largely independently
of each other despite the common features deriving from the rotational effects. Virtually all of the spinning
shaft vibration analyses assume that attachments to the spinning shaft are rigid. A similar majority of the spin-
ning disk research neglects the dynamics of the supporting structure such as the spindle. This work addresses
the spinning system problem wherein an elastic disk is mounted on an elastic spindle via a rigid clamp (Fig. 1).
The continuing trends toward higher operating speeds and lighter, more flexible devices necessitate such a
model for high-precision machinery. The need for expanded modeling is most apparent in applications with
naturally coupled mechanics. For example, disk vibration is a major concern in disk drives, yet the bearings are
a primary source of excitation. Alternatively, the dominant excitation in geared transmissions is generated at
the tooth mesh, yet the major dynamic concern is acoustic radiation from the gearbox housing of the vibration
transmitted via the spindle. Bearing excitation drives disk response in one case, and disk (tooth mesh) excita-
tion drives spindle dynamics in the other.

Figure 1 depicts the disk-spindle system wherein the disk is a uniform Kirchhoff plate augmented by mem-
brane stress contributions, the spindle is a uniform Euler-Bernoulli beam, and the coupling clamp is a 3-dimen-
sional rigid body. The system rotates with steady speed about the fixed axis passing through the spindle end
supports. The following effects are incorporated in the model: 1) disk and clamp center of mass offsets from
the rotation axis, 2) non-diagonal clamp and disk inertia tensors, 3) differing spindle bending stiffnesses in the
two bending planes, and 4) general disk and spindle boundary conditions. The dimensionless variables are:

A
Z=71 >
=L
& M
k=E; (O]
dl|c'u

disk deflection - w(r, 8, 7), spindle deflections - u(z, t), v(z, 1), deflections of clamp point C - u“ (), v(1), and
clamp rotations - ¢(z), y(r) . The coupled equations of motion consist of three partial differential equations for
the disk and spindle deflections and four ordinary differential equations for the clamp deflections and rotations.
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The inherent gyroscopic continuum structure is clarified with a novel formulation of the governing equa-
tions in terms of extended operators acting on an extended variable. In particular, the extended operator formu-
lation yields a symmetric and positive-definite inertia operator, symmetric elastic bending stiffness operator,
symmetric rotational stiffness operator, and skew-symmetric gyroscopic operator. This structure, which is not
evident from the component equations, is the keystone of the extended operator formulation. Cast in this form,
known results for gyroscopic system response and stability apply to disk-spindle systems. Additionally, Galer-
kin, perturbation, and other approximate methods that require classical operator and inner product structure
can be efficiently applied. This is a powerful result because these techniques, though well-known, are not
readily applicable to the component equations.

The implications of this formulation and its utility for spinning disk-spindle vibration mode coupling, dis-
cretization methods, modal analysis, and response are examined. Specific results include:

1. Disk-spindle coupling of the zero speed vibration modes occurs only for the one nodal diameter modes for
axisymmetric systems. Disk asymmetries (e.g., nonuniform boundary conditions, thickness variation, dis-
crete asymmetries such as slots, etc.), as opposed to spindle and clamp asymmetries, are the only asymme-
tries that lead to expanded coupling in other than the one nodal diameter modes. This coupling is predicted
in terms of simple formulae in terms of the Fourier distribution of the disk asymmetry.

2. Approximate spinning disk-spindle free vibration and response solutions are achievable by classical Galer-
kin discretization of the extended operator formulation. The zero speed and critical speed extended eigen-
functions are solvable in closed-form and provide the necessary set of complete comparison functions.
Symmetry of the extended operators is preserved in the discretized matrix operators.

3. The vibration modes can be characterized as predominantly disk or spindle by a strain energy ratio. Interac-
tion of the associated disk and spindle natural frequencies with changing speed follows a pattern rich with
natural frequency veering. Strong disk-spindle coupling of the vibration modes occurs in the veering
regions.

4. Forced response analyses demonstrate that disk-spindle coupling allows excitation applied to one compo-
nent to drive vibration of the other, particularly in the presence of curve veering. Proper design choices can
limit this coupling. This is an important concern in practical applications.

5. An exact solution for the eigensolutions of a disk-spindle system is calculated. While cumbersome, it is
valuable as confirmation of the Galerkin discretization results as evident from excellent natural frequency
comparisons.
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CONTINUUM REPRESENTATIONS FOR THE
VIBRATION OF VEHICLE TRACKS

N. C. Perkins
C. Scholar
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Heavy vehicles driven by tracks include construction vehicles, mining equipment, agricultural
vehicles, military tanks and others. Regardless of their use, all tracked vehicles are subject to
very substantial vibration levels; partly from the rough terrain that they frequently traverse
and partly from the construction and motion of their track systems. This vibration limits the
service life of many components and adversely affects vehicle performance. For instance, the
vibration environment found inside military vehicles can be so severe as to seriously degrade the
performance of on-board instrumentation, electronics and personnel. In addition, the associated
acoustic emissions can themselves compromise the missions of these vehicles. This presentation
will focus on a model used to examine the vibration response of the tracks that drive these
vehicles. In doing so, we discuss the merits of viewing the track as an equivalent continuum.

Prior models of vehicle tracks have considered them to be large dimensional, multi-body
systems composed of individual rigid links (pitches). This approach invariably leads to models
of tracked vehicles possessing hundreds of degrees of freedom resulting in considerable compu-
tational effort to deduce even relatively simple responses. The novel approach discussed here
is to model the track as an equivalent elastic continuum which is then coupled to the (rigid
body) elements forming the remainder of the vehicle suspension system. To this end, a con-
tinuum model will be presented which describes the dynamic deformation of a track element
within the vertical plane. This element model accounts for 1) the stretching of the track and
resulting dynamic track tension, 2) the transverse vibration of the track spans, and 3) the static
track sag. The element model is then extended in forming a model for the entire track system
including typical suspension elements. The natural frequencies and mode shapes associated
with this system model are then employed to evaluate the forced response of the track system
using classical modal analysis methods. Figure 1 presents an example of this calculation and
illustrates the first four vibration modes of a military vehicle. The forced responses considered
derive from dominant sources of excitation for tracked vehicles including rough terrain and drive
train excitation.
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fs=7.3 Hz fa=7.6 Hz

Figure 1: Track system modes.

The modeling of a vehicle track as a continuum is unique and requires justification. As a
means towards this end, we shall review experimental results on the vibration response of track
segments and critically compare these with predictions from the continuum model. Figure 2
illustrates experimentally measured frequency response functions for a sample track from which
the natural frequencies are quite apparent. Once the accuracy and limits of the continuum
model have been established, we shall then review how it is employed in the simulation of entire
tracked vehicles traversing rough terrain.
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SOME OBSERVATIONS ON SHELL VIBRATIONS
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Thin-walled structural components make-up the vast majority of a typical automotive, aerospace, marine as
well as other structures. Many of these thin-walled components have flat surfaces, or plates, and others have
curved surfaces, or shells. Vibrations of plates and shells received considerable attention over the last few
decades. Shell structures introduce considerable additional complexity in their analyses when compared with
plate structures. Most of these complexities are due to vast number of shapes and curvatures shells may have
(spherical, cylindrical, ... ) and the fact that in-plane (or membrane) forces are coupled with out-of-plane
forces (shear) as well as bending moments. This increases the order of the differential equations from 4 (for
plates) to 8 for the simplest shell structures. Lamination material construction and thicker shells add to the
complexity of the shell theory and the equations used. Thin shallow shells, often referred to as curved plates,
are probably the simplest shell structures.

In a typical research or publication, the theory, the approach to the solution procedure, the numerical results
and conclusions are often displayed. Rarely researchers try to look at the results and understand why a certain
shell behaves in a certain way. Such information and explanation is usually of major interest to the engineer
who is designing a particular component. In other words, and to be specific, if a particular natural frequency is
occurring in a certain range where excitation is very probable, the challenge is to find the changes the
engineer can make to the design of the component to get that natural frequency outside the range of
excitation. If the engineer has a good insight to the shell behavior and that natural frequency and its mode
shape, a solution can be proposed to solve the problem fast. Having said that, it should be mentioned that the
engineer also works with other constraints like packaging, aerodynamics, cost and even 'style'. Some of the
limitations restrict the curvature, thickness, and even the boundary conditions that can be worked with for a
particular design.

Effect of Shell Curvature and Boundary Conditions

The table below shows the fundamental natural frequencies that correspond to symmetric modes obtained by
the Ritz method for a cylindrical shallow shell (Qatu and Leissa, 1992). A unity aspect ratio of the shell and a
Poisson's ratio of 0.3 are used to obtain all results. Two thickness ratios are used, the first is 500 representing
a very thin shell and the second is 20 describing a thicker shell. Eight boundary conditions are studies (more
can be obtained from the above paper), ranging from completely clamped edge Clto a simply supported edge
with free inplane motion (S4) The above manuscript shows results for shells with other geometries.

It will be difficult to explain the changes in the frequencies without referring to the fundamental symmetric
mode and the energy associated with it. This is mainly a bending mode. Notice the difference in this
frequency made by releasing the inplane constraints (from C1 to C4) for thin shells. This observation can not
be explained properly without reference to the bending and membrane energies in the system. Obviously,
more membrane energy can be stored in the system where the inplane motion is restrained. Furthermore,
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restraining the motion in the axial direction perpendicular to the boundary is of much more importance than
restraining the other inplane motion to obtain higher frequency. The results obtained for higher curvature
reinforces the same observation, as shells with higher curvature posses higher membrane energy. Going to
thicker shells, the differences are noticed to be smaller when some inplane restrains are removed.

Fundamental Natural frequency parameters Q for circular cylindrical shallow shells v=0.3, a/b =1
B/Ry b/h =500
C1 C2 C3 C4 S1 S2 S3 S4
0.2 22.4 7.88 22.2 6.17 22.0 26.0 21.4 26.0
0.5 27.0 10.2 27.0 7.7 26.8 26.1 26.6 26.1
b/h =20
0.2 3.81 3.59 3.80 3.53 1.63 15.8 1.41 15.6
0.5 5.16 4.01 5.15 3.77 3.94 194 3.47 18.4

Curvature effects on isotropic barrel shells:

A recent publication presents the theory and vibration results for barrel shells (Qatu, 1999). Barrel shells are
cylindrical shells with addition curvature along the axial direction. The table below presents the natural
frequencies for closed isotropic barrel shells with Poisson’s ratio of 0.3 and thickness ratio of Rg/h=100. The
curvature ratio (a/R;) along the longitudinal axis varies from -0.5 to 0.5.

The first observation made is that a slight curvature in the barrel shell with a/R, = 0.1 resulted in a
considerable change in the natural frequencies (Qatu, 1999). For longer closed shells with a/mR; = 8§,
changing a/R, from zero (i.e. perfect cylindrical shells) to 0.1, resulted in increasing the natural frequency
parameter by 27%. This change in a/R, has less effect for shorter shells. For shells with a/mR = 0.5, this
change increased the frequencies by only 3%.

The second observation made is that introducing 2 negative curvature a/R, = - 0.1, decreased the fundamental
natural frequency parameter, in general. This decrease is observed to reach a minimum, at a/R, = -0.3 for
closed shells with a/mRg = 8. This minimum is also observed in some of the higher frequencies. For example,
the second minimum natural frequency is achieved at a/R, =-0.1, for a/mRg = 8. For the third and higher
frequencies, introducing a negative curvature did yield higher frequencies.

Another observation is made here when the frequencies of open and closed shells are compared. Note that the
results presented for closed shells are also valid for open shells with b/ Ry = n. The fundamental frequency
parameters occur at a lower n value for open shells. Interestingly enough, the frequency parameters are found

to increase as b/ Ry decreases for shorter shells (a/mRg = 0.5, 1) and the opposite is found for longer shells in
some cases.
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Natural frequency parameters for isotropic closed barrel shells v=0.3, R /h=10

0.
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0.07083 0.02521 0.05098 0.08153 0.11509 0.15365 0.19803
0.30733 0.15937 0.09221 0.08473 0.11186 0.15154 0.19787
0.66603 0.47741 0.34088 0.25389 0.21123 0.20741 0.23230
0.90659 0.80876 0.70588 0.61242 0.53722 0.48530 0.45896
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0.99546
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0.08222 0.09793 0.12363 0.15802 0.20011
0.10469 0.11071 0.13125 0.16296 0.20362
0.18863 0.16356 0.16449 0.18464 0.21883
0.41551 0.33676 0.29273 _0.27782 0.28711
0.74135 0.65887 0.59202 0.54476 0.51881

0.24354 0.12873 0.08679 0.07764
0.48709 0.29836 0.16634 0.11838
0.96190 0.61900 0.37926 0.25145
0.99320 0.89186 0.70314 0.53634
1.00539 0.98159 0.91791 0.83193

0.24855 0.30475
0.24851 0.30517
0.24993 0.30774
0.27512 0.32925
0.45791 0.47944

0.29856
0.30000
0.30639
0.33957
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0.24107
0.24255
0.24967
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0.24928 0.30515
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0.51419 0.52946
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FINITE DYNAMICS OF ELASTIC SUSPENDED CABLES:
ANALYTICAL APPROACHES, EXPERIMENTAL TECHNIQUES,
AND NONLINEAR PHENOMENA

Giuseppe Rega
Dipartimento di Ingegneria Strutturale e Geotecnica,
Universita di Roma “La Sapienza”, Italy

Finite oscillations of elastic suspended cables have received strong attention in the recent
literature due to their notable interest in applied mechanics and engineering. The suspended
cable can indeed be considered as a meaningful archetypal model for the analysis of the
nonlinear behaviour of the important class of elastic structural systems with initial curvature.
Due to the simultaneous occurrence of even and odd nonlinearities, it allows one, on one side,
to examine and compare the merits of different approaches adopted for describing the system
asymptotic dynamics. On the other side, it allows one to illustrate the richness of nonlinear
dynamic phenomena, which ranges from the varied regular and nonregular responses
exhibited already by the relevant s.d.o.f. model, to the whole complexity of multimodal
interactions, bifurcations, and chaos of various possible m.d.o.f. models.

Apart from topics concerned with system mechanical and mathematical modelization which

would require further investigations and refinements, meaningful research achievements have

recently been obtained as to the performances of different techniques in the investigation of
the system response and to the variable aspects of its dynamic and bifurcational behaviour.

Consistent with the intent of the conference, and within the aforementioned general

framework, the present work is aimed at reporting on some interesting and partially

unexpected topics in the field, as they have been detected by the writer in a perspective of
long-term research activity with collaborators.

Three main topics will be considered. (i) The performances of different analytical approaches

which can be used to construct asymptotic models able to highlight the actual nonlinear

response of cables to an harmonic excitation, and some relevant problems connected with the
identification of reduced-order models and with higher-order approximations of the
responses. (ii) The problems arising in the experimental analysis of the finite dynamics of
such flexible systems, and the techniques and tools from applied nonlinear dynamics that have

to be employed to get a reliable in-depth description of the system complex behaviour. (iii)

Some main related bifurcational aspects, and the ensuing steady attractors of the dynamics, as

they are detected by using suitable response invariant measures derived from dynamical

systems theory.

(1) The finite forced vibrations of elastic suspended cables around their initial
configurations are governed by a set of general integro-partial differential equations. A
common practice to obtain approximate solutions of the relevant unimodal or
multimodal dynamics through an asymptotic technique is to construct Galerkin
discretized models by retaining in the expansion the only eigenmode excited by the
resonance or just the eigenmodes involved in the (possibly simultaneous) internal
resonances. A more recent procedure consists in applying the asymptotic technique
(such as the method of multiple time scale) directly to the original partial differential
equations: one main associated feature is its capability to account for the contribution
of the system infinite eigenmodes in its spatial dynamics, without any apriori
assumptions. A critical comparison between the two procedures is made by analyzing
the conditions for their non-equivalence and by showing in particular: (a) The
occurrence of breakdown of one-dimensional (symmetric) models above some
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(i)

(iii)

thresholds of cable sag-to-span ratio, due to the underestimation of the softening
effects associated with quadratic nonlinearities, which become more important in the
system actual dynamics owing to the contribution of higher symmetric eigenmodes.
(b) The occurrence of qualitatively and quantitatively different bifurcations
characterizing some classes of 3D responses of multimodal models developed in
conditions of multiple internal resonances.

Two specific but meaningful topics are also addressed within the above mentioned
framework. The first one is concerned with the detection of minimum reduced-order
models that can reproduce, at least qualitatively, the correct system dynamics arising
in given resonance conditions. The second addresses the problem of reconstitution of
the modulation equations arising at different nonlinear orders of the perturbation
solution when the higher-order approximation of the response needed to account for
both the 2:1 and 1:1 internal resonances occurring in cable dynamics at crossover
points is accomplished.

Side by side with the analytical investigation, experimental analyses of the finite
forced response of suspended cables show very rich and varied regular and nonregular
dynamics. Such tools as phase portraits, Poincaré maps and power spectra of measures
from given points in the system allow one to obtain informations on the nature of
attractors in regular regime. However, understanding system complex dynamics
requires characterization of attractors in terms of dimensionality, strangeness and
possible chaoticity, description of bifurcation paths in parameter space - with main
attention devoted to transition from regular to nonregular response, and finally
identification of space configuration variables mostly contributing to the latter. The
analysis of the asymptotic motion in nonregular condition is performed on attractors
reconstructed by means of the delay-embedding technique, and the dimension of the
reconstructed phase space is evaluated using the singular value decomposition and the
saturation of some attractor invariant. Determining system dimensionality, and
deciding about the minimum number and the features of the configuration variables
needed to reliably describe an observed motion, is one main question in nonlinear
dynamics of continuous systems, whose infinite-dimensionality may actually be
activated under nonregular response conditions. The topic of system dimensionality is
tackled, on one hand, on the reconstructed attractor by connecting its dimension with
the dimension of the linear phase space; on the other hand, it ensues from the analysis
of the spatial structure of the nonregular flow and of the relevant dominating
experimental eigenfunctions (proper orthogonal modes), which are obtained via
correlation measures of the response at different points and a linear decomposition
technique.

The transition from regular to nonregular dynamics in various external resonance
zones under in-phase or out-of-phase support motion is characterised by means of
bifurcation paths and involved configuration variables. The former are traced back to
canonical scenarios of dynamical systems, which are here seen to be sometimes
simultaneous and competing with each other: (a) the quasiperiodic scenario and (b) a
scenario in which is involved the global bifurcation of an homoclinic invariant set of
the symmetric flow. In the primary resonance region under in-phase support motion,
the quasiperiodic scenario is characterized by the successive involvement of two
harmonics of incommensurable frequency in the formerly unimodal system dynamics,
giving rise to a two-frequency and then a three-frequency quasiperiodic motion
(motion on 2-Torus and 3-Torus, respectively). The spatial coherence analysis allows
one to identify the modes responsible for the various incommensurabilities. The
ensuing rich and varied behaviour of the system is due to the variety of response
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regimes going along with the three-dimensional torus breakdown. In the overall
transition region the model exhibits: (i) two-frequency quasiperiodic motions on two-
dimensional manifolds; (ii) two-frequency phase-locked quasiperiodic motions on
three-dimensional manifolds; (iii) stable three-frequency quasiperiodic motions; (iv)
chaotic motions ensuing from evolution of unstable three-frequency quasiperiodic
motions; (v) phase-locked periodic solutions on three-dimensional manifolds. Various
types of bifurcation are documented, with involvement in the response of further
configuration variables. Almost the whole response power can however be
decomposed on a well-identified three-modal basis, thus showing how the dynamics
of the continuous system - which is governed by relatively few modes in the regular
response regions - remains substantially low-dimensional in nonregular regions, too.
Robustness of the observed scenarios with respect to variations of the system
mechanical parameters is checked by considering both a slightly slacker cable and a
cable at first crossover condition. In the latter case, the existence of a nearly perfect
2:2:1:2 internal resonance involving in-plane and out-of-plane symmetric and
antisymmetric modes makes periodic coupled responses more robust, while preventing
quasiperiodicity and chaos from occurrence.
The second recognised scenario involves the bifurcation of an homoclinic invariant set
in a symmetric flow, and manifests itself at one edge of the stability zones of
antisymmetric ballooning regular motions. This scenario is of general interest because
it concerns all frequency zones in which such regular classes of motion are present
under out-of-phase support motion, for the slacker as well as the crossover cable. Due
to the nature of the phenomenon, the experimental analysis regards not only the
attractor global properties but also the presence and the features of invariant sets of
the flow structure. When the cable model follows the aforementioned scenario, the
attractors exhibited in chaotic zones show the lowest observed dimensionality: indeed,
the transition from regular to nonregular behaviour happens without increasing the
number of involved modes over the two already present in neighbouring regular zones.
Recognizing meaningful proper orthogonal modes allows one to associate with each class of
complex response a class of reduced (and minimal) analytical models able to describe its
nonlinear dynamics. A link can thus be established with the approximate techniques for
obtaining asymptotic solutions to the theoretical cable model discussed at point (i). Indeed,
either more reliable reduced discretized models are obtainable in the framework of a Galerkin
procedure by using the identified proper orthogonal modes, or a connection can be established
between these experimental eigenfunctions and the nonlinear normal modes identified as a
natural, and very useful, byproduct of the direct attack of the partial differential equations of
motion through the asymptotic procedure.
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Measurement of the bonding quality of piezoelectric elements by
impedance measurements of electrically excited beam vibration

Wolfgang Seemann
University of Kaiserslautern
Kaiserslautern
Germany

In smart and adaptive structures very often piezoceramic elements are used as sensors
or actuators. If these elements are used as actuators in active damping applications or for the
excitation of ultrasonic motors, an optimized bonding is necessary for a good efficiency of the
overall structure.

In experiments it is observed, that the quality of the bonding depends on several
factors. The coupling between the ceramic and the elastic structures can be very good or very
bad. Those parameters having the highest influence are the thickness, the stiffness and
permittivity of the bonding layer. Also damping effects may be important to interpret the
results.

The lecture shows theoretically that investigations concerning an optimized bonding
can be done by measuring the electric impedance of a piezoceramic element which is bonded
to an elastic beam. In the piezoceramic material electric and mechanical fields are coupled so
that a time-harmonic voltage applied to the piezoceramic element will result in forced
harmonic vibration of the beam. If only one element is bonded to one surface of the beam
both longitudinal and bending vibration are excited due to the asymmetric configuration.

However, the amplitudes of the beam vibration depend on the coupling between the
piezoceramic element and the beam. For a good coupling the mechanical resonances can be
clearly seen in the curve of the electric impedance of the element.

For theoretical investigations a piezoceramic element is considered which is bonded to
an elastic beam by a bonding layer of finite thickness. The equations of motion for the beam
are derived under the assumptions that the cross-section of the beam remains planar and that
the longitudinal strain in the piezoceramic does not depend on the thickness coordinate.
Hamilton‘s principle leads to the coupled partial differential equations for the longitudinal and
transverse displacement of the beam and the piezoceramic. The electric excitation of the
piezoceramic influences only the boundary conditions.

For time harmonic vibration the remaining ordinary differential equations can be
solved and and the solution can be fitted to the boundary and transition conditions. If the
motion and therefore the strain in the piezoceramic element is known the electric charge or
the electric current can be determind. For given amplitudes of the applied voltage and the
corresponding current the electric impedance can be calculated.

Results for the impedance as well as for the vibration amplitudes are shown both for
damped and undamped beams for various thicknesses of the bonding layer. These results
show good agreement with measurements.
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Vibration of shell structures and Fourier Series

Dr C B Sharma
Department of Mathematics, UMIST
PO Box 88, Manchester, M60 1QD, UK

The object of the present work is to develop an analytical approach to study the free
vibration characteristics of shells and related structures. Various well known direct
approximate procedures have their own limitations like non-uniform choice of modal
functions to study the influence of arbitrary support conditions on various shell vibration
characteristics and in the case of numerical methods: requirements of efficiency as well as
accuracy. Hence more exact and accurate analytical approaches are required in which case
a number of references can be cited e.g. [1], [2] which analyze vibration characteristics of
isotropic and materially monoclinic cylindrical shells respectively. Both these papers use
an exact but iterative technique given in [1] where an axial modal dependence in
exponential form is utilized. In reference [3] double Fourier series method is used to find
simple solutions of various boundary value problems of isotropic rectangular plates. A
general exposition of the method for the analysis of the free vibration of linear structure
with arbitrary end conditions is given in [4]. Here an analytical method for the free
vibrations of any linear structure with arbitrary support conditions is given based upon the
formalism of Lagrange equations in conjunction with Lagrange multipliers. Examples to
analyze various linear structures are also provided. The author claims that “in view of the
power and simplicity of the method it is remarkable that so little literature precedes the
present paper’.

A modified Rayleigh-Ritz method along with Lagrange multipliers is developed in [5] to
analyze free vibrations of isotropic thin cylindrical shells. A Fourier series component
mode method coupled with Lagrange multipliers is utilized in [6] to study the free
vibrations of a multi-segment cylindrical shell with a common mean radius.

In the present work this analysis is modified and extended to include the study of the free
vibration characteristics of single and multi-layered orthotropic circular cylindrical shells
and shell panels. The influence of boundary conditions, various degrees of orthotropy and
shell geometrical parameters etc on natural frequencies, mode shapes and modal forces and
moments are studied and accounted for in detail. An exact but iterative procedure is
employed here too like the one given in [1] and [2]. Equations of motion are solved
directly with the use of half-range Fourier series as the axial dependence of modal forms.
Since it is necessary to differentiate Fourier series the Stokes’ transformation is used to
legitimise this procedure based on the end values of the functions involved. For example,
while using a sine series to represent a function, the end values of functions are rendered
zero. With Stokes’ transformation [7], however, the end values of such functions are
released by being specified separately and these values are then included in the successive
differentiation of Fourier series. To illustrate the usefulness and efficiency of the
analytical procedure involved some illustrative examples are to be provided which will
include a comprehensive study of the free vibration characteristics of cylindrical shells,
their dependence on the end conditions as well as shell geometrical and material
parameters.
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NUMERICAL PROCEDURE FOR THE NONLINEAR FREE VIBRATION ANALYSIS
OF SHALLOW SHELL DEFINED BY A QUADRILATERAL DOMAIN

A. V. Singh and K. Lan
The Department of Mechanical and Materials Engineering
The University of Western Ontario
London, Ontario, Canada, N6A 5B9

Introduction. In linear vibration theory, the overall stiffness properties is independent of the displaced shape
of the plate or shell structure.  Consequently, the theoretical frequencies of such structures are also
independent of the amplitude of vibration. This is not the case when the analysis is based on the geometrically
nonlinear equations from the theory of elasticity. The stiffness, which basically controls the values of the
natural frequencies of the vibrating plate or shell, depends upon the displaced configuration. The amplitude of
the order of the plate (or shell) thickness has been seen to alter significantly the stiffness properties. The
result, therefore, is that frequencies predicted from the linear free vibration theory are no longer valid.
Considerable amount of work has appeared in the literature on the free nonlinear vibration of plates.
Satyamoorthy (1983 and1987) published two review papers and wrote a book in 1997 on this subject. Review
of literature reveals that the nonlinear free vibration of doubly curved shallow shells defined in Cartesian
coordinates has not received the same degree of attention as the plates.

This paper presents a brief treatment of the nonlinear free vibration of shallow shells defined in the x-y
plane by four straight edges. The geometrically nonlinear strain-displacement relations are linearized in a
manner similar to the one by Rao et. al (1976). The first order shear deformation shell theory including the
rotary inertia is used in the formulation. The quadrilateral boundary is mapped using the natural coordinates &
and 7 into a square (Weaver and Johnston, 1984). The Ritz method, with simple algebraic polynomials as the
admissible function, is used for the solution. The convergence study and the comparison of numerical results
with those of Mei (1973) and Rao et. al (1976) are included in this short paper.

Procedure. A shell having its middle surface bounded by a quadrilateral region is considered in this paper.
Coordinates of the four corner points are expressed by (x; , y; ), where j = 1, 2, 3 and 4 in a sequential counter

clockwise sense. The displacement and strain components at an arbitrary point in the shell are identified by
the primed (‘) symbols.

u' =u+ zpf v =v+zp w =w
Ey =&, + ZK; Ey= 8y + zK e, =0 (D
Exy=Exy t 2Ky Ep= Ep En= Exn

Terms on the right hand side of equation (1) correspond to the middle surface of the shell. For
example: , v and w are the displacement components along x, y and z axes respectively. Similarly, £and 3,
denote the components of rotation of the normal to the middle surface of the shell and z is the distance
measured along the normal. The geometrically nonlinear strain components are expressed in terms of the
displacement components as follows.

Ex = Ou/dx + wR, + f;0w/dx; g, = OV/Oy+ wWR, + f,Ew/dy;

Ey = Ou/oy+ v/ x + f, w/ Ox + f; ow/ By; 2)
Ex = P1— (uU/R)) + Owiox; &= Por— (V/R;) + Ow/By;

K: = g8/0x; K,= 4GB/2Jy and Ko = gb/3y + 8,/0x

It can be noted here that the nonlinearity is associated with the in-plane (membrane) strain components only.
The transverse shear strains and curvature terms retain the recognised form from the linear theory.
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Furthermore, in equation (2) strain equations are linearized by introducing two functional parameters: f; = %
(Gw/éx) and f, = ' (6w/Gy). To obtain the matrix equation of motion, the following strain energy

expression is used.
+h/2

=i nT »
uv=w [ hjn ()" [E] (€} dz dx dy ©
In the above, the strain components at an arbitrary point in the shell are represented by the vector: {£'}" = {&’,
gy €% &)y €x). Matrix [E] of order five is composed of the Young’s modulus of elasticity and the

Poisson’s ratio of the material. Similarly, the kinetic energy expression is taken from the basic relationship as
+h/2

K=% [ [ plcusoy + @vioiy + @owron eaxdy )

=h/2

The procedure makes use of the parametric coordinates & and 7 which map the quadrilateral region into a

square bounded by ~1 < (£ and 77) < +1. The Jacobian matrix [J(& 7)] and its determinant | J(&, ) are used

while integrating the energy expressions over the given domain. For infinitesimal area, we use: dx dy = | &

,mldé dn. The solution procedure developed in this work is based on the Ritz method, which requires

properly defined displacement fields. Therefore, the following polynomial form is selected to represent the

displacement component u.

u= 22 aufi(§) f;() sinot ©)
J=1 k=1
Similar double summation series are used for v, w, 5; and f;. The values of J and k are assigned to be /, 2, ...,
n+1; where n = the order of the polynomials f; (£) and f;(#) in each of £ and # directions respectively; a 4 is a
two dimensional array of the coefficients; @ = circular frequency in radian/second; and t denotes the time
variable. The parametric polynomial used in this case is

FEO=A+HT -6 forj=1,2,3, ..., (n+]). 6)

The coefficients are the unknown quantities at this point of the solution stage and have the same unit as the
displacement components they are associated with.

Numerical Results. The formulation is developed for quadrilateral shaped doubly curved shallow shells
bounded by four straight edges. This allows us to examine the nonlinear free vibration of shallow shells of
various shapes like rectangular, triangular, rhombic and trapezoidal. Value of the fundamental frequency
parameter 2= (p @’ a’ /E ) is calculated and compared with results from other sources available in the
literature. Convergence is examined for this method and compared with the FEM by using the number of
unknowns for which the matrix equation of motion has been solved, as the parameter. A square plate with all
sides fully clamped is analysed for this purpose. Due to the geometric symmetry, only one quarter of the plate
is examined. Five FE models, consisting of 4, 9, 16, 25 and 36 eight node quadrilateral (QUADS) shallow
shell elements respectively, are considered. The degrees-of-freedom for these models are found to be: 105,
200, 325, 480 and 665 respectively. Convergence test for the Ritz method is carried with the values of n being
4,5,6,7, 8 and 9 and the corresponding numbers of degrees-of-freedom 80, 125, 180 245, 320 and 405
respectively. As shown in the figure, rapid convergence is found for both the Ritz and FE methods. The Ritz
method provides reasonably accurate results with relatively small number of unknowns. Results from the
present study are also compared with the works of other researchers by investigating a fully clamped square
plate using sixth order polynomial with » = 7. Table below shows the period ratios ( Ty / Ty, ) obtained from
various sources viz. the Ritz method, FEM using QUADS element, FEA by Mei (1973) and Rao et. al (1976).
Here, wo represents the maximum deflection at the centre of the plate. More results for other types of
geometry and curvatures are also available in the work by Lan (1998).

66



o
-
F-y
w
T
i

0.14 Finite Element Method .

8

Nonlinear Frequency
e o
5 @

o

A o

— -t

w0 N
L]

100 260 300 400 500 600 700
Number of Degree of Freedom

o
—
-

Figure . Convergence Study of the Ritz and Finite Element Methods.

Table. The period ratio (T /T) for the fully clamped square
plate having: b/a=c/a=1.0,a/R; =a/R; =0.0, h/a=0.01.
Q= 0.10879 (Ritz method) and Q; = 0.10926 (FEM)

woh | RitzMethod | FE Method | Mei(1973) | Rao(1976)
(T / To) (T / Ty) (Ta/ To) (T / To)
0.2 0.9949 0.9941 0.9930 0.9930
0.4 0.9803 0.9788 0.9780 0.9731
0.6 0.9574 0.9546 0.9550 0.9427
0.8 0.9282 0.9236 0.9320 0.9052
1.0 0.8945 0.8876 0.8960 0.8637
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Shell-type structures are used by modern industry (aerospace, marine, power, oil, offshore, nuclear, etc) in
very many varieties, shapes and configurations. A circular cylindrical surface can form the middle surface of
the geometrically simplest shell structure. On the other hand, thin walled circular cylinders are used extensively
in very common as well as in many advanced engineering applications (pipelines, pressure vessels, cylindrical
tanks, roof panels, etc). It is therefore not surprising that the elastic cylinder of revolution has been the basic
and most popular model for the theoretical and the experimental investigation of the mechanical behaviour of
thin-walled curved structural elements.

The vast literature that surrounds the two- and three-dimensional analysis of thin- and thick-walled elastic
circular cylindrical shells encounters many hundreds of papers, books and monographs. These deal with all
aspects of the mechanical behaviour of circular cylinders including their static behaviour and dynamic response
as well as their stability and thermoelastic analysis. Relatively early reviews dealing with the dynamic
behaviour of thin walled circular cylindrical shells were presented in the second and third chapters of Leissa's
relevant monograph (Leissa, 1973). Since then, however, there were vast further developments in the subject,
mainly due to the extensive implementation and use of composite materials. Such developments, in all of the
afore-mentioned aspects of the mechanical behaviour of circular cylindrical shells, may be found in more recent
relevant review articles (e.g., Bushnell, 1981; Simitses, 1986; Noor, 1990; Noor and Burton, 1990, 1992a.b;
Qatu, 1992; Thorton, 1993; Soldatos, 1994; Noor ef al, 1996; Teng, 1996).

The level of the geometrical difficulty is increasing substantially when the effects of some kind of
eccentricity are encountered on the cross-section of a cylindrical surface, thus implying that the plane curve
considered is a part or the whole of a closed non-circular arch. The amount of the additional difficulty and
complexity involved can be illustrated by simply underlying the fact that eccentricity can be imposed on a
circular arch in many different ways. Thus an essentially infinite number of possible non-circular arches
(elliptical, parabolic, hyperbolic, etc) can be produced and, therefore, a similarly infinite number of potential
non-circular cylindrical cross-sections can be given rise to.

In dealing with the theoretical modelling of non-circular cylindrical shells, that additional difficulty can be
confined into the fact that the cross sectional radius of curvature is a function of an arch co-ordinate parameter
and is, therefore, not constant. As a result, the governing differential equations of an elastic non-circular
cylindrical shell have variable coefficients and become relatively difficult to solve. It then becomes rather
evident why the number of the studies that deal with the behaviour of non-circular elastic cylinders, although
constantly increasing over the vears, is rather limited as it compares with the vast literature related to
corresponding cylinders of revolution.

Non-circular cylindrical shells of small or large eccentricity are also used extensively in aerospace and

mechanical engineering applications, due either to special external shapes or to internal storage requirements. It
should not be ignored in this context that non-circularity of the middle surface cross-section may occur as an
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imperfection (small or big) during the manufacturing process of a circular cylindrical shell. This is often
considered as an additional reason for studying the mechanics of non-circular cylindrical shells, particularly
when dealing with their stability behaviour under external loading. It appears, indeed, that the first publications
in this subject studied the stability characteristics of non-circular cylindrical shells (Heck, 1937; Marguerre,
1942; 1951). Despite that the first relevant dynamic investigation appeared quite later (Herrmann and Mirsky,
1957), the vibration studies of non-circular elastic cylinders are, currently, more than twice as many as the
corresponding stability investigations.

With the purpose to elevate further developments in the subject, this paper presents a review of the research
work related to the dynamic behaviour of non-circular cylindrical shells and shell segments. In this respect, it
initially outlines the basic nomenclature, the theoretical models as well as the governing equations employed in
this subject. It proceeds with the basic characteristics of the vibration pattern of closed non-circular cylindrical
shells with doubly symmetric cross-section (e.g., elliptical, oval) and initially reviews all relevant articles based
on classical shell theories. It then covers all papers based on shear deformable shell theories and, where
appropriate, it evaluates them critically and underlines the most important results and conclusions. This review
pattern is next followed for all articles that dealt with the dynamic analysis of cylindrical shells having an open
non-circular profile. The survey finishes by addressing some untouched relevant problems as well as possible
future research directions in the subject.
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1. INTRODUCTION

There exists a number of investigations dealing
with the free vibrations of rotating anisotropic or
laminated composite circular cylindrical shells and
general shells of revolution [1-11]. But they are
not for practical combined shells or vessels but are
mostly for simple shells. Suzuki et al[l2]
analyzed the vibrations of composite circular
cylindrical vessels(nonrotating vessel) by using the
Lagrangian minimizing method. The vibration
analysis of combined shell structures is very
complicated and troublesome, and so many
approximate methods such as the finite element
method and the substructure synthesis method are
used.

In this paper, an analytical solution procedure is
presented for the free vibrations of a rotating
vessel consisting of a thin laminated composite
shell of revolution with a constant meridional
curvature and thin laminated composite circular
cylindrical shells. The equations of motion and the
boundary conditions for the rotating shell of
revolution and circular cylindrical shell are
obtained from the stationary conditions of each
Lagrangian of vibration , of the shell of revolution
and the circular cylindrical shell. The equations of
motion are solved exactly by using a power series
expansion for symmetrically laminated cross-ply
shells. The Lagrangian of the rotating vessel is
expressed by the sum of each Lagrangian of the
shell of revolution and the circular cylindrical
shell. The natural conditions of continuity between
the shell of revolution and the circular cylindrical
shell are obtained from the stationary conditions
of the Lagrangian of the vessel considering the
geometrical conditions of continuity. The
frequency equations are obtained after considering
both the boundary conditions and the conditions of
continuity at the connection for the solutions.
Numerical studies are made for vessels with both
ends clamped. The natural frequencies and the
mode shapes are presented showing their
variations with rotating angular velocity,number of
laminae and other parameters.

Yl

K.Rl
[

-

Fig.1

Analytical model and coordinate
system

h/2
h/2

Fig.2 Cross—sectional view of shell

2. ANALYTICAL MODEL AND
CO-ORDINATE SYSTEM

Let us consider the vibrations of a vessel
rotating at the angular velocity Q . The vessel is
composed of a thin laminated composite shell of
revolution with a constant meridional curvature
and two thin laminated composite circular
cylindrical shells.

In Figure 1 are shown the middle surface of the
vessel and the co-ordinate system. The origin of
the shell of revolution is taken to be at the center
O on the middle cross-section, with (X,Y) being
the orthogonal co-ordinates, € the angle between
the normal to an arbitrary point A on the middle
surface and the Y axis, ¢ the circumferential
co-ordinate parameter, while Z axis is in the
direction of the nommal to the point on the
meridian with positive outward. By assuming the
principal radius of curvature of the meridian as Ru
(=AC)= const., the principal radius of curvature of
the parallel circle R: can be expressed as
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: Backward waves

R, =(AB)=R,/®, & =cosb/(cosf+x-1)

(1)
where « is the ratio of the principal radius of | Ne
curvature of the parallel circle to that of the B=1s
meridian R.. Let the thickness of the shell be h i
and the displacements in the €, ¢ and z S
directions be ur ,vr and wr .

For the circular cylindrical shell, the origin is
taken to be at the center O  on the end

=====-- : Forward waves A3

(0" 80" 0" )

0.8

cross-section ,with x being the axial, ¢ the ol e

circumferential and z (positive outward) the radial e B w2
co-ordinate parameters. The length,mean radius oAk oo

and thickness are denoted by ¢ (= u a), aand h,

respectively. Employ a nondimensional G 01 02 0.3

co-ordinate & =x/a and denote the displacements . Ve d/12B2

in the X, ¢ and z directions by uc ,vc and we ,

respectively. Figure 2 shows the cross-sectional Fig.3 Frequency curves of a rotating vessel

view of the shell, in which hk and hk-1 are the (Both ends clamped, symmetric vibration)

values of the normal co-ordinate .measured from
the middle surface , at the outer and inner surfaces
of the kth laminate, respectively.

————— : Backward waves fou}

------- : Forward waves

3.NUMERICAL RESULTS

(0* 90° 0* )

Numerical studies are made for vessels of N 2b N
symmetric cross-ply laminates. As composite B=1s
materials,graphite fiber reinforced epoxy are & =05 0=4
considered. All the layers are taken to have equal | gl 7t .
thickness. The moduli of elasticity of the materials =
used are taken from Vinson and
Sierakowski[13]:E11=138(GPa),E22=8.96(GPa), n.sL
G12=7.1(GPa), v 12=0.30. Here Eu is the modulus = ™ =
of elasticity of the lamina in the direction of the o I
fibers and Ez2 is the transverse modulus; G2 is the 0.6/
shear modulus; and » 12 is the Poisson’s ratio. o o o
When the fibers are directed to the meridional ' ' Jord/ 1257 '
direction in the shell of revolution and to the axial e
direction (x direction) in the circular cylindrical Fig.4 Frequency curves of a rotating vessel
shell, the angle of fiber 1s called zero degree.on (Both ends clamped, antisymmetric vibration)

the contrary,is called 90 ° when the fibers are
directed to the circumferential direction( ¢
direction). To show the characteristics of the
vibration, the nondimensional frequency parameter
@ r and the nondimensional rotating angular
velocity parameter @0 are used, where

- L159

1.0%0

o

™~

108
&

0.961

a* = pop™R,* | Eoh® omit
0" =R R* | Eh’ L] S
Ey =Ey/ [12(1—"12"21)] 2
: Backwar wn:}“‘u,,
ﬁr - R] )!h ------- '..F::‘ldtll‘ﬂ ;;;3‘"‘ ________
a =a, P (@ o 9 7 )
a0 =amq)m N /12 8.2 =0, 20 . £=0.7
Be=a/h= B u
D" = coshy +x —1 Fig.5 Frequency curves of a rotating vessel
(2) (Both ends clamped, symmetric vibration)
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and o o, p and h are the density of each lamina,
the circular frequency and the total shell
thickness.In the calculations for the results shown
hereafter, 8 r , N, #, n (circumferential wave
number), € o (value of © at the connection) ,
K(=t/q) and .fo.//128;7 were first chosen and
then a search was conducted for the values of
Wa. /1287 which satisfied the frequency equations.

Figures 3 and 4 show the frequency curves of a
rotating vessel with the stacking sequence (0 ° |,
90° ,0° ) in the case where the number of
laminae N=3, B r=15, 6 0=0.5, « =0.7 and N3
# =0.5. The marks A1 ~ A3and C1 ~C 3 on o9 A1 a2

the curves denote the points at which the mode i
shapes will be shown. The frequencies increase =07 O
with an increasing number of n or rotating Vard/1287 =0. 20 : Backward waves """~
velocity of the vessel. (0" 90" 0" ) ======= ; Forward waves

Figures 5 and 6 show the nondimensional 0 055 o
frequencies versus u . The values of /o, /128 u
at u =0 correspond to the eigenvalues for a shell
of revolution with both ends clamped. As seen Fig.6 Frequency curves of a rotating vessel
from the figure, the frequencies of the vessel (Both ends clamped, antisymmetric vibration)

gradually approach the ones of the shell of
revolution as the length of the cylinder becomes
shorter.

REFERENCES

(1) Padovan J.,Traveling waves vibration and buckling of rotating anisotropic shells of revolution by
finite elements, Int.J.Solids Structures, 11(1975),1367-1380.

(2) Rand O. and Stavsky Y., Free vibrations of spinning composite cylindrical shells, Int.J. Solids
Structures, 28-7(1991),831-843.

(3) Chen Y., Zhao HB. and Shen Z.P., Vibrations of high speed rotating shells with calculations for
cylindrical shells,J.Sound Vib., 160-1(1993),137-160.

(4) Igawa H. and Endo M., Free vibration and buckling of rotating prestressed anisotropic cylindrical
shells, Trans JSME..61-587,C(1995),2761-2768.

(5) Lam K.Y. and Loy C.T., Free vibrations of a rotating multi-layered cylindrical shell, Int.J. Solids
Structures, 32-5(1995),647-663.

(6) Jiqun H.,Suzuki K. and Shikanai G., Vibration analysis of rotating thin laminated composite
circular cylindrical shell, Trans. JSME,62-599, C(1996),2549-2555.

(7) Suzuki K., Takayama K. and Shikanai G., Vibration analysis of rotating thin laminated composite
shell of revolution , Trans. JSME., 62-600,C(1996),2990-2997.

(8) Igawa H., Yamazawa D. and Endo M.,Forced vibration of rotating anisotropic cylindrical shells,
Trans.JSME.,62-600,C(1996),2998-3004.

(9) Igawa H., Yamashita Y. and Endo M., Free vibration of thick rotating prestressed an isotropic
cylindrical shells, Trans. JSME., 62-600, C(1996), 3005-3012.

(10)Jiqun H., Suzuki K. and Shikanai G., Vibration analysis of rotating thick laminated composite
circular cylindrical shell, Trans. JSME., 63-614, C(1997), 3327-3334.

(11)Jiqun H., Suzuki K. and Shikanai G., Vibration analysis of rotating thin laminated composite circular
cylindrical shell having different boundary conditions at both ends, Proc D&D’98 in Hokkaido,
No0.98-8(1998),

(12)Suzuki K., Shikanai G. and Chino T., Vibrations of composite circular cylindrical vessels, Int. J,
Solids Structures, 35-22(1998), 2877- 2899.

(13)Vinson.J R. and Sierakowski,R.L., The behavior of structures composed of composite materials,
(1987) Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

72



SPATIAL COHERENT STRUCTURES IN THE FORCED DYNAMICS OF
A FLEXIBLE MULTI-BAY TRUSS

Xianghong Ma
Graduate Research Assistant, xma@uiuc.edu
and
Alexander F. Vakakis
Associate Professor, avakakis @uiuc.edu
Department of Mechanical & Industrial Engineering
University of Illinois at Urbana - Champaign
Urbana, IL 61801

SUMMARY

Lightweight flexible multi-bay truss structures are often encountered in civil engineering and
aerospace applications. The dynamic analysis of such trusses poses interesting technical
challenges. This is due to the fact that such structures generally possess high modal densities, with
‘clusters’ of densely packed modes existing even at relatively low frequencies. In addition, in
multi-coupled trusses mode conversions occur that produce closely spaced modes corresponding to
different forms of truss vibration, such as predominantly-bending, near-shear, etc. As a result,
system identification (modal analysis) of flexible trusses is a challenging task, and accurate low-
order models of the truss dynamics are difficult to obtain. Such low dimensional models are
essential for controlling disturbance propagation in these systems, or for performing substructure
synthesis and structural modification studies.

Even the task of numerically simulating the transient dynamics of extended flexible trusses
introduces serious technical difficulties. These are due to the presence of exponential dichotomy in
the corresponding transfer matrices, since they possess eigenvalues of very large or small
magnitude; this leads to numerical instabilities when straightforward transfer matrix multiplications
are performed. The use of the finite element method for computing the transient dynamics has other
limitations related to the large number of elements required for the computation of the transient
response. At most, this method can provide the transient response of the truss at early times.

The aim of this work is two-fold. First, we aim to develop a numerically stable
computational approach for computing the exact transient dynamics of a flexible truss. by
employing the direct global matrix (DGM) technique developed by Schmidt and Jensen. This
method is based on numerically inverting a global transfer matrix of large dimension, instead of
performing error-prone lower dimensional transfer matrix manipulations.
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Once the transient responses of the truss are reliably simulated, we proceed to the second
aim of the work, namely, to perform nonparametric system identification of the truss dynamics by
means of Karhunen-Loeve (K-L) decomposition. This technique is used to extract spatial coherent
structures (or proper orthogonal modes - POMs) from a set of time-series of the responses at
different points of the truss. In addition to computing the POMs of the truss dynamics, the K-L
method provides an estimate of the energy of each identified POM (and, thus, a measure of each
POM'’s importance), a feature that enables the quantitative assessment of the accuracy of the system
identification of the truss. Our aim is to demonstrate that by using K-L decomposition we can
extract the POMs of a flexible truss with high modal densities; these can then be used to create
accurate low-dimensional models of this structure.
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ABSTRACT

The coupled extentional vibrations of a column composed of a slender (visco—)elastic bar and an attached
chamber filled with a compressible (viscid) fluid are examined. After formulating the governing boundary
value problem in its nonlinear form, attention is focused on free vibrations under different assumptions. The
classical case of small vibrations without viscosity influences are analyzed first. Complicating effects as finite
magnitudes and viscosity (including thermal processes) are analyzed next. Finally, forced vibrations are briefly
addressed.

INTRODUCTION

Mixed-domain systems and their vibrational behavior attracted more and more attention during the recent
past. Fluid-structure interaction is a problem class for such multifield systems, in fact with boundary coupling:
The field equations within the separate domains are decoupled and the coupling appears in the kinematical
and dynamic transition conditions at the interface between the fluid and the solid domains. In the present
contribution, a prototypical representative for such a system with boundary coupling will be studied where
all field quantities depend from one space coordinate only.

GOVERNING BOUNDARY VALUE PROBLEM

Consider a slender bar (mass distribution y, extentional stiffness EA, non-deformed equilibrium length L,
internal damping coefficient d;) along the z axis of an Cartesian inertial reference frame and an attached
chamber with rigid, perfectly smooth walls (see Fig. 1). The face of the bar perfectly closes the chamber
(original length H) and can move alonge its side-walls without friction, the opposite end is fixed. The slender
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Figure 1: Geometry of the system

chamber is filled with a compressible Newtonian fluid (equilibrium density po, pressure po. temperature Tp,
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speed of sound ag and viscosity v). Due to the mentioned properties of the side walls of the chamber, there
is a frictionless motion of the fluid along these walls (and no boundary layer can develop).

Of interest are space— and time-dependent longitudinal oscillations ¢(s,?) of the bar (s denotes its un-
deformed arc-length) coupled with the axial velocity u(z,t) and the fluctuations of pressure p(z,t), density
p(z,t) and temperature T'(z,t) of the fluid. The temperature of the bar is assumed to remain unchanged. If
forced vibrations are considered, a load per unit length p(s,?) at the bar will be introduced.

In general, a non-linear wave equation modified by viscous effects (and under certain circumstances an
external excitation) for the bar, the one-dimensional Navier-Stokes equations together with an energy balance
and a state equation for the fluid and appropriate boundary conditions at the outer ends of the column (i.e.
one for the bar, the other one for the fluid) and finally two transition conditions at the interface between bar
and fluid (where one of them is of kinematical and the other one of dynamical nature) describe the dynamic
interaction of the two subsystems. An important feature within the nonlinear formulation is that there is a
moving interface (described by the end displacement u(L,¢) of the bar).

SMALL FREE VIBRATIONS WITHOUT DISSIPATION

Viscous effects are neglected and only linear terms in the boundary value problem are taken into consideration.
A consequence for an ideal fluid considered in this section is that temperature changes do not occur. It is
straightforward to derive the corresponding eigenvalue problem for the space-dependent amplitudes Q(s) and
U(z) of the bar displacements g(s,?) and axial fluid velocity u(z,t), respectively (under elimination of density
and pressure) with the square of the natural frequency as the eigenvalue. Following [1], the exact eigenvalue
equation can be derived to be solved by a computer-aided evaluation. The eigenvalues can be represented as
a function of a stiffness ratio of fluid and bar with a certain coupling parameter which essentially represents
the density ratio of fluid and bar. It turns out that there is a significant coupling of the acoustical and the
structural modes in the region where the eigenvalues of the decoupled substructures coincide. For practical
values of the coupling parameter, there is a curve “veering” between acoustical and structural branches of
solutions of the eigenvalue equation. In these rigions of curve veering there is the strongest coupling, outside
of these regions, the eigenvalues (and modes) asymptotically approach the characteristics of the decoupled
subsystems. Since both subsystems are able to vibrate, there is no clear added mass effect: not in all parameter
ranges, the eigenfrequencies corresponding to the structural modes increase due to the additional mass of the
fluid.

COMPLICATING EFFECTS

As a first complication, finite-magnitude vibrations (but still for the elastic bar and an inviscid fluid) will be
examined. A perturbation analysis is suggested to calculate the corrections due to the inherent nonlinearites
of the vibroacoustic problem. For that purpose, the bar oscillations are assumed to be of the order of a small
parameter €. To take into consideration that the dynamic characteristics, in particular the eigenfrequencies,
will also be corrected by the nonlinearties, a new time variable is introduced. Then, the vibration variables
and also the circular frequency are expanded in powers of . Substituting into the governing boundary value
problem and equating terms of equal powers of ¢, a set of perturbation boundary value problems of succes-
sive order is obtained. There is a first-order problem which is identically the same as discussed before and
a second-order problem which can also be evaluated analytically [2]. The nonlinearities lead to a softening
characteristic of the system, i.e., with increasing vibrational amplitudes, there is a monotonic decrease of the
the natural frequencies.

The second generalization which will be discussed is the inclusion of the viscosity (both for fluid and bar) and
in general, the appearance of temperature fluctuations (in the fluid), shown here within the linear formulation.
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The isothermic case for an elastic (one-degree—of-freedom) structural member was analyzed in all details in
[1], too, the more complicated problem including the internal damping of the bar and a non-isothermic be-
havior of fluid will be dealt with in the present contribution. In all cases, the original real-valued eigenvalues
become complex where the imaginary part is responsible for the decay of the coupled vibrations. Since there
result an eigenvalue problem with space-independent coefficients once more, the exact eigenvalue equation
can be derived to be evaluated straightforwardly. Because the dissipation is small and the thermal activities
are low, the decay of the oscillations is weak and the vibrational frequencies remain practically unchanged.

FORCED VIBRATIONS

There is no problem to include the viscous effects for calculating the steady—-state response for a harmonic
excitation of the bar, for instance. It will be addressed for small vibrations only so that no surprising phe-
nomena happen: There is a pronounced resonance when the driving frequency coincides with the natural
frequencies of the coupled system. A modal expansion technique can handle the problem without difficulties
because the internal damping of the bar is proportional to the stiffness of the bar and the viscous fluid forces
are proportional to the fluid density.

In the non-linaer case, the familiar Duffing phenomena may happen and for a large length of the fluid
chamber, shock effects in the fluid are possible [3].

CONCLUSIONS

As an interesting example of mixed-domain systems with boundary coupling, the dynamic interaction of a
one-dimensional fluid-solid column has been examined in all essential details. The advantage of the considered
problem is that most of the results can be calculated in an analytical form without any discretization. All
results and effects described by them, therefore, become very clear and obvious.
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1. Introduction

Thick annular disks and cylinders are common structural elements, and the study of their vibration
forms a classical area within elastodynamics. Vibration of an arbitrarily thick annular disk is
investigated here by Ritz discretization of the Rayleigh quotient in terms of the three-dimensional
kinetic and strain energy expressions. Application of this standard technique yields natural frequencies
and mode shapes for coupled axial, radial, and circumferential vibration. This treatment is applied to
“disks” of arbitrary dimension, and so the analysis can encompass models for annular plates, bars,
rods, rings, and shells. The solutions so obtained converge in the limiting cases to the values expected
from the respective classical theories, and ones that account for shear deformation and rotary inertia.
In this paper, several interesting findings on the vibration of axisymmetric disks and cylinders are
discussed with a view towards three-dimensional phenomena that are not expected on the basis of the
classical theories alone.

2. In-Plane Vibration Modes of Arbitrarily Thick Disks

In automotive disk brakes, squeal noise and vibration are commonly attributed to motion of the disk
out of its equilibrium plane. In particular, sound is radiated efficiently from a disk during bending.
However, to the extent that frictional stresses are oriented within the plane of the disk, radial and
circumferential motions can also be excited. Laboratory experiments on commercial brake rotors
demonstrate that in-plane modes exist at frequencies comparable to those of out-of-plane bending,
motivating an examination of the relationships among those two classes of modes.

For an annular disk having ratio 50% between the inner and outer diameters, the non-dimensionalized
natural frequency spectrum is shown in Figure 1 as a function of h*, the ratio of thickness to outer
diameter [1]. As the structure evolves from a thin plate (h* = 0.01) to a long cylinder (h* = 100), the
mode shapes and frequency loci undergo continuous transition. For instance, the predominant
displacement for the highlighted fundamental two nodal diameter plate mode changes from axial at
small h* into coupled radial and circumferential displacements for large values. Motions for this and
similar modes become fully three-dimensional over the intermediate thickness range. In addition to the
beam and plate asymptotes evident in the figure, the model also predicts modes that are asymptotic to
those of classical theories for the torsion of shafts and for the longitudinal vibration of rods. The
various asymptotes are identified by their slopes at limiting values of h*.

Loci which are insensitive to h* over the full range, such as the second highlighted locus in Figure 1,
correspond to in-plane modes. For h* > 1, loci converge with increasing h* to asymptotes near 0.53
and 1.24. At h* = 100, those values agree to within 3% with frequencies predicted for the radial
modes of infinitely long annular cylinders as predicted by Gazis in the late 1950’s. Loci which are
sensibly independent of h* at large values, such as those at a frequency of .72, represent higher-order
longitudinal modes and agree to within 1% of frequency predictions for the longitudinal shear modes
of infinite cylinders. They are discussed further below. Of particular interest are the circumstances in
which frequencies for specific in-plane and out-of-plane modes are commensurate, offering
opportunity for energy transfer from in-plane to bending vibration. Several such intersections of loci
occur in the thickness range 0.04 < h* < 0.2, which is typical of commercial brake rotors.

The transition of the lowest bending and in-plane modes with increasing thickness is depicted in Figure

2. In mode “a”, for example, the axial displacement has zero nodal cylinders, two nodal diameters,
and no axial nodal planes; radial and circumferential displacements, on the other hand, both have an
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axial nodal plane. This nodal pattern distribution is maintained throughout the entire range of h*,
although the primary displacement component does change from axial to radial at large h*. In contrast,
the shape of in-plane mode “b” is relatively unaffected by increases in h*. At h* =4.0, modes “a” and
“b” are both radial cylinder modes having two nodal diameters, and differ only by the presence of the
additional axial nodal plane which is present in mode “a”.

3. Frequency Clusters in Finite Length Cylinders

The formation of “clusters” in the natural frequency spectrum of long cylinders is examined next [2]
with emphasis on the cylinder’s radial (R) and longitudinal shear (LS) classes of modes. Unlike
modes seen in classical longitudinal vibration problems, the axial displacement in a longitudinal shear
mode varies with angular position over a given cross-section.

As the length of a traction-free annular cylinder is increased, distinct members within any family of
radial (R) or longitudinal shear (LS) modes have natural frequencies that asymptotically approach a
common non-zero value. Such modes, potentially having significantly different numbers of nodes
along the cylinder’s generator, can have natural frequencies that are indistinguishable from one another
within the resolution of test equipment or numerical simulation. The three-dimensional vibration
model discussed here predicts the formation of narrow “frequency clusters” with the cylinder’s
increasing length, the converged value of which bounds from below the frequencies of all modes
within a particular family.

With disk thickness now being interpreted more appropriately as the cylinder’s length L* in Figure 3,
the frequency spectrum is shown as a function of length, illustratively for aluminum material properties
and an inner-outer diameter ratio of 0.87. The natural frequencies for the bending, torsion, and
longitudinal vibration modes are shown as dotted lines, and those values agree with their respective
classical theories for appropriate values of L*. Of particular interest are the vibration modes for which
the natural frequencies converge to nearly a constant value at large L*. Their loci are drawn with solid
lines, and the labels identifying the R or LS families are shown near each frequency cluster. Here the
index “m” denotes the number of nodal planes along the generator, and the second index “n”
represents the number of azimuthal planes. Each family of modes is distinguished by a particular
frequency to which its members converge. For instance, radial modes having any value of m and n =
2, 3, or 4 cluster at frequencies near 0.101, 0.282, or 0.528, respectively. Although bending waves
in an infinite cylinder have cutoff frequency of zero, radial and longitudinal shear waves have finite-
valued, non-zero, cutoff frequencies. Indeed, the cutoff frequencies for those families of waves are
the same as the asymptotes in L* established by the frequency clusters. Figure 4 shows a measured
collocated point transfer function of a steel cylinder with L* = 52. The beam bending modes dominate
the low frequency range, while both bending and (m,2) radial modes are present in the 1.2-3.2 kHz
range. The spectrum is dense at the 1.225 kHz cluster with the nine radial modes m =0, ..., 8 being
concentrated there. The frequencies of those modes, each having a different number of nodes along
the generator, are indistinguishable at this level of measurement resolution.

The isometric views in Figure 5 depict the number and location of axial nodal planes for the lowest
four members of the (m,2)-R family at L* = 10. The nondimensional frequencies for these modes are
0.101, 0.101, 0.103, and 0.108, so that at this level of precision, the frequencies for the lowest two
modes are “repeated.” Likewise, the frequency of the third mode is only some 3% higher than the
frequency of the (0,2)-R and (1,2)-R cluster, but it has two additional nodal planes. At L* > 22, the
frequency of (2,2)-R also reaches 0.101, and at L* > 49, all four modes shown have the same
frequency at this level of precision.
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ON OBTAINING MODES FROM DYNAMIC STIFFNESS MATRIX ANALYSIS OF
PIECEWISE CONTINUOUS STRUCTURES

F.W. Williams
Cardiff School of Engineering, Cardiff University, Cardiff CF24 3TB, UK

INTRODUCTION

The Wittrick-Williams (W-W) algorithm]’2 gives all required eigenvalues of a structure with certainty
when using exact theory. These are natural frequencies of vibration, buckling loads® or frequencies of
wave propagation’. The present contribution considers mode finding for all of these cases.

Exact member theory yields exact member stiffness matrices by solving member differential eqns
(DE’s), including mass per unit length p and axial force P. The usual FE rules give the overall
stiffness matrix K from these member matrices. Hence the elements of K are transcendental functions
of the frequency @ and/or the p and P of members. Therefore the eigenvalue problem is
transcendental and so usual FE linear eigensolvers are inapplicable and instead the W-W algorithm

J=3Js+ XTI m +s{K} M

must be used, where multi-level substructuring is permittedS and : J = no. of eigenvalues of the
structure exceeded by a trial eigenparameter; J(J,,) = no. of eigenvalues of a substructure (member)
exceeded if its attachments to its parent structure are clamped; the summations cover, respectively, all
substructures and members; K = overall stiffness matrix obtained after substructuring; and s{K} = no.
of negative leading diagonal elements after Gauss elimination has reduced K to the upper triangular
K% When Eqn. 1 is applied to a substructure to finds its J,, the first summation covers all
substructures it contains directly and the second one covers all members it contains directly. 85
papers covering extensions and applications of the algorithm are cited elsewhere’. Several, e.g.
extension to rotationally periodic structures’ or substructuress, can involve K being Hermitian, such
that the natural frequencies often appear in pairs.

CRITERIA SUGGESTED AND USED FOR JUDGING MODE FINDING METHODS

Computer programs should ideally solve all problems within the family for which they are written,
but all too frequently they fail for problems which are exceptionally complex or excessively simple,
e.g. limiting cases such as K being a scalar because substructuring removes all the degrees of freedom
except one from D, the displacement vector to which K corresponds. Therefore some relevant criteria
are suggested in Table 1(a). The first is that it should not be assumed that the final diagonal element
of K* approaches zero as w approaches the eigenvalue. This is because if the last h-1 elements of D
are null in the correct mode, the last h-1 elements of the diagonal of K* are finite and the h-th element
from the bottom of K* approaches zero. This occurs quite frequently, e.g. because the modes of
symmetric structures are symmetric or anti-symmetric, or for structures with uncoupled in- and out-
of-plane behaviour. The second criterion is that the method must be able to calculate the modes with
D=0 that occur for many simple problemsz. The third criterion is the ability to find r independent
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modes when the W-W algorithm has shown there to be r (>2) coincident eigenvalues and the fourth
criterion is that these modes should be strictly9 mutually orthogonal. The remaining criteria in Table
1(a) are self-explanatory and involve subjective judgements by the authors. They are used to assess
the five early mode finding methods'® presented below to give Table 1(b), where V(x) denotes
satisfied (not satisfied) and A to C denote degrees of satisfaction, with A being best.

The first method is simply to set the last element of D to an arbitrary value and to solve K* D = 0.
The second method finds where the lowest diagonal zero is in K* and, if it is the h-th element from
the bottom, back substitutes into K* D = 0 with the last h—1 elements of D set to zero and the element
next above these given an arbitrary value. The third method modifies this to find r independent
modes when r eigenvalues coincide, by finding the last r diagonal elements of K* which go from +ve
to —ve between the lower and upper bounds on these eigenvalues The fourth method uses the fact that
the response of any structure excited close to an eigenvalue is dominated by the associated mode. It
solves K D = P for a randomly chosen P, with K evaluated at the closest available approximation to
the eigenvalue. The fifth method repeats this method r times for problems with r coincident
eigenvalues. All five methods usually give modes which are typically three orders less accurate than
are the eigenvalue approximations from which they are calculated.

TABLE 1
(a) No. | Criterion No. Criterion
1 Works if last element of D is zero 6 Fast
2 Works when correct D is null 7 Cheap
3 Finds independent ‘coincident’ modes | 8 Accurate
4 ‘coincident’ modes are orthogonal 9 Reliable
5 Simple
(b) Method Performance for criterion no.
No. | Description 12 1314] 516 | 7 8 9
1 Arbitrary last element for D x| x |x|x|] A|A|A]|A-]| C
2 Arbitrary other element for D V| x | x|x|Aa-] A| A|A-]| C+
3 Method 2 for ‘coincident’ modes | V| x [V|x| B | A-| A-| A-| B-
4 Random force vector, i.e. P V[ [x|x|B+|B+|A-| A- | B+
5 Method 4 repeated r times V| |[V]|x| B|B|B| B B
6 | Random P with extra joints V[ ¥ [ V] x| B-|B+[B+| A- | A-
7 Expanded K and pivoting VN [HlxfclielclAa]l] A
8 ‘Inverse iteration’ V| x [V|Ix]| B|A| A | A-]| A-
RECENT ADVANCES

Ronagh er al'' introduced an elegant addition to the fourth and fifth methods, to find modes for which
D=0 while also giving mode accuracy which more closely approaches (e.g. to one order) that of the
eigenvalue approximation used. This is method 6 in Table 1(b) and consists of adding an extra
randomly situated joint within the length of any member which was found, afier convergence on the
eigenvalue, to have a clamped-ended member eigenvalue close to or (apparently) at this eigenvalue.
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A major effort is now being made to re-evaluate and modify these previous mode finding methods
and hence to develop new methods which ideally should satisfy the first four criteria of Table 1(a) and
perform well for the remaining criteria. To date, only a few preliminary results and brief statements
of the associated theory have been published'>". Two such methods are methods 7 and 8. Method 7
involves expanding K to include extra rows and columns corresponding to the constants which occur
in the solutions of the DE’s of the members and employs full pivoting when obtaining K_Js from K.
Method 8 seems very promising. It solves the ‘inverse iteration’ problem K D™' = pu D', where i
denotes the i-th estimate of the mode and p is a normalization parameter. An ultimate goal is to
establish all the relationships between it and the excellent iterative work of Melosh and Smith'*.
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On a novel approach to solving for the natural frequencies of a class of
doubly curved shells including closed shells.

P.G. Young,
School of Engineering, University of Exeter, Exeter, Devon, UK

Abstract:

A three dimensional shell theory is presented which is applicable to doubly curved open shells
which are arbitrarily deep in one principal direction but shallow in the other. The strain-
displacement equations are expressed in Cartesian coordinates and the limits of applicability of
these equations are discussed. These equations are then used in a Ritz variational formulation
with algebraic polynomials as trial functions to solve for the natural frequencies of a number of
doubly curved shell problems. By introducing penalty functions to enforce continuity of
displacements at two opposite ends of a shell of rectangular planform, closed shells, such as
cylinders, barrels, cooling tower type structures, toroids and rings, can be treated.

Strain-Displacement Equations:

Consider a homogeneous isotropic shell described in orthogonal curvilinear coordinates a4, oz
lying along the neutral surface and a coordinate a; normal to the neutral surface. If we assume
the principal curvatures R4 and R; lie along the coordinates a4 and a, and the thickness a; to
radius of curvature ratios are small, that is as/Ry and az/R, <<1, the three dimensional linear strain
displacement equations are given by (cf. Soedel [1], pp 25-26, Leissa [2], pp. 7)

1 [au, U, a4 A 4 2 [ul 4 o[u,
o e— Se——— e S —— U Ty Sy ey p—— e T — E——
i1 A.[aa.+Azaaz+ Tk =, G, | AT A ey | Ay | ;
A, vk, 4 RAARE.A &
2= G, A4 Ga, PR, [ =N oa, | 4| 4 da
_——— :A T — F——— A ——
3= Gay &3 2§a3[A1 4 oo,

where g4, 822, £33 are the normal strains, s12, £13 and &3 the shear strains, and U,, U, and U; the
displacements in the a4, a2 and oz directions respectively, and where A; and A, are the first
fundamental quantities or Lamé parameters.

The strain displacement equations given by (1) can be simplified if we assume that either ratio
ai/R; or a,/R; is small (<<1), or in other words the shell is shallow in either the a4 or a; direction (in
the following analysis it will be assumed that a;/R,<<1) and that the principal radii of curvature R
and R; are constant. The shell can then be approximately described in Cartesian coordinates by
letting x = R d6 =a,4, y = a2, Z = a3, Ry = Ry and R, = R, from which we obtain side-lengths a= R 6
= a, and b = R4 sin¢ = a, and thickness ¢ = a;. The fundamental quantities are then given by A; =
1 and Az = 1 and the strain-displacement equations can be expressed in terms of the
displacements u, v and w in the x, y and z coordinates respectively as,

éu w du EGv
%= = 3x T R, ¢ =%, " ox

v w du Jw u 2
5”254-? Sy =5, % 7x R,

éw v dw v
6= =52 =373y "R



The shell is effectively “unwrapped” or “unravelled” in the deep direction (instead of using the more
typical projection onto the x-y plane) which extends the applicability of the strain-displacement
equations (2) to shells which are arbitrarily deep in one direction. In fact shells may even be
wrapped end to end (a = 21 R,) or coiled (a > 2I1 R,) (although for coiled shells the interference of
one surface on another is not taken into account). For shells of rectangular planform wrapped
end to end (a = 2I1 R,), closed shells can be modelled by enforcing continuity at x=0 and atx =
a. However, for these shells the radius of curvature R, will not, in general, be constant but will
vary along the axial length b (except for the special case of a cylinder where 1/R, = 0). It can be
shown that, in addition to the previously stated assumptions, the proposed equations will only
apply for closed shells providing b%(2R,R,)<<1.

Application of strain-displacement equations to free vibrations using a Ritz approach

If we assume simple harmonic motion at radian natural frequency o, the displacements u, v and w
in the X, y and z directions respectively, can be expressed as: u(x,y,z,t) = U(x,y,2) sin ot; v(x,y,z,t)
= V(x,y,2) sin ot and w(x,y,z,t) = W(x,y,z) sin ot. The displacements U, V and W for a thick shell of
rectangular planform can be approximated using algebraic polynomials as follows

nx iy ng .l j+I4_ u u u
U(xs y. Z) = zo -zygkzo‘dl'*x' . fx:Oyj I = zt'”z:(] (a = x)I;ﬂ (b == y):y¢ (C - z)!‘=c

i=07=0k=

Y i+ll_g Il k+l¥_g L Eup iE 3)
V(x y, 2)= 2 2 2 Byx 0y 0 a = x) e (b - )7 (e - 2)ee

1

nx My ng ie]¥ i+ +1¥ w i w
W(x, .,2)=%L %X C,},kx”'fno y "= k40 (4 x)=a (- y)’y—_a (c —z)'=c

1=0j=0k=0

where the indices .o lcaolMeuoleuale-a Iz -, €tc depend on the constraints placed on the
displacements U, V and W on the six faces of the solid shell (x=0, x=a, y=0, y=b, z=0 and z=c).

The maximum strain energy Vma Can be expressed straightforwardly in terms of the normal and
shear strains:
V o = %Hj[l(au +&, +gz)2 +2G (ei +&5, +3;)+G(y;, +yL +y,§)] dx dy dz
vE E
A=) ™9 =

By substituting equations (2) into equation (4), Vma ¢an be expressed in terms of the middle
surface displacements integrated over the volume of the solid.

)

where A = are the Lame parameters.

The maximum kinetic energy Tmax Can also be expressed in terms of the middle surface
displacements as

T = [pWTz]m(U‘! +V? +W?)dx dy dz (5)

where p is the density of the element material and the integration is again performed over the
volume of the solid.

Finally, the trial function series (3) are substituted for U, V and W in the maximum kinetic and
strain energy expressions and the Lagrangian functional Liyax = (Tmax - Vinax) IS minimized with
respect to the undetermined linear coefficients Ay, By and Cyto give a homogeneous linear
system of equations. Eigenvalues and corresponding eigenvectors can then be obtained by a
number of methods (in the present paper using subspace iteration).
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Enforcement of continuity conditions to model shells of revolution.

The approach described above can be used to treat cylindrically shaped closed shells by creating
a fictitious seam or cut in the shell along the axial length. The shell can then be unwrapped into
the Cartesian coordinate system so long as continuity of geometric boundary conditions along the
cut edge is ensured. For a closed cylindrical shell with axial coordinate in the y direction and with
x = 2I1 Ry = a, these continuity conditions are given by U ,=0=U y=a, V x=0=V s=a aNd W o¢=W s=,. In
the present paper the continuity conditions are satisfied by using connecting springs of very high
stiffness value K,, K, and K,, to enforce continuity of displacement U, Vand Watx=0and x = a.
The strain energy contribution V,, V, and V,, of these springs is then simply added to the strain
energy Vms Of the shell

Vo= %K..IH (Usmo-Usma) e ¥, = %K,HI (Veno ~Vews) dvdte, andV, = %xw (W~ W) vtz (6)

Results and discussion:

In Table 1, the lowest seven non-dimensional frequency parameters Q = o R V(p/ G) are given for
a cylinder of thickness to radius ratio ¢/R, = 0.3 and thickness to length ratio ¢/b = 0.3 with shear
diaphragm boundary conditions on each end as obtained by modelling: (i) a quarter of the cylinder
as a 90° shell panel and applying all distinct combinations of symmetry and anti-symmetry
conditions at x = 0 and at x = [1/2 R = a; (ii) half the cylinder as a 180° shell panel applying all
combinations of symmetry and anti-symmetry conditions at x = 0 and at x = I'1 R, = a; (jii) a full
cylinder ensuring continuity of displacements at x = 0 and at x = 2[1 R, = a by using artificial
springs (penalty functions) with very high stiffness parameters. Results obtained using the present
approach are compared with those obtained by Armenakas et al.[3] using an exact solution and
agreement can be seen to be excellent.

Table 1: Frequency Parameters £2 for a cylindrical shell forc/ R, = ¢/b = 0.3 and with v=0.3.

MODE NUMBER
NxNyxNz 1 2 3 4 5 6 7 8
90° 6x6x3 1.173 1.185 1.247 1.353 1.711 1.948 | 2.094 | 2.176
9x9x6 1.162 1.179 1.242 1.333 1.673 1948 | 2094 | 2120
180° 8x8x5 1.162 1.179 1.242 1.333 1.714 1.948 | 2.094 2.223
12x4x4 1.162 1.179 1.242 1.333 1.674 1.948 | 2.094

360° | 12x4x4 1.162 1.179 1.242 1.341 1.823 1.948 2.094 ®
14x4x4 1.162 1.179 1.242 1.334 1.715 1.948 2.094 =
Exact 1.161 1.173 1.232 1.340 1.680 1.948 2.085 | 2.146"
%Error 0.1 0.5 0.8 -0.5 -1.0 0.0 0.4 -1.2

" Error = 100 x ([9x9x6 result 90°] - Exact) / Exact : : -
* Results obtained by Soldatos et al. [4 ]
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