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PREFACE

The International Symposium on Vibrations of Continuous Systems is a forum for
leading researchers from across the globe to meet with their colleagues and present both
old and new ideas on the field. Each participant has been encouraged to either present
results of recent, significant research or to reflect on some aspect of the vibration of
continuous systems which is particularly interesting, unexpected, or unusual. This latter
type of presentation — of which there are several in the program — was proposed to
encourage participants to draw on understanding obtained through — in many cases —
decades of research.

The location of the Third ISVCS is in one of the most beautiful places in North America -
Grand Teton National Park in northwestern Wyoming, just south of Yellowstone
National Park. The rugged Grand Teton mountain group rises there dramatically to
several peaks over 12,000 ft (3700 m) from a large, relatively flat basin (known as
Jackson Hole) at about 6800 ft (2100 m). There are no foothills between the mountains
and the basin, and therefore visitors have spectacular views of the mountains. The highest
peak, named the Grand Teton (13,770 ft, 4197 m), thrusts its way far above the basin.

This Proceeding contains short summaries of the presentations to be made at the
Symposium and short biographical sketches submitted by many of the participants.

Editor
Ali H. Nayfeh

Reviewing Editors
Charles W. Bert
Stuart M. Dickinson
Peter Hagedomn

General Chairman
Arthur W. Leissa



THE INFLUENCE OF DISCRETIZATION ON THE NONLINEAR VIBRATIONS OF
SHALLOW SHELLS
K. A. Alhazza and A. H. Nayfeh
Department of Engineering Science and Mechanics, MC 0219
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

INTRODUCTION

There has been an increasing interest in the nonlinear vibrations of laminated composite shells during
the past three decades. Due to the complexity of the nonlinear partial-differential equations governing their
motions, relatively a limited number of papers has been presented on the nonlinear vibrations of doubly-
curved shells. A common approach for analyzing nonlinear vibrations of distributed-parameter systems, in
general, and shells, in particular, is to discretize the governing partial-differential equations and associated
boundary conditions to obtain a system of infinite number of nonlinearly coupled second-order ordinary-
differential equations. This system is usually truncated to a finite number of equations, which are then
treated either analytically or numerically. In most studies, only one mode is retained in the truncation,
especially if the shell is excited near the linear natural frequency of that specific mode. Such an approach is
referred to as a single-mode discretization. Using several examples of distributed-parameter systems and an
experiment, Nayfeh and coworkers!+? showed that such truncations might lead to quantitatively, and in some
cases qualitatively, erroneous results. Kobayashi et al.® used single-mode and two-mode approximations to
analyze the nonlinear responses of doubly-curved shells to primary-resonance excitations. For the first mode
of the transverse displacement, both the one-mode and two-mode analyses led to the same results. While
for the second mode, the two-mode approximation led to a qualitative and quantitative difference in the
response. In this paper, we investigate the influence of the number of retained modes in the discretization on
the predicted response of a doubly-curved cross-ply laminated shallow shell with simply supported boundary
conditions to a primary resonant excitation of its fundamental mode (i.e., 2 & wy;). The nonlinear partial-
differential equations governing the motion of the shell are based on the von Karman-type geometric nonlinear
theory and the first-order shear-deformation theory. We use these equations and their associated boundary
conditions to determine the linear natural frequencies and their associated mode shapes. Then, we use
these results and the Galerkin method to reduce the problem into an infinite system of nonlinearly coupled
second-order ordinary-differential equations. An approximate solution of this system of equations is obtained
by using the method of multiple scales.>® This solution consists of the spatial and temporal variations of
the shell response, with the time variation being governed by two nonlinear first-order ordinary-differential
equations. The latter depend on a so-called effective nonlinearity coefficient, which depends on the modes
retained in the discretization. The closed-form expression for the effective nonlinearity is independent of the
symmetric modes for the case of primary resonance of the fundamental mode.

Numerical results for single-layered shells are obtained. The influence of the number of modes retained
in the discretization on the shell response and the effective nonlinearity is investigated. The results show
that single-mode and two-mode approximations can lead to quantitatively, and in some cases qualitatively,
erroneous results. A multi-mode approximation that includes as many modes as needed for convergence is

used to characterize the shell response.

ANALYSIS

The equations of motion for doubly-curved cross-ply shallow shells are?
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where p is the mass density, C is the linear viscous damping coefficient, k, and k. are the curvatures,

N, N.y, N, are the in-plane force resultants, and Mz, My, M, are the moment resultants. A second equation
is obtained from the compatibility conditions for cross-ply shells as?

+ F cos(Qt) (1)
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Figure 1: (a) Frequency-response curves of a single-layered shell when k, = 0, k, =0.0935, and p;; = 0.25.
(b) Effective nonlinearity for a single-layered shell when k, = 0 and k, = 0.0935.
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Using the Galerkin procedure, we reduce Egs. (1) and (2) into the following system of nonlinear ordinary-
differential equations:

oo oo
w’?” =+ 2#’?” W’?V 7 w!?*’z W'nv = & Z Z quﬂmfj an pvtj
n,m=1 [ j=1
oo oo 00 oo
+ Z Z: Z Z SﬂunmfqursanWrstq = Fﬂy COS(Qt} [3}
n,m=1 l,j=1 p.g=1 r,s=1

where the P, nmi; and Spunmijpgrs are given in quadrature in terms of the mode shapes.
An approximate solution for the system of equations (3) is obtained by using the method of multiple
scales®’® to obtain the modulation equations

2wn1@’ + prywna - fsin(y) =0 , —2waf' - fcos(y) — 2Wll-’-lefl3 =0 (4)

where a. the effective nonlinearity coefficient is given by
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It follows from Eq. (5) that a. — oo if any w;; — 2w;, which corresponds to a two-to-one internal resonance.
Next, we use Eqgs. (4) and (5) to investigate the influence of the number of terms retained in the
Galerkin approximation on the accuracy of the calculated response. We consider a cylindrical single-layered

graphite/epoxy shell with the following parameters:
E, G12 Ga3

=03, =1, =1 f=30, —=154, —2= 0.79,
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Displacement a

Figure 2: (a) Frequency-response curves of a single-layered shell when k, = 0.1, ky = —0.196, and pu;; = 0.25.
(b) Effective nonlinearity for a single-layered shell when k; = 0.1 and k, = —0.194.

First, we consider k; = 0 and k, = 0.0935. It follows from Fig. la that retaining one or two modes in
the approximation predicts frequency-response curves that are bent to the right, indicating a softening-type
nonlinearity. However, retaining three modes in the approximation yields a frequency-response curve bent to
the left, indicating a softening-type nonlinearity. Increasing the number of retained modes further leads only
to quantitative rather than qualitative changes in the predicted response. In Fig. 1b, we show variation of
the effective nonlinearity a. with the number n of the modes retained in the approximation. When n = 1 or
2, a. < 0, indicating a softening-type behavior. When n > 3, a. > 0, indicating a hardening-type behavior.
In fact, a. ~ —0.068 when n = 2, whereas a, =~ 0.55 when n = 3 and a, ~ 0.58 when n = 4. The value of
a, converges to 0.62 as n approaches 11.

Second, we consider a doubly-curved single-layered shell with the curvatures k, = 0.1 and k, = —0.194.
Again, it follows from Fig. 2a that retaining one or two modes in the approximation predicts frequency-
response curves bent to the right, whereas retaining three or more modes in the approximation predicts
frequency-response curves bent to the left. It follows from Fig. 2b that a, changes from -0.046 when n = 2
to 0.22 when n = 3. As n increases, the predicted a. continues to increase, indicating a softening-type
behavior, and finally converges to 0.29 as n approaches 11.
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Axial Vibration of Compound Bars
and Helical Springs

Charles W. Bert
School of Aerospace and Mechanical Engineering
The University of Oklahoma, Norman, OK 73019-1052, USA

The solutions for the free axial vibration of prismatic or tapered bars are well
known. However, the present investigator is unaware of any previous analyses of the free
vibration of cornpound bars, i.e., bars arranged in mechanical series. The objective of the
present investigation is to solve I.hJS problem exactly, to present several simple
approximate equations for estimating the fundamental frequency, and to apply these
results to helical springs.

Exact Solution
The subject system is a compound bar consisting of an arbitrary number (n) of

prismatic segments. The governing differential equations of motion are

7 =
QU =t s =1z

1 %ixx (¥

N - (1)

where g, is the acoustic wave velocity of a typical segment i, u, =u (x,1) is the axial
displacement of bar i at position x and time 7, and ( ) denotes &°( )/ax, etc
The general solutions of Egs. (1) are

u,(x,r)=U, (x)coswt (2)

where U, (x)is the mode shape of segment i, and @ is the circular natural frequency.
The general solutions for the mode shapes are

U, (x) = a,cos(wx/a,)+ B, sin(wx/a,) 3)

Taking the origin of the coordinate system to be at the left end of segment 1,
letting L, be the length of segment i, and considering the compound bar to be fixed at
both ends (for instance), the boundary and junction conditions can be expressed as

U,(0)=0
U,(3L)=U,,(zL)
AEU, (SL)=4,,E, U

141+~ i+l x

(2L,) )

U, (21,)=0



whereZL = Z L, . For the example of a two-segment bar, Egs. (4) reduce to

U,(0)=0:U,(L)=U, (L);
AEU, . (11) = 4,EU,,(L); U,(L+L,)=0 (4a)

Substitution of Egs. (3) into Eqs. (4) leads to a set of 2n homogeneous algebraic
equations in the coefficients @, and f, (i =1,...,n). The determinant of this set must be

forced to vanish in order to guarantee a nontrivial solution. This frequency determinant
is transcendental in the frequency @ , because the coefficients are of the form of both sine

and cosine functions. For a two-segment bar (n=2), for instance, the frequency
equation consists of two terms containing sines and cosines to the second degree:

(4E/a Jeos(@L, /a, )sin(@L,/a,)+(4,E,/a, )sin(@L, /a, Jeos(wL, /a, )=0 (sa)

For a three-segment bar, the frequency equation consists of sixteen terms containing sines
and cosines to the fifth degree.

Approximate Formulas for the Fundamental Natural Frequency

Due to the complexity of obtaining an exact solution and the need for designers to
have relatively simple algebraic formulas, two such formulas are proposed here for the
fundamental natural frequency of an n-segment compound bar.

The first formula was motivated by the famous Dunkerley’s formula (Dunkerley,
1895) but its exact form was suggested by the actual exact solutions for the case of n=2:

@ =[i(1/w, )T (6)

=1

where @, is the fundamental natural frequency of segment i. This is different than
Dunkerley’s formula, which is

e [g:(l/a), )fé %

The second formula was motivated by the effective static stiffness of an n-
segment spring:

K =[i(l/k. )]_I ®)

=1

and the total mass of the system

M=Ynm ©)



Then
w=r(K/M)" (10)

It is noted that for a bar,
ki = Al’ El' /Ll'

Numerical Results

As a first step toward evaluating the two approximate formulas, the case of a two-
segment bar with k, =1, L, =L, =1, and m, =m, =1 is considered for various values of
the ratio k, /k, . The results are tabulated as follows:

Table 1. Values of o/,

k, [k, Exact Eq.(6) % error Eq. (10) % error
0.25 0.7323 0.6667 -6.6 0.6325 -13.6
0.49 0.6062 0.5882 -3.0 0.5793 -4.4
0.50 0.6028 0.5858 -2.8 0.5774 +4.2
0.98 0.5023 0.5025 +0.04 0.5025 +0.04
1.00 0.5000 0.5000 0 0.5000 0
1.02 0.4975 0.4975 0 0.4975 0
4.00 0.3662 0.3333 -9.0 0.3162 -13.7
9.00 0.2902 0.2500 -13.0 0.2236 -22.9

It is noted that neither Eq. (6) nor Eq. (10) gives an upper or lower bound, but Eq.
(6) is always as good as or better than Eq. (10).
The fundamental frequency of a single cylindrical helical spring is given by

= z(k/m]%

where k is the spring rate and m is the active-coil mass (Wahl, 1963). Thus, the present
analysis can readily be applied to compound springs.

Reference
Dunkerley, S., 1894, “On the whirling and vibration of shafis”, Philosophical
Transactions of the Royal Society, London, Ser. A, Vol. 185, pp. 279-360.

Wahl, A. M., 1963, Mechanical Springs, i ed., McGraw-Hill, New York, chapter 25.



NON-LINEAR DYNAMICS OF AEROELASTIC SYSTEMS

Earl H. Dowell
Duke University

INTRODUCTION

Nonlinear phenomena in aeroelasticity have been known for many years. In the last
decade or so, such effects have become of more serious concern to practitioners. And for that
reason, and also because of the advance in theoretical and experimental methods, a more
substantial and concentrated effort has been made by the research community to understand and
pursue how unfavorable nonlinear aeroelastic effects may be diminished and favorable effects
exploited.

This paper summarizes several distinct yet related research thrusts that have proven
particularly fruitful. While the author draws largely on the experience of the Duke aeroelasticity
team, reference is made to the work of many other investigators for the benefit of those who may
wish to pursue the ever increasing literature on these topics. However, we do not provide an in
depth summary of the total literature, but rather comment selectively on the efforts of the broader
community in the recent and not so recent past to provide a context for the work discussed here.

Three topics are considered. The first is an airfoil with a control surface which has
freeplay in its attachment to the airfoil. Such a configuration exhibits limit cycle oscillations
(LCO) due to freeplay well below the classical linear flutter speed (LFS). The second is a wing
with a plate-like structure that undergoes LCO once the LFS is exceeded, but not usually below
the LFS. Here, the nonlinearity is a result of the tension induced in the plane of the plate-wing
when the wing bending is on the order the wing thickness or greater. The third is a very high
aspect ratio wing which exhibits LCO above the LFS, but also exhibits a sensitive to initial
disturbances below the LFS that may lead to LCO there as well. Here, the nonlinearity is due to
the coupling among flapwise bending, chordwise (or lag) bending and torsion of the wing
structure. This coupling is known to be important for rotorcraft blades that are cantilevered at
the rotor hub (sometimes called hingeless blades).

For each of the three topics, experiments (conducted in a low speed wind tunnel) are also
discussed and correlated with theory. It would be very valuable to have high speed experiments
as well. And indeed, the NASA Langley Research Center aeroelasticity team has provided
valuable benchmark experiments that are directed toward aerodynamic nonlinearities in the
transonic flow regime. And some encouraging correlations with available theory have been made
by the Langley team as well. It can be expected that our ability to pursue more such correlations
will continue to advance due to the work of the Langley team and the efforts of the aeroelastic
community at large.

For a more extensive list of relevant references, the interested reader may contact the
author.



I. AIRFOIL PLUS A CONTROL SURFACE WITH FREEPLAY

Many investigators over the last fifty years have considered the effects of a structural stiffness
nonlinearity on an airfoil with or without a control surface. Broadly speaking, the literature is
characterized by the type of nonlinearity, i.e. continuous or discontinuous (freeplay), whether the nonlinear
spring stiffness is for the airfoil or the control surface, and finally the nature of the aerodynamic model.
Most of the work has been done at low Mach number using classical Theodorsen aerodynamic theory or
approximations thereto or at very high Mach number where piston theory aerodynamics can be applied.
Also, most of the studies have been theoretical/numerical, but some interesting experimental work has
been done as well. For a more thorough review of the literature, particularly as regards freeplay
nonlinearities, see Connor et al [1]. For continuous spring nonlinearities, the recent publication by Lee et

al [2] has a nice summary.

Here, we focus on theoretical/experimental correlation as achieved at low Mach number, the
theoretical effects of transonic Mach number, and the physical and fundamental insights that have been
gained over the years. For another recent study of freeplay in the transonic, low supersonic range, see Kim
and Lee [3]. Their results appear comparable to those discussed here (4], although they use different
solution methods and do not consider a control surface per se.

II. LOW ASPECT RATIO, PLATE-LIKE WING

The literature for this configuration in the context of nonlinear aeroelasticity is very recent and
notably small. However, if one takes a broader view and notes that the basic physical mechanism for the
nonlinear effect is that a tension force is induced in the mid-plane of the plate-wing by the out-of-plane
bending when the latter deflection is of the order of the plate thickness, then we recall that this is indeed
the same physical mechanism that leads to nonlinear effects in general and LCO in particular for "panel
flutter" or the flutter of plates and shells. A panel is a local portion of a wing between pairs of spars and
stringers. See the monograph by Dowell [5] which gave an early authoritative discussion of the
fundamentals of the phenomena and the recent review by Mei [6] that summarizes the recent literature on
panel flutter. It is notable that much of the recent panel flutter literature uses the simple piston theory
aerodynamic model that is limited to high supersonic Mach number. However it is the subsonic, transonic
and low supersonic flow regimes that are often most important for applications. Fortunately, recent
theoretical advances make calculations in these Mach number regimes more and more attractive. When
such calculations were first done twenty five years ago they were a feat. See Dowell [5]. Today, they do
require an understanding of the more sophisticated aerodynamic models, but the calculations themselves
are no longer extraordinary in their demand on computer resources. The most recent work for a plate-like
wing per se is discussed in [7,8].

III. HIGH ASPECT RATIO, BEAM-LIKE WING

Again, the available literature is small. For very high aspect ratio beams that may bend and twist,
it has been known for many years that the flap-wise bending, chord-wise bending (lag) and torsional
deformation (twist) may couple among themselves to produce a significant structural nonlinearity. This
was first pursued in the context of rotor blades that are often, of course, long and slender. It has not been
an issue with fixed wing aircraft for the most part. However, recently and particularly in the context of
Unihabited Air Vechicles (UAV), very high aspect ratio fixed wing configurations are of interest. Thus,
researchers have pursued aeroelastic studies of this configuration. Notable work has been done by Patil,
Hodges and Cesnik [9]. Their pioneering theoretical studies have shown a number of interesting nonlinear
effects including the presence of LCO and also the sensitivity of the onset of classical flutter as well as
LCO to temporal disturbances including initial conditions. Their work and that of the Duke team [10] is



discussed here. The latter includes both theoretical and experimental studies.
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VIBRATION FREQUENCIES OF VARIABLE THICKNESS
RECTANGULAR PLATES

M. Eisenberger

Faculty of Civil Engineering, Technion - Israel Institute of Technology,
Haifa 32000, ISRAEL

The functional of the total potential and kinetic energies for the harmonic vibrations of a variable thickness
rectangular thin plate of dimensions a x b is

1 % * =D b ] 2
T = 3 ‘/0 ./u D{Wz, +20v W, . W, +Woyy +2(1 = v) W2, Jdz dy
1

b ra
- ~2-w"’p/ / hW?dzr dy (1)
o Jo

where W(z,y) is the transverse displacement of the plate, k(z,y) is the thickness, p is the material density, w is
the frequency of vibration, and D(z,y) is the bending stiffness of the plate. In this work the solution is sought
as

Wi(z,y) = X(z)Y(y) (2)
with

D(z,y) = Dz(z) Dy(y) (3)

h(z,y) = hz(z) hy(y) (4)

Substitution of the assumed solution into the functional, and integration by parts yields the following ordinary
differential equation with variable coefficients

A2 Dy Y™ +2A; D, Y" + [A2 D" + (A3 — Ag) D,]Y"

+(As = Aq) Dy Y' + (A1Dy + 0543 D)Y = w?pAshyY (5)
with 5
.41=f D. (X")2dz (6)
0
_-13=f D; X dz (7)
4]
a
Az = f 2vD: X" X dz (8)
0
a
A4=/ 2D, (1 - v) (X)? dz 9)
o
A5=f he X*dz (10)
0

This procedure enables us to solve the plate vibration problem as a series of beam on elastic foundation problems,
by assuming the function X(z). First we solve a beam problem in one direction (here first the y direction), and
then in the second direction (in the x direction) using the previousely derived solution Y (y), in both cases using
the dynamic stiffness method. This defines a cycle of solution. The solution converges very fast and in most
cases no more then 2 cycles are required, i.e. very small number of beam vibrational analysis. For different
boundary conditions one has only to solve the beam problem with different end restraints.

In the following tables and figures normalized converged vibration frequencies (w”) and mode shape plots are
given for square plates with linear thickness variation in the x direction and constant in the y direction. The

variation is taken as
h(z) = ho(l — az) (11)

11



Table 1: Normalized Frequencies and Modes for SSSS plate

a | 01 0.2 0.3 0.4 0.5 06 0.7 0.8
w™ | 18.7469 | 17.7428 | 16.7244 | 15.6883 | 14.6293 | 13.5392 | 12.4032 | 11.1901
Mode | [1,1] [1,1] [1,1] [1.1] [1,1] [1,1] [1,1) [1,1]
w* | 46.8465 | 44.2692 | 41.7175 | 39.0437 | 36.2769 | 33.3874 | 30.3250 | 26.9917
Mode | [1,2] (1,2] 2.1] [2,1] 2,1] [2,1] [2,1] [2,1]
w* | 46.8581 | 44.3179 | 66.8249 | 62.6138 | 58.2796 | 33.6460 | 49.1678 | 33.8104
Mode | [2.1] [2,1] 2,2] 2,2] 2,2] [1,2) 2.2] 3,1)
W' | 93.66353 | 88.4139 77.9159 | 72.2655 | 66.3238 | 59.9744 | 44.1420
Mode | [1.3] [1,3] BY | B | By | B | [22

and the normalized frequencies are defined as

w':wa'z\/pD—I? (12)

where a is the length of the edge, and ho and Dq are the thickness and bending stiffness at origin of the plate.
Results are presented for several combinations of boundary conditions. For all the plates v = 0.25. In Table 1
results are given for plates with simple support boundary conditions on all four edges. Also given are the modes
indicating the number of half waves in the x and y directions, respectively. The modes are ploted in Figure 1,
and it is evident that the plate is thinner at the right edge as there the deflections are larger.

a8 os ar os o

Mode [1,1] Mode [2,1]

D i
] () [-F 03 Qa4 s o8 ar o ar 1 [] e or a3 oa oS ae or os on

Mode [2,2] Mode [3,1]

Figure 1: Vibration Modes for SSSS plate with a = 0.5
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A NONLINEAR ANALYSIS OF A NONIDEAL BEAM-MOTOR SYSTEM .,

A. Fenili, Faculdade de Engenharia Mecanica, Universidade de Campinas,
Campinas, SP, BRAZIL
J. M. Balthazar, Departamento de Estatistica, Matematica Aplicada e Computagio, Instituto de Geociéncias e
Ciéncias Exatas, Universidade Estadual de Sdo Paulo, Rio Claro, SP, BRAZIL
D. T. Mook, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA

The problem of rotating a cantilever beam from one direction to another (often referred to as a slewing
motion) is of long-standing interest. It has applications in the field of robotics among other places. For
robots in space, the problem is somewhat complicated because of the highly flexible nature of the beam,
and theories that include nonlinear inertial and bending terms may be required for an accurate analysis.
Moreover, the motor used to rotate the beam may be small with limited power. For such a system, the
action of the motor cannot be prescribed, but must be determined interactively with the deflection of the
beam as part of the solution. Because of this mutual interaction, which increases the number of
unknowns, the system is said to be nonideal. Here we consider the nonideal, nonlinear, slewing problem.

In contrast with earlier approaches, we derive nonlinear equations that govern the time-dependent
deflections of a cantilever beam being rotated by applying a moment to its end without assuming that the
beam is inextensible. Instead, we find from our analysis that, to the order of the approximations
considered here and in the earlier studies, the beam can be considered inextensible. Then we couple the
equations that govern the beam to those that govern a weak electric motor, which is used to apply the
moment to the end of the beam. Next, we discretize the equations, projecting the response to a prescribed
voltage applied to the motor onto the space of linear free-vibration modes.

The rotating, cantilever beam is represented schematically in a top view in Figure 1. The beam
rotates around an axis passing through point O with the angular velocity 8(7). Two coordinate systems
are used to describe the motion of a point on the beam: (X, ¥) denotes the inertial system and (x, y)
denotes the one that rotates with the shaft and the undeflected beam. Both the beam and the moving
coordinate system are rigidly attached to the shaft, and the motor applies torque to it. The rotating x-axis
makes the angle () with the X-axis of the inertial system. The undeflected beam lies along the x-axis
and has the length L; its cross section is symmetric with respect to the xy-plane. Gravity acts in the z-
direction. Point 4 on the undeflected beam, which is represented by the heavy dot in Figure 1, is a
distance x from the origin of the two coordinate systems at O . During the deflection, 4 moves to 4’ ;
thus, 4 and 4’ represent the position of the same material point in the beam at two different times. The
displacement of point A is denoted by 7. The x- and y-components of 7 are u(x,t) and v(x,1),

respectively. The slope of the beam relative to the x-axis at A4’ is described by the angle o(x,1).

We use dimensionless variables (denoted by ~) to aid in making rational approximations.
The time, the arc length of the deformed beam, and the components of the displacements are:

Zi=t, 7=2, 60=229, 55,5 =250 g gz7)=4E0

c

(1]

X=

where L is the length of the undeformed beam, the characteristic time is 7, = L7, ’fi , P is the mass per

unit of length of the beam, E is the elastic modulus of the beam, 7 is the moment of inertia of its cross-
2

section area, £ = -LT <<1 is a small dimensionless parameter, and r is the radius of gyration of the cross-

section area. We note that @ is dimensionless; the ~ indicates that @ is written as a function of
dimensionless variables, differentiated with respect to dimensionless variables, and scaled.
Using Hamilton’s principle, we obtain after some manipulation and dropping the tildes
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Figure 1. Schematic representation of the deflected beam. The motor-driven shaft is at O.

V" +0x+ £|:v'[u' - %v’z I| -&’ [ézv + 204 + Gu - 3v'v"V" —%v"’] =0 2]

r

and - (u' - %v’z] + 8(:'4' +0%x+60v+26v+ v’v"") =0 [3]

where at x =0, v=0, v'=0, u=0 [4]

andatx =1, v”+0(£3)=0, v'"+O(£3)=0, and u'—-l-v'z+.¢;(lv"2 —v’v’"]=0 (5]
2 2

where primes and over dots denote the partial derivatives with respect to x and ¢, respectively. It also
follows that the normal strain, e, is given by

e=¢’ [—u' + %v” ) +&* [%u’v” —é—v"‘ J + O(a‘ ) = 0(53) (6]

Hence, the assumption that the beam is inextensible is justified to this order of approximation.
The equation of motion of the shaft is given by

G z'a—C29+C3(v'+2£2u'v'+---)
where i, is the current through the armature measured in amperes (the remaining variables are
pL'K,
eEI (J‘, +J,)

=0 (7]

=

dimensionless) C, = , K, is the torque constant for the motor (7, =K, i,), J, and

2
J, are the polar moments of inertia of the armature and shaft, C, = JCLJ X /% , C is a viscous-drag
a + 5
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pL
J +

a 3

. The

coefficient used to model the friction torque acting on the shaft and armature, and C =

relationship between the current through the armature, 7, , and the applied voltage, U, is given by the

following equation:
Cit,+C,i, +6=C,U(t) (8]

L . : :
where C, =—"—, L, is the inductance of the armature, K, is the back-emf constant (it can be shown
b

LZ
that K, =K,), CszR‘}{ 1’-5}, R, is the resistance of the armature (measured in ohms),
ER,

LZ
C =
ek,
We approximate v with an expansion in terms of the linear, dimensionless free-vibration modes
for the beam when 6(1) =0, ¢, (x):

A ’EL; , and U is the applied voltage (measured in volts).

v(x6)= Y 0,() 0 (x) (9]

i=]
where the time-dependent coefficients, g, (t), are the generalized coordinates. Solving for « in terms of
the g, (r) and the ¢, (x) and then substituting the result into the governing equation for v, we obtain the

following set of coupled equations for the ¢, (7):

e - N N N e -
G+ g +ab+é& {9225;;‘?; + ZZ(’IWG‘?;Q; + }’,;.'.*9%"?;] +
i=1 i=1 j=I
N —
ZZ;[A;}H(%‘?}@& +9'i‘jf‘j'k)+rguqa'q1‘?xi}=0 [10]
i=l j=1 k=
for/=1,2,...N
3 -
where o = [ 30t0t0i 2otoi0i+ o (ol 01+ Wy00)

@ = fx%dx, B = f[co.-+x¢.-'+—;—(x2—1)¢5’]¢,dr—l rg;=2j:(lf;¢!'+¢.-‘¢;—ﬂg)¢;dx

r ' 1 " r
Ay = _E[Vﬂ’;' +Qp; — ER;;}(": dx, Ay, = _E(Sﬂ;?’; + R;k(”f)?’: dx

Equations [10], [8], and [7] must be solved simultaneously to obtain the response of the system to
a prescribed input voltage U(1).

The presentation will consist of some details of the derivation as well as some numerical
examples.
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Free Vibration Analysis of Bridge Decks Resting on Combinations of
Elastic and Inelastic Supports -

by
D. J. Gorman
Dep’t. of Mech. Eng.
Univ. of Ottawa, Ottawa, Canada

Introduction

In an earlier paper the author described an analytical investigation of the free vibration
frequencies and mode shapes of a thin multi-span bridge deck with in-elastic line support at the
deck entry and exit locations as well as at interfaces between the spans[1]. Accurate solutions
were obtained by the superposition method. The present paper constitutes essentially an extension
of the earlier problem. The analysis is extended to cover the case of thin decks with combinations
of in-elastic line support as described above and elastic line support. The latter is considered to be
provided by rigid massless cross-members running beneath the deck at inter-span locations. Drop-
cables, suspended from the main suspension cables, provide vertical elastic support at the outer
extremities of the cross-members.

It is recognized that all modes will be symmetric, or anti-symmetric, with respect to the
long central axis of the deck. It is found advantageous to analyze these two families of modes
separately.

Analysis of Symmetric Modes

For illustrative purposes, and in the interest of brevity , we will describe the analysis of a
two-span deck with simple line support at the entrance and exit locations and elastic support as
described above at the interface of the spans. It will be seen that the analysis is applicable
regardless of the number of spans or their individual lengths.

The deck is analyzed as one full length thin plate with transverse line support applied to it where
required. In view of symmetry as described above, only one half of the deck, running its full length,
is analyzed. In order to exploit the superposition method three building blocks (forced vibration
solutions) as represented schematically in Figure 1 are employed. The dimensionless £ axis runs along
the centre line of the deck of total length ‘a’ and half-width ‘b’. Small pairs of circles adjacent to an
edge indicate slip-shear conditions, i.e., vertical edge reaction as well as slope taken normal to the
edge are everywhere zero. All other non-driven edges are given simple support.

The first building block is driven by a distributed harmonic edge rotation of circular frequency

©, and is free of vertical edge reaction. Amplitude of the distributed edge rotation, and a Levy type
solution for the response, are expressed in dimensionless form, respectively, as,
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é’W(fJI): i E, sinmzé, (1) and,W(&n)= i}’m(q)sinm:rf (2)

an m=1,2 m=1,2
where W equals plate lateral displacement divided by “a’.

Following well established procedures the prescribed boundary conditions are enforced and
exact solutions for the functions Y _(n) are obtained .

The second building block is driven by a distributed harmonic line force of circular frequency
©. This force acts along a line parallel to the 1 axis and at dimensionless distance o from it. We
express amplitude of the driving force in dimensionless form as,

Va* &
D Z E, cosnzny (3)

m=12

The reason for neglecting the first term in the series (n=0) will be explained later. A solution
for each segment of the building block, utilizing the segment coordinates of the Figure, is expressed
in the form,

W(&n)= D Y,(£)cosnry (4)

n=1,2

Again, exact solutions for the quantities Y, (x) are easily obtained by enforcing outer segment
boundary conditions as well as continuity conditions at the inter-segment boundaries. In fact, the
solutions may be extracted from those of chapter 8 of reference [2].

A solution for the third building block which is driven by a concentrated harmonic force of
amplitude P is also available following procedures described in reference [2]. The driven edge is
considered to be free of bending moment.

In order to generate the eigenvalue matrix established procedures are followed. Upon
superimposing the building blocks a condition of zero net bending moment along the deck free edge
is enforced. Also, a condition of zero net slope taken along the cross-member - deck line of contact
is imposed. These net quantities are expanded in appropriate series and the coefficients thus obtained
are set equal to zero. Finally, a condition of elastic equilibrium is enforced at the drop-cable
attachment point.

Analysis of Anti-symmetric Modes

This analysis differs only slightly from that described above for symmetric modes. Only these
differences will be described.
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1) The building blocks will differ from those of Figure 1 in that simple support conditions rather than
slip-shear conditions will be imposed along the £ axis. A solution for the first building block will be
expressed, for example, using the trigonometric functions sin(2m-1)r&/2.

2) Recognizing that attached cross-members can rotate about the £ axis, in rigid body motion, we
enforce a condition of zero second derivative of W with respect to distance along the deck-cross-
member interface instead of zero first derivative as was done for symmetric modes.

3) We must now employ a pair of concentrated force driven building blocks, identical to the third
building block of Figure 1, for each cross member. The first, driven by a force of dimensionless
amplitude P,” is utilized to ensure satisfaction of the local elastic force-displacement equilibrium as
discussed above. For the second of this pair of building blocks the driving force amplitude P, is so
constrained that the net rotational moment about the x axis exerted on the deck by the cross-member
will equal zero. The set of 2K+2 driving coefficients are thus constrained by 2K+2 equations.

Generation of Eigenvalues and Mode Shapes

Various known limiting free vibration frequencies must be approached as elastic stiffness
coefficients approach limits of zero and infinity. Approach to these limits has been verified for multi-
span decks.

Yo
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nnn 25 JI§
o v rv ey ]
wiem T+ WeEm) I e ) e |
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I I = 5=
Q <, Q < . - - - = M
o o ==l (L
<P i i — e R =
e wiEm) P+ w,(Em —— - e | - - _ _ s
d ot e e =
[+ o
2] [s]
17: ln A== = 3
Figure 1. Schematic representation of Figure 2. Schematic representation
building blocks employed. of eigenvalue matrix.
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A Mathematical Model for Vibrating
Piezoelectric Shells
P.Hagedorn, M. Berg

Department of Applied Mechanics
TU Darmstadt

hagedorn@mechanik.tu-darmstadt.de

Piezoelectric actuators, which have gained in importance during the last two
decades, are produced in many geometrical forms depending on their applica-
tion. In the present paper, the mathematical modeling of the bending vibrations
of piezoceramic shells is presented. Piezoceramics are used in this shape for cer-
tain ultrasonic piezoelectric travelling wave motors. The aim of this study is
to determine the eigenfrequencies and eigenmodes of piezoceramic shells and to
examine their efficacy in certain types of actuators.

FLUGGE'S equations for the bending vibrations of piezoelectric shells are mod-
ified by introducing the following constitutive equations for piezoceramic mate-
rials

T = cES—eE, (1)
D = eS+¢€°E. (2)
In this notation. E is the 3x1 vector of the electric field. S the strain tensor written
in 6x1 vector notation, D the 3x1 vector of the dielectric displacements and T
the stress tensor written in 6x1 vector notation. Of course, these constitutive
relations in which S and E are the independent variables, could be substituted
by a different but equivalent system of equations.
In addition to the constitutive equations above, MAXWELL's equations of
electrostatics
rotE = 0 (3)
divD = 0, (4)
must also be considered. Since dielectrics (such as piezoceramics) normally have
no free electric charges, Equation (4) will lead to a differential equation for the
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determination of the electric field in the vibrating shells. The electric field E,
which in the case of electrostatics is always irrotational, can be written as a
gradient of the potential function ®:

E = —grad ®(z, 9, 1) = —grad [2.(z) ®,(p) @, (r)] ()

A kinematic relation is now formulated for the electric displacement vector
D. As a first approximation, it is assumed that the radial component is much
larger than the others such that these can be neglected. Thus, Equation (4) can
be substituted by

divD~ 2900 _ ¢ (6)
r or
Using Equation (2), this leads to the following expression for the electric dis-
placement:
Dr =381 +e31 5+ €33 S3 + €53 Es (7)

As part of this first approximation, it will also assumed that the strain-dependent
components of the electric displacement are much smaller than the component
given directly by the electric field. This leads to

s s s
divD ~ 190ress Bs) _  10(reg; @) =38 (g, +73,,), (8)
T or r Or T

and thus, from Equation (4),
B, +7®,, =0, 9)

This is a first-order differential equation of EULER'S type in ®. It can be solved
using the proper boundary condition in the outer electrodes (where the electric
potential is prescribed), leading to

In2a=s
P(z, 0, 1) = ‘bBoundmy(z: ©) Eﬁ' : (10)

2a+s
Therefore, the electric potential over the shell thickness is known and when sub-
stituted into the constitutive relation (1), leads to a new form of the dynamical
shell equations which can be solved as shown by FLUGGE. The vibration of
the piezoelectric shell can now be studied using an exponential ansatz with re-
spect to time, resulting in three differential equations coupled in the displacement
amplitudes. For the free vibration problem, this is a homogeneous system of dif-
ferential equations. The condition for the existence of non-trivial solution leads
to the dispersion relation, which is a polynomial of degree 4 in the square of the
axial wavelength, ), and the circumferential wave number m, and of degree 3 in

the square of the circular frequency w.
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For any given w and circumferential wave number m, eight solutions can
be obtained for the axial wave number A. Eight particular solutions are thus
constructed. the superposition of which must fulfill given boundary conditions.

The vibration problem was solved for a free-free shell. Eigenfrequencies and
eigenmodes were determined, both numerically computed and experimentally.
The agreement was good for a certain range of parameters, however there is
need for further improvement. Consequently, the stress-dependent components
in Equation (7) were included, leading to a different differential equation for the
electric potential in the piezoceramic shell, which had to be solved numerically.
Some of these numerical solutions are shown in this paper and compared to
experimental data. Particular attention is devoted to the mode shapes and to
the features desired in piezoelectric motors.
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IDENTIFICATION OF ELASTIC PARAMETERS FOR LAMINATED
CIRCULAR CYLINDRICAL SHELLS

Kenji HOSOKAWA Kin'ya MATSUMOTO
Faculty of Engineering Faculty of Education
Chubu University Mie University
Kasugai, Aichi 487-8501 Japan Tsu, Mie 514-8507 Japan

1. Introduction

To identify the elastic parameters of composite materials, an inverse analysis method has already
been applied to the laminated composite plates by the authors [1]. The purpose of this study is to apply the
proposed method to a laminated circular cylindrical shell and to compare the estimated elastic parameters
with the obtained experimental ones. First, by applying the experimental modal analysis technique to a
laminated circular cylindrical shell with free boundary conditions, natural frequencies and mode shapes
are obtained. Next, by using the obtained natural frequencies and mode shapes, the elastic parameters for
the lamina of the circular cylindrical shell are identified. On the other hand, we obtain the elastic
parameters of the lamina experimentally. These experimental elastic parameters were compared, and
found to agree well, with the elastic parameters identified using the proposed method.

2. Inverse Analysis Method

Figure 1 shows the flow chart of the START
identification program. First, the data about the

geometrical  configuration, initial material
. . Input of data
properties of the specimen, and natural >
frequencies obtained by excitation test are given. :
Secondly, the finite element analysis ( eigenvalue FEM eigenvalue analysis
analysis ) is carried out with initial parameters, I
where the used element is a shell element. Also, Comparison between experimental modes

for the relation between stress and strain of a and analytical ones by MAC

finite shell element model, the first-order shear |

deformation theory is considered. Thirdly, to Making of sensitivity matrix, A
identify the elastic parameters appropriately, the I

analyt_ical Liodes e N CCRipaEd With, . t_he Singular value decomposition of A
experimental ones by MAC. Next, the sensitivity

matrix is calculated as the difference of the natural I

frequencies between analysis and experiment. Identification of elastic parameters
After the singular value decomposition of the
sensitivity matrix is calculated, elastic parameters
are identified with the generalized inverse matrix.
Finally, if the estimated natural frequencies are
converged into the experimental ones, the
identification program is terminated.

No

Converged?

Fig.1 Flow chart of identification program
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3. Comparison of Identified and Experimental Elastic Parameters

To identify the elastic parameters for the lamina of the laminated circular cylindrical shell with free
boundary conditions, vibration tests were carried out. The stacking sequence of the laminated circular
(See Figure 2 ). Each layer material, that is lamina, is a
carbon fiber reinforced plastic (CFRP). The laminas of the shell are made of the same prepreg sheet. The
density of the laminated shell is 1495(Kg/m”). The length [/ of the shell is 0.203(m) and the outside radius »

cylindrical shell is [30°, /-30°, /~30°, /30°, ]

is 51.7 x 10~ (m). The thickness / of the laminated shell is 1.63x 1072 (m).
3.1 Identified Elastic Parameters

The natural frequencies and mode shapes of the laminated circular cylindrical shell were obtained by
applying the experimental modal analysis technique. To satisfy the free boundary conditions, the
laminated circular cylindrical shell was hung from the ceiling by a fine string. An accelerometer was
attached to the laminated circular cylindrical shell and the shell was impacted by an impulse force hammer.
The mass of the accelerometer is 0.48 (g). Figure 3 presents the first three experimental natural
frequencies and mode shapes of the laminated circular cylindrical shell. In this figure,

represents the location of the attached accelerometer.
From the experimental natural frequencies and
mode shapes shown in Figure 3, the elastic
parameters for the lamina of the laminated circular
cylindrical shell were estimated by the proposed
mverse analysis method. For the computation of
natural frequencies and mode shapes, the mass of
accelerometer was neglected because of it is very
small compared to the shell’s mass. The identified
elastic parameters of the lamina are shown in Table
1. In this table, the elastic moduli £, E7 inthe

Fig.2 Angle-ply laminated cylindrical shell

Order Experimental natural frequencies | Calculated natural frequencies and
pos and mode shapes mode shapes
1st J KKK DDIOK]
I 0 0 00 R P N I N
| " I N " A P P O O P O O P N N Y T Y|
mode T S S A e
h“""‘"—-'———-t._--...__ | - =
227(Hz)
< e i S S SN B e — :
2nd i z LFE_—__;_'-'_-_“.___;— S
mode s e
368(Hz) 367 (Hz)
T | i
3rd C ! 2 .
643(Hz) 650 (Hz)

Fig. 3 Natural frequencies and mode shapes of angle-ply laminated circular cylindrical shell with free

boundary conditions ; [30°; /~30°, /-30°, /30°, ], CFRP.
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direction of the parallel and normal to the fiber, Gy, Gyr,andGyp are shear moduli (where V axis is
normal to the L-T plane). Poisson’s ratios vy and v L1 are 0.32, respectively.
3.2 Justification of Identified Elastic Parameters

To justify the identified elastic parameters for the lamina of the laminated circular cylindrical shell,
elastic parameters of the specimens were obtained experimentally. The beam type specimens with fiber
orientation angles of 0°,45°, and 90° were cut from the prepreg sheet which was used as the lamina to
make the laminated circular cylindrical shell. The width and thickness of the specimens are 0.025(m) and
0.42x1073 (m), respectively. And the specimens of various lengths (0.10(m) < <0.28(m)) were used.
The elastic moduli E;, Ey, and Gy were estimated numerically from the fundamental natural
frequencies obtained by free bending vibration tests of the cantilevered specimen. The Poisson ratio
vy 7 = 0.32 was estimated from the tensile test of the specimen with the fiber orientation angle of 0°. The
measured material properties of the lamina are listed in Table 1. From Table 1, one can see the good
agreements between experimental and identified elastic parameters. Furthermore, to confirm the
identified elastic parameters, Figure 3 presents the natural frequencies of laminated circular cylindrical
shell estimated by the FEM eigenvalue analysis with the identified results. From the comparison of
experimental and computational natural frequencies shown in Figure 3, one can see that the difference
between the experimental and the numerically calculated natural frequencies is about 1.2% at the most.
Also, Figure 3 shows good agreements between experimental and numerical mode shapes of the
laminated circular cylindrical shell.

4. Conclusions

The inverse analysis method to identify elastic parameters of the laminated composite materials
using the FEM eigenvalue analysis and the sensitivity analysis was applied to the laminated circular
cylindrical shell with free boundary conditions. On the other hand, the elastic parameters for the lamina of
the shell were obtained experimentally. From the comparison of identified and experimental elastic
parameters, one can see the good agreements between these results. Accordingly, it follows that one can
accurately estimate elastic parameters for the laminated circular cylindrical shells by using the inverse
analysis method proposed by the authors.
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Table 1 Elastic parameters of lamina

Parameters  £L Er Gty Gy Grr
[GPa] [GPa] [GPa] [GPa] [GPa]
Identified 114 7.58 2.93 5.62 5.62

Measured 95.4 6.35 — —— 5.22
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Shear Coefficients for Thin-Walled Tunoshenko Beams

James R. Hutchinson
Department of Civil and Environmental Engineering
University of California, Davis CA 95616

Introduction

Timoshenko [1] was the first to introduce shear
deformation, as well as rotary inertia, into the deri-
vation of vibrating beam theory. He introduced a
shear coefficient to account for the variation of
the shear stress across the cross section.
Timoshenko, in that first paper, used a value of 2/
3 for a rectangular cross section. Many authors
have found and used different values for shear
coefficients. One of the most accepted of these
authors was Cowper [2] who derived shear coef-
ficients for various cross sections for the static
problem. In a recent paper [3] a new means of
deriving appropriate shear coefficients was found.
This new method gave complete agreement with
the two three-dimensional solutions which are
know. Those are the solution for a circular cylin-
drical cross-section and for the thin rectangular
(plane stress) cross-section. The cross-sections
considered in paper [3] were circular, rectangu-
lar, elliptical and annular. The only thin-walled
cross-section considered was the thin-walled an-
nular cross-section, although, it was pointed out
that the procedure could be applied to any thin-
walled section. This paper considers all the thin-
walled sections considered by Cowper plus two
additional ones.

Method of Solution

The approach used in reference [3], to get around
the discrepancies inherent in beam theory, was to
choose a “best” guess for the stress field and a
“best” guess for the displacement field. A varia-
tional form was then used in which these two fields
can be incompatible. The variational form used
was the Hellinger-Reissner principle. The results
of this approach were then compared to the
Timoshenko Beam solution for long wave lengths,
and an expression for the new shear coefficient
was found. The displacement field was chosen
consistent with the assumption that plane cross-
sections remain plane after deformation. The nor-
mal stresses and the shear stress Ty were also cho-
sen consistent with this assumption. The shearing
stresses Tyy and Ty,. were chosen consistent with
the best known solutions for these stresses. The
coordinates y and z are in the plane of the cross-
section y is the vertical axis and z is the horizontal

axis, x is the axis along the length of the beam.
They form a righthanded coordinate system. For
solid sections the shear stress distribution is best
found from the three-dimensional solution for a
tip-loaded cantilever. For thin-walled sections the
elementary shear stress theory is best.

Solution Process
The functions f] and f> express the in-plane dis-
tribution of the shearing stresses 7yy and7y,

\%4
Tyy= %fl (,2) T = ;—:JE(J’,Z)
where V is the shear force and /; is the moment of

inertia about the z axis. The dynamic shear coef-
ficient is expressed as,

2(1 +v) _
I
g7

where vis Poisson’s ratio, A is the cross-sectional
area and Cy4 is expressed as,

s L [Mfiy2-fi+2fy2) + 20+v)(f2+£)A

kdz—

The static shear coefficient k; is for the deflection
of the original centroidal axis, and the static shear
coefficient kg is for the mean deflection of the
cross section, as was done by Cowper.

" 2(1 + wI?
sSSTTAC,

2(1+v)

&= 1
A vi_>
L,~2C4+2(l 1:)]
Results

Tabulated results are shown in Table 1 for the six

cases which were considered. The cases which

were considered by Cowper were cases 1, 3, 4

and 5. In all cases the neutral axis is horizontal

and motion takes place in the vertical direction.

The I or wide flange beam shown as case 1 is thus
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vibrating about its major principal axis, whereas,
in case 2 it is vibrating about its minor principal
axis. In all cases when Poisson’s ratio is zero all
three shear coefficients agree with the shear coef-
ficient found by Cowper. Plots of the variation of
the shear coefficients with Poisson’s ratio is shown
in Figures 1 - 4. Figure 1 is for a square cross-
section with a constant wall thickness. It is a spe-
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Figure 1. Shear Coefficient versus Poisson’s
Ratio for a square tube (m =n =1).
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Figure 3. Shear Coefficient versus Poisson’s
Ratio for an I beam vibrating about its major
principal axis (m = 3, n = 3/4).
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Abstract

A relatively common problem in the North American primary wood cutting industry (i.e.
that part of the industry involved with the production of sawn lumber from logs), is the
appearance of a "washboard" pattern on the surface of the wood. Such a pattern is characterized
by a sinusoidal like variation in board thickness in both the cutting direction and normal to this
direction. Figure 1 shows an example of such a pattern. (A similar phenomenon occurs in metal
cutting and is referred to as "chatter” in that context.) In the wood industry, the resulting board
thickness variations are subsequently removed by the planing process. This results in higher than
necessary sawdust production. The physical mechanisms that give rise to the washboarding
phenomenon have not been clearly identified and the problem is dealt with in the industry by
trial and error.

The general problem to be solved is that of predicting the self-excited vibrations that are
involved in the interaction between a rotating flexible circular saw and a work-piece. The aim of
the present work is to present an analysis of the stability characteristics of the blade while
subjected to cutting forces and to define those circumstances under which washboarding will
occur.

In the dynamics of saw-blade cutting the cutting forces have traditionally been modeled as
constant or pulsating in-plane edge forces. The force produced by flank cutting, which is likely
the primary cause of the washboarding phenomenon, has been neglected in previous research.
An analysis of the instability induced in a rotating saw by multiple moving regenerative cutting
forces applied over a given space-fixed sector will be presented in this paper.

Figure 2 shows a diagrammatic representation of rotating circular saw-blade which cuts a
work piece over a space-fixed sector. It can be seen from the sectional plot A-A that, if the
blade oscillates laterally, there is an extra lateral cutting area between two successive teeth
associated with both the transverse response w(r,,6 jot) of the current tooth (the jth tooth)

and the transverse response w(ry,8;,1—T) of the previous tooth (the (j-/)th tooth) at a given
location (r,,6 J-) on the work-piece. T is the tooth passing period (i.e., the period between

successive tooth engagements). Lateral compression between the work-piece and the teeth in
this extra cutting area causes the lateral cutting force f;(¢). This type of cutting force is called

regenerative.

In actual cutting the saw blade will be subjected to radial and tangential in plane cutting
forces as well as lateral forces. Exact modeling of such forces is difficult and is further
complicated by the non-homogeneous nature of the wood. In this study the following
assumptions are made:

e The only forces acting are lateral forces caused by flank cutting.
e The cutting forces are always normal to the undeformed plane of the saw.
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* The cutting forces are a linear function of chip thickness .

Thus, the lateral regenerative cutting forces are assumed in the following linear form:

N, N,
f.()= qu.(r) = —Z(I I N)K, [w(r,0,t)—w(r,0,t —T))6(r - ry)0(6 — 0,)g(8;) (1)
J=1 J=1
where, N, is the total number of saw teeth. K, is a cutting force coefficient, assumed constant,

which is determined by the geometry, properties and speeds of the blade, and by the
characteristics of the work piece.

The deflection of the present and previous tooth at the location (r5. €;), respectively are
given by:
w(r,ﬂ,r)é'(r—ro)é(ﬁ-ej) = w(r,0;,1)
and w(r,&,t—»T)é(r—ro)é'(G—Gj) = w(ry,0;,t—T)
where T =27/ (QN,)and:
6, =6,+Qt+(j- D6, (6, =6, when t=0; 6, is the angular tooth pitch )
8;(0;)=1when 6, <6, <6, and g;(6,)=0 otherwise
6. 6., are the start and exit immersion angles of the cutting range, respectively.
The saw is modeled as an annular circular plate of inner radius a, outer radius b, and thickness

h, rotating at a constant angular velocity Q. The governing equation for transverse vibration in
terms of the lateral displacement w(r,6,1), with respect to space-fixed coordinates, can be

written as:

DV w+ ph(w,, +2Qw,, +Q*w )+ L (w) = L (w)+ f.()
where D and p are the flexural rigidity and mass density of the plate, respectively.
L, is the membrane operator associated with the axisymmetric stress fields due to the
centrifugal force and/or the stress tensioning. L, is the membrane operator associated with the
asymmetric stress fields generated by in-plane edge loads, such as in-plane cutting forces, which,

under certain circumstances, may cause instability in such systems. In the present analysis the
effect of L, will be neglected. J.(t) represents the transverse cutting forces generated by the

Interaction between the saw-blade and the work-piece.
Substituting Equation (1) into the equation of motion of the rotating disc and applying the
Galerkin procedure leads to an equation of motion in the form:

[MBEOGH*()}+ K Hx()}+ 1 - ™) A Hx(r))} = {0) 2)
where, ¢ is a time delay operator (i.e., e~ {x(D}={x(t=17)}). [M], [G] and [K] represent
the mass, gyroscopic and stiffness matrices, respectively, which may contain centrifugal
stiffening and/or stress tensioning effects. [A(7)] is a periodic (T) time-varying matrix associated
with the cutting forces.
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The Solution of Equation(2) leads to the prediction of unstable speed zones. A
comparison will be made of the instabilities predicted and those that are measured
experimentally.

The comparison with experimental results raises the question as to the influence of
dissipative effects which have been neglected in the analysis conducted to date. The paper to be
presented will address some of the issues that arise in this context

Figure 1 Wasboarding Pattern on a Sawn Board
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Blade w(ry,0,.1)
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Saw Blade Extra Flank Cutting Area

A-A

Figure 2 Lateral regenerative cutting force produced in a rotating circular saw
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The Rayleigh-Ritz Method without Admissibility Requirements
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The Rayleigh-Ritz method is a well known and popular method of finding natural
frequencies of continuous systems. The major drawback of this procedure has been the
need to find admissible functions. For a totally unconstrained system this is not a problem
as any continuous function would be admissible as there are no geometric constraints.
However, such systems are not common, and for most practical problems, the functions
used must be carefully chosen to satisfy the geometric constraint conditions. Since 1941
many researchers have attempted to overcome this problem [1-4], by replacing rigid
constraints with artificial partial restraints having very high stiffness coefficients thus
effectively causing them to become rigid constraints. This has proved to be a successful
technique for finding the lower natural frequencies of continuous systems. A similar
approach has also been used more recently to model connected systems [5-9] where the
rigid connections are replaced by springs of very large stiffness.

One problem with such modelling is the determination of the magnitude of stiffness to be
used in the analysm In some of the publications, non-dimensional stiffness values of the
order of 10° were found to be sufficient to calculate the first three natural frequencies of
systems consisting of plates, beams and shells to three or more significant figures.
However, it can be shown that for determining frequencies corresponding to higher
modes, increasing values of stiffness would be needed to ensure that the results obtained
are upper-bound estimates of the rigidly constrained system, and one needs to try several
values of stiffness until convergence is observed. An interactive computer program to
verify this is available at http://www.geocities.com/ilanko/vibration.htm. To the author’s
knowledge, no method for calculating the maximum possible error in modelling rigid
constraints with restraints having very large positive stiffness has been reported.

This problem has now been overcome through the use of springs with negative stiffness.
In a recent publication [10], results generated for two continuous system models were
used to show that by using negative stiffness parameters for springs used in modelling
rigid supports and/or joints one can obtain true upper-bound results for natural
frequencies, and the difference between the results for systems with constraints modelled
using positive and negative stiffness parameters give the maximum possible error due to
the asymptotic modelling. A proof for the existence of natural frequencies of negatively
or positively restrained systems, and their convergence towards the appropriately
constrained systems has also been derived and is currently under review [11].

With these developments, the need to find admissible functions no longer exists and ways

of improving the versatility of the Rayleigh-Ritz procedure for systems with irregular
boundary conditions may prove to be a useful topic for research. For example, one could
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consider whether clamped plates of any arbitrary shape can be analysed by starting with a
larger rectangular plate but with continuous elastic foundation of very high stiffness
covering all but the area of the plate. Alternatively, lateral and rotational constraints may
be imposed on the boundary of an arbitrary shaped plate, and the strain energy of the
plate calculated within the plate domain. It is possible that upper-bound estimates of any
system may be obtained this way, but if the shapes are irregular some integration may
have to be done numerically. The use of imaginary positive and negative restraints with
very large magnitude of stiffness eliminates the need to find admissible functions when
applying the Rayleigh-Ritz method for determining natural frequencies and modes of
vibratory systems. Such asymptotic modelling may also prove to be useful in stress and
stability analysis.
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Approximate Methods for the Vibration of Gyroscopic Continua
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Dynamic phenomena in spinning disks, spinning shafts, axially moving media, fluid conveying pipes,
and other high-speed systems have led to considerable research on the vibration of gyroscopic systems.
These are inherently continuous systems governed by one or more partial differential equations. Ana-
lytical solutions are difficult to find in general, and approximate methods are frequently used to obtain
the natural frequency spectra and vibration modes. The most common approach has been Galerkin
discretization of the configuration space equation of motion (that is, the governing equation for the
displacement field) using the corresponding stationary system eigenfunctions. Parker’s (1999) results
for a moving string on elastic foundation demonstrate the radically incorrect eigenvalue predictions that
this discretization basis can give at supercritical speeds. Also considering moving media, Wickert and
Mote (1991) showed that use of the complex, speed-dependent eigenfunctions of a related gyroscopic
system as basis functions can significantly improve eigenvalue predictions. This study, based on Jha
and Parker (2000), presents a systematic analysis of the spatial discretization of gyroscopic continua
vibration problems. The problem is examined from the perspectives of configuration and state space
form discretizations, stationary versus moving system basis functions, and subcritical versus super-
critical speed convergence. Configuration and state space discretizations are shown to yield markedly
different results, and the limitations of each are discussed. The moving system eigenfunctions, which
are generally thought to be the superior basis for gyroscopic continua problems, can experience poten-
tially severe numerical problems due to their linear dependence. Furthermore, this basis is apparently
incomplete at supercritical speeds. In fact, for the moving string problem no acceptable approach
was found to analyze supercritical speeds, and published discretization results for such cases should
be viewed with caution. While the examples focus on axially moving continua vibration, the findings
apply to a broad range of unsolved problems for which discretization might be used. For instance,
nonlinear effects that are crucial at high-speed lead to bifurcated, non-trivial equilibria; the results
herein identify key issues for eigenvalue problem discretizations about such equilibria.

The linearized equation of motion for free vibration of a gyroscopic continuum is

Mwy +Guy+ Kw=0 (1)

where M, G and K are linear, time-invariant differential operators and w(P,t) is the displacement
field. With the inner product (u,v) = [, pubdP, M and K are self-adjoint while G is skew-self-adjoint.
The eigenvalue problem obtained from w(P, t) = u(P)e™* is

(—w?M +iwG + K)u =0 (2)

This is referred to as the configuration space form in this work. Alternatively, in accordance with
Meirovitch (1974), and D’Eleuterio and Hughes (1984), (1) is written in state space form as

Az +Bz =0 (3)
= M 0 = G K _ wy
S IR R R @
With the inner product (z1,22) = Ip z'lrigdP defined on the state space, A is self-adjoint and B

is skew-self-adjoint. The eigenvalue problem associated with (3) can be formulated in terms of two
self-adjoint operator matrices C and A (Huseyin, 1976)

oo[g 1] +-(2)
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(C—wA)v=0 (6)

This is referred to as the state space form. The second of (5) relates the state and configuration space
eigenfunctions.

Two competing approaches are to apply Galerkin discretization to (2) or (6). While both represent
the same dynamic system, discretization of these forms can lead to markedly different results. One
must also choose the basis functions. Natural options are the real eigenfunctions for the correspond-
ing stationary system or the complex, moving system eigenfunctions of a simpler, related gyroscopic
continuum. Again, the differences in results are striking and call into question the conventional under-
standing that moving system eigenfunctions are superior bases. Because the configuration and state
space discretizations are identical when stationary system bases are used, there are three options to
consider: 1) configuration/state space discretizations using eigenfunctions of the stationary system,
2) configuration space discretization using eigenfunctions of a related gyroscopic system, and 3) state
space discretization using eigenfunctions of a related gyroscopic system. Further considerations are
the distinctly different behavior of these approaches at sub- and supercritical speeds and the nature of
convergence (speed and monotonicity).

For sample results, consider the linearized, non-dimensional equation of motion for an axially moving
string supported by a distributed elastic foundation

Wy + 2wge — (1 = V¥)weg + kw =0 (7)

where « is the stiffness density of the foundation. We apply both configuration space and state space
discretizations to this problem using the eigenfunctions of the axially moving string as basis functions.
Figure 1 compares the rates of convergence for the three approaches mentioned above. Considering first
the moving string basis functions, the configuration space form clearly converges faster than the state
space form. Note that state space predictions converge non-monotonically from below. Configuration
space predictions always converge monotonically from above. None of the discretization approaches
considered here yield correct (or even reasonable) eigenvalue estimates at supercritical speeds for this
problem. Parker (1999) showed that spatial discretization at supercritical speeds using the stationary
system eigenfunctions yields inaccurate and misleading results regardless of the number of terms used.
Configuration space discretization using moving string eigenfunctions also predicts seriously inaccurate
results including flutter instability that does not exist in the continuum model (Figure 2). The state
space discretization is even more striking, predicting infinite supercritical eigenvalues.
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Figure 1: Discretization of an axially moving string on elastic foundation with x = 50. Figures (a) and
(b) show results for » = 0.5 and v = 0.75, respectively. (o) - N terms of stationary string eigenfunctions,
(o) - configuration space form using N complex conjugate moving string eigenfunction pairs, and (4) -
state space form with 2N complex conjugate moving string eigenfunction pairs. Horizontal solid lines
denote exact eigenvalues.

Figure 2: Configuration space discretization of an axially moving string on elastic foundation (k = 20)
showing incorrect flutter predictions. (o) denote eight cc pairs of moving string eigenfunctions and
solid lines denote exact eigenvalues.
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INTRODUCTION

A companion paper’ explains how the hypothetical, infinite order, finite element eigenvalue
problem, which explicitly retains the infinite number of degrees of freedom between the joints (i.e.
connection nodes) of the structure, can be reduced to the exactly equivalent finite order
transcendental eigenvalue problem

KA)D.=0 (1)

where D, sin @t is the modal displacement vector of the freedoms at the joints and the dynamic
stiffness matrix K, which implicitly a.llows for the infinite number of degrees of freedom between
joints, varies transcendentally with A = ”. The natural frcquenc1es ® can be calculated to any
required accuracy using the Wittrick-Williams (WW) algorithm™® and usually correspond to
singularities of K (i.e. IKI = 0), so that the corresponding mode shapes can be found, to somewhat
less accuracy, by solving equation (1) with the null right-hand side replaced by a random force
vector.* Exceptional modes for which equatlon (1) is instead satisfied by D, = 0 can be found by the
retrospective introduction of additional ]omts Attempts to locate natural frequencies by following a
plot of IKI fail to find those frequencies associated with modes for which D. = 0, and are also
hindered by the presence of poles where IK| becomes infinite.

Recent preliminary work®® has identified the need to improve the accuracy of mode finding
methods. This is the principal objective of a 3 year grant for collaboration between Cardiff and
Tsinghua Universities (which commenced in January 2001) to explore analogies between
transcendental eigensolutions and the numerous solution me[hods available for linear eigenproblems.
This should lead to improved WW eigensolutions for civil® and aerospace''! structures.

F Y c
a bV

Figure 1. Rigidly connected two bar example. Boundary conditions: F = free; C = clamped.
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2. SPECIAL CASES ILLUSTRATED BY SIMPLE BAR EXAMPLES

Analysis of the exact dynamic stiffness formulation for a uniform bar with one end free and
the other end clamped (denoted F-C) shows that the natural frequencies occur when IKl = 0. In
contrast, the natural frequencies of a C-C bar occur when D, = 0 and coincide with those of a F-F
bar, for which the previously neglected possibility of IK| # 0 and D. # 0 occurs. All these natural
frequencies and their mode shapes are found successfully using the WW algorithm with the random
force vector method.

For the example of two rigidly connected bars shown in Figure 1, two special cases are
identified where the properties of bars a and b are such that natural frequencies occur for which both
IKI# 0 and D # 0. Although the WW algorithm successfully locates such eigenvalues, use of the
random force vector method can lead to ill conditioning in the vicinity of these special cases so that
incorrect mode shapes are found.

3. SOLUTION OF INFINITE ORDER EIGENVALUE PROBLEM BY MULTI-LEVEL
SUBSTRUCTURING

Figure 2 illustrates a multi-level substructuring approach, in which uniform members of
length /2" are repeatedly “doubled up” using the WW algorithm'? in order to assemble a uniform
member of length /. At each of the levels (N-1), (N-2)....,0, two members from the previous level are
connected to form a structure with three collinear nodes and the freedoms at node 1 are eliminated to
produce a new member connecting nodes 2 and 3. If exact dynamic stiffnesses are used for the
member defined at level N, this procedure yields the exact transcendental stiffness matrix for the

resulting member at level 0.

It is shown that the exact stiffnesses can also be obtained, to any required accuracy, by
choosing N large enough and making appropriate finite element approximations at level N, for
example using the usual static stiffness matrix and consistent mass matrix. This approach permits
the calculation and normalization of the determinant of the stiffness matrix corresponding to the
hypothetical, infinite order, eigenvalue problem referred to in the Introduction. The natural
frequencies of the structure are all given by zeros of this determinant, which has no poles. It is
believed that the development of this method will improve the calculation of natural frequencies and
their mode shapes, and also assist in further transfers of technology from linear to transcendental

eigensolution methods.

Level N:  length//2N 2__ 3

Level (N-1) : length 7 / 2NV 2. 1 3

Level (N-2) : length 1 / 2™ 2 1 3

Level 0: length / Z 1 3

Figure 2. Assembly of a member of length / by substructuring to N levels.
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INTRODUCTION

There are many researches based on the finite element method (FEM) that takes geometrical
nonlinearity into account, such as Rao et al[l]. Recently Ribeiro and Petyt[2][3] used the
hierarchical finite element method in order to possess an accurate spatial model with a small
number of d.o.f. Iwatsubo et al.[4] used the substructure synthesis method to reduce the order
of the nonlinear finite element model. But they have simplified the nonlinear model roughly
so that there is a limitation of application. By using FEM, we can obtain the solution under
any kinds of boundary conditions. It is however difficult to know the physical meaning of the
solution. In this paper, the nonlinear finite element model is reduced by using the procedure
of the modal analysis. Considering dominant modes on the nonlinear vibration, we can obtain
accurate results using a few modes that are selected properly. The present method is applied
to the nonlinear vibration of a straight beam and numerical results are shown in figures and
tables.

ANALYSIS
Considering geometrical nonlinearlity, finite element formulation is generally expressed as
[M] {V} + ([Ka] + [K2(V)] + [Ks(V, V)]) {V} = {F}. (1)

where [M], [K1] and [K;] (i = 2, 3) are, respectively, mass, linear stiffness and nonlinear stiffness
matrices. {V} and {F} are node value and force vectors, respectively. Matrix [Kz| depends on
{V} linearly, [K3] depends on {V} quadratically.

Consider harmonic excitation and the response of fundamental harmonics, equation (1) can
be rewritten as

(—o? [M] + [K1] + [K2(V)] + [Ks(V. V)]) {V} = {F}. (2)
Eigenvalue equation of the linear free vibration is given by
(-w? [M] + [Ki]) {V} =0. (3)

Using a modal co-ordinate vector {{} and the modal matrix [¢] which consists of eigenvectors
of equation (3). the node value vector {V} is assumed to have the form

{V}=1[e]{¢}- (4)
Substituting equation (4) into equation (1) results in
(M) [] {€} + (Ka] + [K2(6)] + [Ks(€)]) [6]{¢} = {F} . (5)
Multiplying equation (5) by [¢]T , we obtain
(m}{€} + (1] + [Km2(€)] + [Kms(€,6)]) {€} = [¢]" {F} (6)
(—w?[m] + (k] + [Km2(6)] + [Kms(€,6)]) {€} = [4]," {F}, (7)
where

(m] = [¢]" M][g] , [K|=1[¢]" [Kui][e].
Km2(6)] = [6)7 [K2(6)] [¢] , [Kma(.€)] = [6]” [Ka(£.6)][¢].- (8)
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RESULTS AND DISCUSSION

Though we can obtain results by numerical integration of equation (1), it takes a lot of
computation time. It is desirable to obtain the accurate results from equation (6) using modes
as few as possible. Nonlinearity of an out-of-plane mode of continuous systems comes from the
coupling with some in-plane modes because of geometrical nonlinearity. It is expected that one
of in-plane modes is dominantly affected on the corresponding out-of-plane mode. If we can
find the combination of out-of-plane and in-plane modes, accurate results are obtained by using
only two modes.

We investigate about the nonlinear response of a clamped-clamped beam around the funda-
mental natural frequency in detail. Table1 shows the specification of the beam treated here. To
obtain the nonlinear response of the fundamental mode, we use the fundamental out-of-plane
mode and an in-plane mode in equation (6). In order to determine the using in-plane mode, we
examine the qualitative effect of the mode by applying Newton-Raphson method to equation
(7) in advance. When we apply Newton-Raphson method to equation (7), vector {£} is treated
as constant for each frequency. Though this procedure is not exact because vector {€} is de-
pendent of time, it is enough accurate to know the effect of in-plane mode on the nonlinear
vibration and we can save computation time very much.

When we use one of in-plane modes ¢ and one of out-of-plane modes 7, equation (6) is
rewritten in the form

m; 0 3 kii 0 0 kopy &l _fo
[ 0 my } {1’2} * ([ 0 ki ] - [ 2kan  k3n? ) nf S )
Neglecting the in-plane inertia and eliminating £ from equation (9), we obtain

mij + kn + Bn® = £ (10)

where
ko?
m=my, k=kj,, B=k —2-= . (11)
ki
Equation (10) is thought to be equivalent to Duffing equation.  Figure 1 shows frequency
resonance functions (FRF) obtained by the single-mode analysis and two-mode analysis by
using the fundamental out-of-plane mode and an in-plane mode. Numbers i in the figure denote
the order of the in-plane mode ¢; that is used in the calculation as well as the fundamental out-
of-plane mode 7,. In the case of 1=0, the in-plane mode is not used. The results obtained by
present method show nonlinearity stronger than that by the nonlinear FEM (NLFEM). But
the result using {4 makes good agreement with NLFEM because the in-plane mode shape of &4
is similar to the actual in-plane displacement. We can obtain good results by using a suitable

Table 1: Specification of the beam
Table 2: Coefficients of equation (10)

Length 0.313[m|
Width 30.5 x 10~3[m] Yamaki et al.[5] present
Height 0.6 x 10~3[m] m  1.7873 x 10~°  1.7873 x 102
Young’s Modulus  210[GPa] kK 7.4615 x 102 7.4617 x 102
Density 7870(kg/m?] 8 1.4909 x 10° 1.5336 x 10°
Number of Element 100
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Figure 1: FRF obtained by FEM, single-  Figure 2: Comparison between the backbone
mode(n;) and two-mode(m + & :i=1,2,...,6)  curve obtained by the present method and that
analyses. by Yamaki et al.[5].

in-plane mode that has a similar distribution to the acutual in-plane displacement. On this
calculation, 17 + &4 is the best combination of the mode. Figure 2 shows that the backbone
curve obtained by the present method, equation (10), makes good agreement with the backbone
curve obtained analytically by Yamaki et al.[5]. Table2 shows the coefficients of equation (10)
obtained by the present method and those by Yamaki et al. As seen in the table, the coefficient
of nonlinear term 3 is approximated very well by the present method.

CONCLUSIONS

In this paper, a single d.o.f. model for the steady-state vibration of a uniform, slender
beam with the geometrical nonlinearity is obtained by using FEM with modal co-ordinates.
If we choose a suitable in-plane mode, results by the present method have enough accuracy.
The present method may be extended to the nonlinear vibration analysis of continuous systems
under any kinds of boundary conditions and then we can derive the low order Duffing type
equations on dominant modes.
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A clamped circular plate experiences mid-plane stretching when
deflected. The influence of this stretching on the dynamic response
increases with the amplitude of the response. This situation can be
described with nonlinear strain-displacement equations and a linear
stress-strain law which give us the dynamic analogue of the von
Karman equations with geometric nonlinearity. Nonlinear dynamic
responses of a clamped circular plate subjected to harmonic
excitations have been investigated by two approaches. The one is
to include symmetric vibrations and the other asymmetric
vibrations. For symmetric responses, Sridhar et al. [1] and Hadian
and Nayfeh [2] studied primary resonance of a circular plate with
three-mode interaction. Lee and Kim [3] studied combination
resonance of the plate. In these studies the steady-state response
can only have the form of a standing wave.

For asymmetric responses, Sridhar et al. [4] considered
four-mode interaction of a circular plate shown in Fig. 1. They
expected that the steady-tate response can only have the form of
standing wave unless the frequency of excitation is near the

h
r
= i i
1 'w
z
Fig. 1 A schematic diagram

of a clamped circular
plate

highest frequency involved in the internal resonance. In this case, they concluded that it is possible
for a traveling wave component of the highest mode to appear in the steady-state response. They,
however, didn’t present any illustration on the responses by using numerical example.

After examining their work, we found that they had misderived the solvability conditions in
applying the method of multiple scales. We corrected therefore their solvability conditions (31) in [4]

as follows:

— 21w D1 A+ cul 1) +Au{ ”_E_m MZJI J’kfm(Am znm + B -Em) = YawiA u Zu}

[=-]

+2(1—am)3,,,{ 2 VimAbn B — VameAu Bu) + Ni+ RE=0 (1a)
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[==]

2iw( D, Butcu -éu) + .EH{ Z_m ;L:l?’.um(Am A+ B Eum) — YuBu Bu}

ne=

m=]

+2(1—38x) zu[ 2 YatimAim Bim — YawAu Eu} +No+RE=0 (1b)

where, Ri® are terms due to internal resonances, if any, N":;'B are terms due to the external

resonance, if any, and 7= and ‘}H,,,,. are constants.

In this study we consider a primary resonance in the absence of internal resonance. The
frequency of excitation A is near natural frequency ,;,(=21.2604) corresponding to the mode with
one nodal diameter and no other nodal circle but the boundary. We introduce a detuning parameter,
o, defined as follows:

A= wy + &0, (2)

where ¢ is a small parameter. In this case equations (1) give a system of four autonomous
ordinary differential equations for amplitudes and phases as follows;

, Py. . Py .
ay = cllall+4Tn sin g1, by =_Cubn+m Sin /iy (3a, b)

P
ﬂu#n = dﬂn"' 8&’1 Gll(ﬂ11+2b 1) e 4w CO‘S#I] —'0 (3c)

’ P
bll#fl =6b11+%l:lbu(b 1+2ﬂll) + COS#u""O (3d)

The steady-state solution is given by equations (3) when ay = by = pf)’ = ,au ‘=0, Then the steady-
state response can be written as follows:

w= ¢y {aycos (At—pfy + 6+ 1y)) + by cos (At— uyy — 6—11))} + O(e), or (4a)
w= ZICOS (/1 t+ 51)951;( 7) cos @ + ZzCCE (/1 t-+ EE)QS“( ?’) siné + O(E), (4b)

which is the superposition of two traveling waves. This response gives traveling wave unless a;=

by and ufi= u#,. When ay=by and pfi= 4}, the form can be reduced to the standing wave of
the form

w= 295]1011(:0‘5(/!1‘_ #?I)COS(Q'*' f“) +O(€), (5)
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which is similar to the natural mode 1
corresponding to wy;.

In Fig. 2 the amplitudes a;, b&; are
plotted as functions of detuning parameter &g
when { v, € e&c, ePy}={1/3, 0.001067, 0.01, 8}.

Branches SS1, SS2, US1, and US2 represent
the standing waves, while branches ST1, UTI,
and UT2 represent traveling waves. Solid and
dotted lines denote, respectively, stable and
unstable responses. Except for the instability 05 0.0 ‘:: 1.0 15

ﬂ'", ]]

of branch USI1, the response in the form of

fanomg Weve s emssalilly Ay of DolRE . & Nadiintons of e anplitiae AT SetiEG

equation. The stable response in the form of
, stable;

) parameter &0, when ePy=8.
traveling wave, {ST1a, STlg} represents { a,

bu} or {bu, au}. When e < 0025 and

- = =, unstable.

0.025 < eo < 0.095, respectively, standing and traveling waves exist in reality. While standing and
traveling waves coexist when 0.095 < &0 < 0.42, standing wave only exists when 0.42< &g. This
result is remarkably different from one by Sridhar et al. [4]. They expected that the response is in
the form of standing wave, which is that of Duffing equation. We believe that this difference comes
from the correction of solvability conditions.
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Arthur W. Leissa
Professor Emeritus
Ohio State University
Columbus, Ohio USA

Hundreds of research papers have been published on the free vibrations of rectangular plates,
and dozens of them consider the effects of static, in-plane stresses applied while the plate is vibrating.
However, almost all of these deal with the situation when the in-plane loading causes uniform normal
stresses (tensile or compressive) throughout the plate. The few results (frequencies and mode shapes)
that have been presented for nonuniform loadings have been obtained by approximate procedures,
such as the Ritz method.

Consider a rectangular plate which is subjected to a linearly varying normal stress along two
opposite edges, x = 0 and x = a, as shown in Fig. 1. The stress (ox) causes in-plane stress resultants,
Ny = oxh (force/length), which may be written as

Ny =-No(1 - ay/b) (D

where N, is the intensity of the compressive force at the edge y =0 and « is an arbitrary constant.
Assuming the in-plane shear stress to be zero along x = 0,a and that no stresses act upon the other two
plate edges (y = 0,b), one easily sees that the exact solution of the plane elasticity problem is that the
normal stress o, varies as Eq. (1) throughout the plate, and the other two stress components (oy and
Txy) are zero everywhere.

Using this stress field in the transverse equation of motion for the plate yields a partial
differential equation having coefficients which vary with x. An exact solution of this equation may be
obtained as

w (x,y,t) = Y(y) sin(mmx/a)sin ot (2)

where w is the transverse displacment, Y is a function only of y, m is an integer, and ® is a natural
frequency. Such a displacement function yields zero w and zero out-of-plane bending moment (M)
along the edges x = 0,a. That is, these edges are hinged or supported by knife edges (i.e., simply
supported).

Substituting Eq. (2) into the equation of motion results in an ordinary differential equation in
Y (y) having a coefficient which varies linearly with y. An exact solution of it is obtained by the
classic method of Frobenius, which assumes an infinite power series function for Y. This results in
four independent coefficients of the power series for the lowest degree terms, with the higher degree
coefficients obtained from them by recursion relations. Having an exact solution to the governing
differential equation, this is applied to the two remaining plate edges (y = 0 and b) with appropriate
boundary conditions (clamped, simply supported, or free) to yield a standard eigenvalue problem for
the nondimensional frequencies, requiring finding the roots of a fourth order characteristic
determinant.
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Extensive results have been obtained for all possible combinations of ed ge conditions at
y = 0,b, and for several useful and interesting values of a in Eq. (1), as depicted by the in-plane edge
loads shown in Fig.2. As shown there, as a varies from O to 2, the edge loading varies from being
uniform to a pure in-plane moment (i.e., couple) at the edges x = 0,a. Frequency data and some

interesting mode shapes are presented in Ref 1 for SS-F-SS-F plates having in-plane end moments (a
= 2) acting.

One finds that the convergence of the power series is erratic, and a rather large number of
terms must be used to obtain accurate frequencies. This is demonstrated by convergence tables for
frequencies. Changes in frequency due to increasing end loads are examined for all nine distinct
combinations of clamped, simply supported and free conditions along the unloaded edges, especially
for the case of in-plane moment loading (a = 2). It is found that for three of these nine cases, in-plane

moments cause increases in the fundamental frequencies. Some interesting mode shapes are also
exhibited.

1. Kang, J.-H. and Leissa, A.-W. (2001). Vibration and buckling of rectangular plates loaded at
two simply supported opposite edges by in-plane moments, free along the other two edges.
International Journal of Structural Stability and Dynamics (to appear).
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FIG. 1. An SS-C-SS-F Rectangular Plate Loaded by Linearly Varying In-Plane Stresses;
with Coordinate Convention.
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FIG. 2. Examples of In-Plane Loading N, along the Edge x=0
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Abstract

A new approach is presented to incorporate the commonly well-behaved Fourier series with polynomials in
representing the shape functions for vibration of plates using the Ritz Method. It significantly improves (i)
accuracy and (ii) convergence of the common Ritz method using polynomials as shape functions. As
polynomials tends to induce numerical instability, ill-conditioning and insolvability, the development of
this Fourier-p Ritz approach helps to resolve these problems. Exhausting numerical computation can also
be alleviated.

Introduction

Plate and shell structures have been widely used as engineering design components in
civil, structural, mechanical, aerospace and building constructions. Although the finite
element method (FEM) has been a useful numerical method in analyzing the engineering
behaviour of these structures, other numerical methods has also been of much interest
especially at a research level. Among them are the Ritz method and Galerkin method
which are often the basis of finite element formulation.

Over years of research and development, researchers had found that the Ritz method is a
powerful tool for the vibration analysis of plate structures. However it is very difficult to
find exact solutions having an admissible shape function that satisfies both the geometric
and natural boundary conditions except for plates with opposite sides simply supported
(Leissa, 1969, 1973). Although polynomial admissible functions for plates with opposite
sides clamped are available (Lim and Liew, 1994), these polynomials functions do not
satisfy the governing differential equation and thus do not render exact solutions. Thus a
number of polynomial terms have to be included in the numerical Ritz method to obtain
converged solutions. Very frequently these approximate methods, including FEM, using
polynomials as shape functions run into numerical insolvabilities, or yields suspicious
results due to numerical instability and ill-conditioning. Users of the FE packages may
face difficulties in justifying the FE solutions.

In an attempt to remedy the shortcomings of polynomial shape functions, a Fourier-p Ritz

approach for vibration of plates is proposed here. It is based on the concept of Leung
(1979) where the standard beam FE was enriched by means of eigenfunctions and
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increased accuracy was predicted before the name p-version was used by Babuska ez al.
(1981). This involves the integration of products of polynomials and beam functions.
Although closed form integration formulae can be found (Leung, 1990), the complexity
increased rapidly when the products of beam functions are involved in nonlinear analysis.
The product of polynomials and Fourier series is introduced here is to construct the shape
function in plate vibration analysis (Leung and Chan, 1998). Because Fourier series are
well behaved, the limitation caused by numerical instability, ill-conditioning and
insolvability using polynomial functions disappears. When applied to the free vibration
analysis of plates, solutions converge much faster than when using polynomials alone.
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1. Introduction
Both analytical and experimental results are presented for chaotic oscillations of a shallow
cylindrical shell-panel carrying a concentrated mass. The shell with square boundary is simply
supported along all edges. In-plane displacement of the shell is elastically constrained at the
edges. Concentrated mass is located at the center of the shell. The shell is subjected to
gravitational and cyclic acceleration. The Donnell type equation is used with modification of a
lateral inertia force. Assuming a solution of mutiple modes of vibration, nonlinear coupled
differential equations are reduced by the Galerkin procedure. Chaotic responses are obtained by
numerical integration. Experiment is conducted to reinfoce the analytical results. Frequency
response curves are measured where chaotic responses are generated. The chaotic response are
testified by the Fourier spectrum, the Poincaré map and the maximum Lyapunov exponent. The
maximum Lyapunov exponent of the experiment is compared with the results of analysis. Fairly
well agreements are obtained, moreover. the chaos of the shell involves four modes of resonance
vibration simultaneously.
2. Governing Equation of Motion
As shown in Figure 1, shell with Young's modulus E, Poisson's ratio v and mass density p is
excited laterally by acceleration g +ag cosf. g is gravitational acceleration, a4 and £ are exciting
amplitude and frequency,respectively. Denoting w, w,andf as the non-dimensional total deflection,
initial deflection and stress function, the non-dimensional governing equation is given by

[1+Y8(E= &S (M- )W+ V *(w—wo)-0fzz
— B feewan—2fenw.én+ fnnw.28) — (ps + pacos @T) =0

V=58> (W,;;zn — WL E = WLE E W,y + WouE Soun) — & (W = Wo).&2, (1)

where é=x/a and n=v/b are non-dimensional coordinates. V *=0%a&+ ?a%/an? is the Laplace
operator. 6(¢-¢&) is the Dirac's delta function. Subscript following a comma stands for partial
differentiation. @=a¥Rh is the non-dimensional shell curvature. f=a/b is the aspect ratio of the
length of the rectangular boundary, the concentrated mass is located at §=0.5 and =05 .
y=mipabk is the mass ratio. p=gpa¥/D and p=aspa*/D (D=Eh*/12(1-v2) ) correspond to the
non-dimensional load intensities. The shell boundary is simply supported for deflection. For the
condition of in-plane boundary, the edges are considered to be constrained by elastic springs.
The springs have non-dimensional elastic coefficients k. and k, along the curved edge and
straight edge, respectively. In-plane displacements u=Ua/h® and v=Va/h® relate with the stress
function f.

3. Procedure of Analytical Solution

The lateral displacement y» and y, are assumed as
[w, wo]=22[5mn( T), Gmn ] sinmaésinnan, (m,n=1,2,3,..) (2)

mn
where j,,, is unknown time function and 4,,, is constant represtenting an initial imperfection

of the shell. Inserting the foregoing equation to equation (1), stress function 7 is derived with the
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function of 4,,, and q,, . The Galerkin method reduced the resulting governing equation (1) to
nonlinear ordinary differential equations in terms of j,,:

zz-érmm gmﬂ » rr+zzcrsmn 5 mn+ ZzzzDrsk!mu bt binb it bmn +ZZZZZZE rsijklmn b if

mn mn k{ mn i jklmn

— Frs —(ps+pgcost)Gps =0 r,s i, jo k. l,mn=1,2,3,.) (3)

The equations including a damping terms are integrated using the Runge-Kutta-Gill method.
Nonlinear responses are obtained in specific frequency ranges.
4. Experimental Procedure

A sheet of phosphor bronze with mass density p=7.52x10'kg/m?] , Young's modulus
E=62.4[GPa] and Poisson's ratio v=0.33is used as a test shell. The shell with thickness 4=0.24[mm|
is rolled to shallow cylindrical surface.The shell is cut out to a close square of a=139.5{mm] and
h=139.8{mm] . To satisfy the simply supported boundary of the cylindrical shell-panel, the edges
are connected to inner walls of the rectangular frame by thin flexible films. Elastic property of the
film acts as the in-plane elastic constraint to the shell boundary. Rise of the cylindrical shell is
0.48fmm] in average, and curvature of the shell is calculated as R=5190+710[mm] . To reinforce
both analytical and experimental results of nonlinear dynamic responses, the shell curvature and
the in-plane spring coefficients are determined by the characteristics of static deformation and the
linear natural frequencies. The shell is excited by the electro-magnetic shaker. Dynamic responses
of the shell are recorded by non-contact laser displacement sensors.

5. Results and Discussions

Figure 2 shows characteristics of static deflection under concentrated force acted on the
center. The shell has spring characteristics with a soft-hardening type including negative
gradient.The shell curvature is found to be e=15 and in-plane spring contents are regarded as
k.=0.01, k,=0. Figure 3 shows the frequency response curve. wm, is the root mean square value of
periodic response. w is the non-dimensional exiting frequency. Figures (a) and (b) show results
of the shell without mass and with mass, respectively. In the figure, the regions of the chaotic
vibration are assigned by the named C(mn:;), in which (m.n) is generated mode of vibration.
while, j indicates the type of resonance. The integers m and » imply predominent half wave
number of deflection in x-direction and y-direction. respectively. Chaotic responces of the shell
without mass appears in wide frequency ranges. On the contrary, chaotic response hardly
appears in the restricted nallow range. The inertia force due to concentrated mass results in the
generation of periodic response rather than the chaos. In Figure 4, Poincaré maps of the chaos
are recorded in a phase delay 8 rad. Compared with the result of analysis. both results coincide
very well. The maximum Lyapunov exponent /i,.. is identified from experimental data.
Lyapunov dimension and Am, are calculated numerically. Figure 5 shows that i., of
experimental data converges t0 Amx=2 where embedding dimension ¢=8 . and the result has good
agreement with the analytical result Am,=2.6 . In Figure 6, (a) and(b) show the in, of
experimental results in the frequency ranges Ci2 and Cipa . respectively. Lyapunov
exponents of the shell without mass show higher magnitude than those of the shell with mass.
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Applicability of the Donnell-type Theory to Open Cylindrical Shells

Composed of Composite Materials

Yoshihiro Narita
Hokkaido Institute of Technology
7-15 Maeda, Teine-ku, Sapporo 006-8585, Japan

13 Introduction

Open shell structures are often found in structural applications. The Donnell
(‘Mushtari) type shell theory is usually applied to vibration analysis of the open shells, while
higher-order shell theories, such as Flugge, Love and Sanders, are used to analyze closed
shell structures.

The Donnell theory makes use of the shallowness assumption that excludes some
curvature effects in the formulation but the range of applicability of the theory has not been
clarified enough in the past literature. Also composite material is increasingly used in
weight sensitive structures and anisotropy of the material makes the range of applicability
of the theory more complicated.

In this presentation, the free vibration of laminated composite open shells is analyzed by
using the Fligge theory with tracing parameters that can be simplified to the Donnell theory
as a special case. Numerical examples show various effects of the assumptions used in the
theory upon accuracy of the natural frequencies.

2. Summary of the Analysis
Figure 1 shows an open shell with cylindrical curvature
and the coordinate system. The », vand w denote
displacements in x, # and z directions. respectively.
The b islength measured along the curved surface.
Assuming the laminated unidirectional composite,

each lamina has an constitutive relation
k

g, QI Q2 Qﬁ f,;
% =0 On Ox|{& (1)

) Qs O G| Veo
The displacements at (x, 6, z) are expressed in terms of

the displacements on the middle surface. Fig.1 Open cylindrical shell
ey 20, v’=R+5'zv—za'v , W =w (2)
ox R Ro6

where ¢, is a tracing parameter (or tracer) that expresses difference of shell theories. For
¢,=0 it represents the relation used in the Donnell theory and for ¢ 1=1 it does that in the
Flugge theory.

The strain-displacement relations are

aut I a; I a; a,- {3]
Oy =t = Pt A R
ox R+62\ 60 R+éz 00 &

with 4,=0 for the Donnell theory and ¢,=1 for the Fligge theory.
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The stress and moment resultants are obtained by integrating through the thickness as

hi z al2 2 z — &
N, =_‘:M20',(1+§,E)dz' N, = I—Mz Todz + Ny =.[:£:fd(1+53§)‘t' Ne = e

ay

2 z hi2 2 z h/2
M=l oned Dyude, M, = [ opade. Mo=[ silea Ty Ma=[ rozds @

with ¢.=0 for the Donnell theory and J;=1 for the Flugge theory.
The equilibrium equations are

I g s | (o o TarnaY oo o Fa) Ny ze
N, 4Ny =lils %7%“ %7{% 4—%@}&’ [M +§M“]+E(M" +§M:,J—f=rw (5)

where ,—2 .. 2 and J,=0Iis for the Donnell theory and ¢ , =1 is for the Flugge theory.

—p=

ax 2.

Substitution of Eqs.(1)-(4) into (5) yields a set of differential equations in terms of v and w.
Setting 4,= 6,= J+= =0 gives the equations based on the Donnell theory and $1=0,=6=0=1
does on the Flugge theory. Furthermore, shell theories possibly existing between the two
theories can be examined by defining each tracing parameter independently (i.e., for various
combinations of 4,, J,, dyand d.).

Assuming an open shell with rectangular planform, the equations can be solved by
assuming

u(x,0,1)=u,, cos%’zsin n@sinwt.v(x.6,t)=v,_ sin %’Ecos n@sinw t . W(x0.t)= w__sinﬂzzsinnﬂsinw t(6)

for the simply supported (shear diaphragms) shell, where the boundary conditions of v=w
=M,=N,=0 at x=0, are satisfied along the four edges. The u,,, V., and w,, are unknown coeffi-
cients given for each part of wave numbers m and n, where m is an integer but zis not
necessarily an integer here.

The resulting eigenvalue equation is written as

(&)~ 0 Wit Vw4 =0 (7)

where a frequency parameter is ? =wi}(p/p,)'? With a reference stiffness D, = £.4*12(1- v i) -

3. Numerical examples
Numerical study has been done for both isotropic and anisotropic open shells supported by
shear diaphragms. The aspect ratio is taken for a=1 and 4, and the curvature ratio is 8=0.2,
0.5, 1and 2. The thickness ratio is kept constant as 4#/L=0.01.
Table 1 and 2 present two sets of the first four frequency parameters obtained by the two
theories for isotropic open shells. The errors between the two theories are written that are
given by

error(%) = (QDomseI . QFHigge )/ -QFTx’igge x100 ®

Generally speaking, the errors become greater as the shells get deeper (b/R is increased).
For isotropic square shells in Table 1, the errors are less than 3 percent, but for isotropic
rectangular shells (L/5=4) in Table 2, errors are not negligible particularly for the deeper
shells (5/>1). The maximum error is found 23.2 percent for the fundamental frequency of
the shell with b/R=2.

Table 3 and 4 present the frequency parameters of unidirectional single layer open
shells having the fiber orientation angles 4 =0 deg and # =90 deg, respectively. The material
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constants

FE1=138 GPa, E7=8.96 GPa,
are used in these examples. |

It is found here that introduction of material anisotropy does not affect much on the
difference betwen the shell theories, and conversely the errors become less for orthotropic
shells (8 =0 deg) in Table 3 than for isotropic shells in Table 1. Apparently the aspect ratio
has more pronounced effects on the use of shell theories.

Table 1. Difference of frequency parameters between
Donnell and Fligge theories (L/5=1, b=0 01)

v L7=0.3, GLT=17.1 GPa,

Table 3. Difference of frequency parameters between
Donnell and Flugge theories (L/A=1, A=0.01)

(Isotropic material) (Single layer, GFRP, [0 deg])
bR st 2d 3d 4th bR st 2nd 3rd 4th
02 Daorel BY 5116 NP &% 02 Domrell 6359 7215 1138 1709
Rleee BL 5100 2B &B Flgee 6357 7211 1138 1709
(% Q1 Q1 0 0 erar(% 0 Q1 0 0
05 Dorel 518 8418 A9 1140 05 Dorrell 9491 1210 1235 1830
Aligee 8% 8412 NG 1138 Rleee 9475 1207 1234 1827
era(% 04 Qi 03 02 errar(%0 02 02 Q1 02
1 Dordl 813 184 1606 1628 1 Domell 1392 146.0 1878 2287
Aleze a7 1’4 1605 1619 Fligee 1385 1456 1868 2287
era(% 08 10 Q1 06 emar(% a5 03 05 0
2  Dordl 1159 1338 1899 243 2 Dol 1992 2115 2652 72789
Algee 1125 14 16589 2308 Fligee 197.1 281 2644 7750
era(% 30 1.1 24 15 emar(%) 1.1 1.6 03 14

Table 2. Difference of frequency parameters between
Donnell and Flagge theories (L/A=4, 1:=0 01)

(Isotropic material)

bR s  2d _ 3d  4h
02 Domell 1681 239 2639 3412
Rieee 1675 282 2633 1.3
ema(%9 04 03 02 02
05 Domell 1689 243 3W7 453
Rigee 1659 2308 3%.7 4503
erar(%9 24 15 09 06
1 Dol 1756 3128 5116 6336
Rlegze 161.5 3|2 53 6177
emur(%69 87 32 14 26
2 Dol 1909 4679 611.7 654
RAleee 1% 4514 5903 5929
erar{%0 232 37 112 103

Table 4. Difference of frequency parameters between
Donnell and Fliigge theories (L/A=1, A#=0.01)
(Single layer, GFRP, [90 deg])

bR Ist 2nd ard 4th

02 Domell 6348 1244 1605 1829
Flgee 6337 1244 1603 1828
err(%) 02 0 01 0.1

05 Domell 1207 1637 2101 2681
Rligee 1204 1627 2082 2679
emor(%Q) 02 06 04 0.1

1 Darnell 1743 2201 2849 3531
Alege 170.7 2194 2825 3491
error(%0) 21 03 08 1.1

Fligee 1974 3370 3769 4194
emr(%) 54 45 03 31
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CONTINUUM REPRESENTATIONS FOR THE
VIBRATION OF VEHICLE TRACKS

N. C. Perkins
C. Scholar

Mechanical Engineering and Applied Mechanics
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Ann Arbor, MI 48109-2125
USA

Heavy vehicles driven by tracks include construction vehicles, mining equipment, agricultural
vehicles, military tanks and others. Regardless of their use, all tracked vehicles are subject to
very substantial vibration levels; partly from the rough terrain that they frequently traverse
and partly from the construction and motion of their track systems. This vibration limits the
service life of many components and adversely affects vehicle performance. For instance, the
vibration environment found inside military vehicles can be so severe as to seriously degrade the
performance of on-board instrumentation, electronics and personnel. In addition, the associated
acoustic emissions can themselves compromise the missions of these vehicles. This presentation
will focus on a model used to examine the vibration response of the tracks that drive these
vehicles. In doing so, we discuss the merits of viewing the track as an equivalent continuum.

Prior models of vehicle tracks have considered them to be large dimensional, multi-body
systems composed of individual rigid links (pitches). This approach invariably leads to models
of tracked vehicles possessing hundreds of degrees of freedom resulting in considerable compu-
tational effort to deduce even relatively simple responses. The novel approach discussed here
is to model the track as an equivalent elastic continuum which is then coupled to the (rigid
body) elements forming the remainder of the vehicle suspension system. To this end, a con-
tinuum model will be presented which describes the dynamic deformation of a track element
within the vertical plane. This element model accounts for 1) the stretching of the track and
resulting dynamic track tension, 2) the transverse vibration of the track spans, and 3) the static
track sag. The element model is then extended in forming a model for the entire track system
including typical suspension elements. The natural frequencies and mode shapes associated
with this system model are then employed to evaluate the forced response of the track system
using classical modal analysis methods. Figure 1 presents an example of this calculation and
illustrates the first four vibration modes of a military vehicle. The forced responses considered
derive from dominant sources of excitation for tracked vehicles including rough terrain and drive
train excitation.
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f:=73Hz fs=7.6 Hz

Figure 1: Track system modes.

The modeling of a vehicle track as a continuum is unique and requires justification. As a
means towards this end, we shall review experimenta! results on the vibration response of track
segments and critically compare these with predictions from the continuum model. Figure 2
illustrates experimentally measured frequency response functions for a sample track from which
the natural frequencies are quite apparent. Once the accuracy and limits of the continuum
model have been established, we shall then review how it is employed in the simulation of entire
tracked vehicles traversing rough terrain.
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Figure 2: Experimental frequency responses; (a) Vertical accelerometer; (b) Horizontal ac-
celerometer.
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Vibrations of Ballooning Strings
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Introduction

Many textile processes (e.g yarn spinning, twisting, and unwinding) require high-speed
rotation of lightweight, flexible yarns, filaments, and fibers. To an inertial observer, the
rotating yarn blurs to produce a balloon or surface of revolution formed by the rotating yarn.
Relative to a frame that rotates with the string, a steady balloon is stationary. For the
heavy yarns with negligible air drag studied in this research, the steady yarn
displacement resembles a planar catenary relative to the rotating frame. The dynamic
response of the balloon to varying rotation speed, boundary excitation, and
disturbances govern the quality of the textile product. Resonance, in particular, can
cause large tension variations that reduce product quality and may cause yarn
breakage.

Dynamic Model

Figure 1 shows a schematic diagram of the ballooning string model. Under assumptions of
perfect flexibility and neglible air drag, the nondimensional equations of motion can

be written Figure 1: Schematic Diagram

d PE, [ar au) du o%u of the Ballooning String Model
Ad el e T (1
as[el(naz) 3s ' as g (o1 rHm) 2, a o )

where s is the arc length coordinate, ¢ is time, r(s)= xe; + ye; + ze; is the steady state displacement, p(s) is the

steady state tension, u(s,z) = u;e; + uze; + uze; is the displacement relative to steady state, and &; and &, are

the strains relative to the unstressed and steady state, respectively. The boundary conditions are
r(0)=u(0,r)=u(,)=0, r(l)=e, +he,

where [, and k are the unstretched string length and balloon height, respectively.

Steady State Balloon Shapes

Substitution of u = 0 into Eq. (1) yields the steady state
balloon shapes and tension

p=?\ﬁl+p,fr)‘-x’!r—r
where p. = p(0) is the fixed eyelet tension and Y is the axial
string stiffness. A shooting technique solves the nonlinear
ODE:s 1o produce the results shown in Fig. 2. The solid,
dashed, and dash-dotted lines show the tension versus string
length for the relatively extensible y = 100, y = 1000, and an
inextensible string. The inset boxes show the corresponding,

planar balloon shapes. The height of the balloon is fixed at 2 2 /——_:-—1
= 10, so increasing A, indicates increasing increasing balloon o i e |
length. The top curves in Fig. 2 correspond to single loop * == e = =

balloons. Taut balloons with small A; have high tension. With Fighce 2 Steady euits teiision and balksan shipes
increasing A,, the eyelet tension reduces to a minimum near A, (insets) versus string length A, = (I; = h)/,.

= (.06 and then increases. As the tension decreases, the

balloons acquire more loops. The balloons corresponding to the next lower curves change shape from one and
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a half loop to double loop at the turning point near p, = 5.5. The tension increases with increasin g A, for these
balloons except for a small region near the turning point. The balloons on the bottom curves have two and a
half loops and triple loops. The maximum difference between the = 1000 and inextensible cases, however,
is less than 0.5%, so the inextensible assumption appears reasonable for strings with > 1000.

Vibration Analysis

Linearization of Eq. (1) about the steady state produces the vibration equations
a( du [ar aujar] du ou
—| pP—+¥| —*— |— |=¢ x(e, xu)+2e x—+—

as as "|as as )as a o A
The displacement field is represented by a separable series g L
of comparison functions and Galerkin’s method 4 Fo-oTT== 1
approximates the natural frequencies, mode shapes, and ' — =

stability. It is found that single loop balloons are stable al __6“ T LAA |

with purely imaginary eigenvalues, half loop balloons are ol e RS Gas

divergent unstable, and double loop balloons are flutter =~ A,
unstable except for low stiffness and long string length il ]
cases. The solid lines in Fig. 3 shows the single loop 3] TE— Ny |
balloon natural frequencies ® versus the string stiffness. IS B 1
The dashed lines indicate frequencies calculated using the oy (s T
inextensible steady state solution. For small % the dashed . .
lines differ significantly from the corresponding solid ¢ o e . L
lines. For y> 1000, however, the first six frequencies Figure 3: Single balloon natural frequencies versus string

obtained from the two approaches match to within 3%. stiffness, extensible (solid), inextensible (dashed).
Inextensible, Small Curvature, Quasistatic Analysis

The previous analysis shows that extensibility effects can be neglected for axially stiff (y> 7000) strings.
Thus, we neglect the small string stretch between the unstressed and steady state configurations and assume
that axial vibration propagates infinitely fast (quasistatically). Assumption of small curvature allows the
development of a simple model that enables physical insight into the vibration natural frequencies and mode
shapes of single loop balloons. Small curvature implies that the steady state balloon shapes and curvature k(s)
are sinusoidal

d sin ws de’ sin ws
y(s)=— 1 k(§)=——
sSin @ sin@w

with d and (< 7 for single loop) the eyelet length and rotation speed using a slightly different
nondimensionalization scheme. We linearize the equations of motion about the small curvature steady state
to produce the scalar equations

1
Uy, —20u,, +@'u, + yzozkfku2ds ~u,,, =0
0 (2)
ulu i 20)“2.1 _ wzuj _ulu = 0
where comma subscripts indicate partial differentiation and u(s,2) and us(s,z) are displacements in the normal
(in-plane) and binormal (out-of-plane) directions.

Figure 4 shows how the natural frequencies and mode shapes change with nondimensional rotation speed

o for fixed d and y=10". At @ = 0 the balloon is taut and the in-plane and out-of-plane vibration frequencies
repeat at the pinned string natural frequencies ®, = nm. As @ increases, the frequencies separate into forward
and backward whirling modes. The forward whirling modes move faster relative to a ground observer and
thus have higher frequency. The mode shapes for the first three modes at ® = 0.37 shown in Fig. 4(a) have
identical in-plane and out-of-plane amplitudes, indicating circular whirlin g. Above ® = 0.4m, the curvature
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begins to become significant and the stiffening integral term in Eq. (2) increases the frequency of modes that
are not orthogonal to (s). As k(s) is approximately a half-sine, the first two modes are most affected by
increasing curvature. The other modes, being essentially sinusoids with spatial wavelengths equal to integral
divisors of the first mode wavelength, are orthogonal to k(s) and are not as sensitive to increasing curvature.
At @ = 0.67 (Fig. 4(b)), the first forward whirling mode and the second backward whirling mode exchange
order due to an eigenvalue curve veering near ® = 0.57. The first backward whirling mode frequency
increases slightly from @ = 0.57 to @ = 0.77 due to curvature stiffening that reduces the in-plane modal
amplitude, producing elliptical whirling. At w = 0.97 (Fig. 4(c)), the first backward whirling mode is almost
entirely confined to the out-of-plane with the small in-plane component having a full sine shape. The first
forward whirling mode has veered up off the graph. The second and third modes are the second and third
backward whirling modes, respectively. At @ = 7, the first backward whirling mode buckles and the first
forward whirling mode veers to infinity. The other forward and backward whirling modes change by +nt from
their values at ® = 0, respectively.
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Figure 4: Theoretical (solid) and experimental (¥*) natural frequencies. Mode shapes (1* solid, 2™
dash-dotted, 3" dashed: (a) @ =0.37, (b) © =0.67, (c) w = 0.97.
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Observed phenomena
A soot-blower shown in Fig. 1 is used to blow off soot on tubes in a tubular heat exchanger, or a
gas heater. High frequency vibrations and noises occurred in operation. A soot-blower has a long
slender pipe called a lance, 8m long and 76mm in diameter, which is put slowly into a gas heater.
Steam flows through the lance and is discharged at the free end to blow off soot. In operation the
lance rotates about its axis at 12 rpm. At an intermediate position the lance is supported by a
support bearing, called a lance bearing (shown in Fig. 1(b))

From frequency analysis the observed frequencies are the eighth to the eleventh natural
frequencies. Figure 2 shows the relation between the observed dominant frequencies and inserted
length S from the support bearing to the free end of the lance. As the inserted length becomes longer,
the dominant frequency decreases and then increases abruptly. Since a lance bearing can rotate
about the x-axis (Fig. 1(b)) and not about the z-axis, and the lance rotates about its axis parallel to z-
axis, the vibrations was considered to be induced by the tangential friction force between the lance
and the lance bearing.

Experiment
Fig. 3 shows the test apparatus. The rod is held by four ball bearings and a support, which is
located at a distance S from the free end of the rod. A slender rod of 3 mm in diameter and 2 m long
1s rotated about its axis by an electric motor up to a speed of 300 rpm. Three semi-cylindrical supports
are used which have inner diameters of 3.4, 4.0 and 6 mm, and axial length of 10 mm.

Figure 4 shows an example of experimental results. The lower frequency component has the
same frequency as the rotational speed. At 2.6 rps or 156 rpm a resonance occurs. For the rotational
speeds higher than 2 rps or 120 rpm, the frequency components of approximately 20 Hz always
appear. They are considered self-excited vibrations. By comparing the observed and calculated
mode shapes, we conclude that the third mode is dominant.

Figures 5 show the relation between the observed frequency components and support position.
Higher modes appear as the gap between the rod and the semi-circular support is reduced.
Vibrations occur only in the range where natural frequency increases with the decrease in S or the
increase in L (Fig. 2).

Lance beampg

(a) Outline (b) Lance bearing
Fig.1 Schematic of a soot-blower

60



400

Dominant frequency Hz
b=

=
=
I

t By

0 1 ] | 1 1
B 7 5 4 3 2 1 0
Sm
Fig.2 Observed frequencies
R — '
Motor  Plexbleshat  Support
\ . Sersar
\
\ {
| ]ﬁ :
1.._1-;—-7—- s
| .
100 10060 1720

Fig. 3 Experimental apparatus

Froquency (Hz)

3
Rotational speed

Fig.4 Campbell diagrams (support bearing

{ros)

s O O
400 (111}

200

O~k [sem]

diameter d=4mm, S=720 mm or L=1000mm)

500

750

L em
1000 1250

1500

Frequency Hz
o
(=]
T

-
(=1
L]

0
1220

o = g

m.»@"
970 720 470
S mm

200 400

um O-pk

220

(a) Bearing diameter d=3.4mm

L mm
500 750 1000 1250 1500
100 , . :
B0 N @ﬁ“.@:
= gt O
g ¢ ‘h‘«. @&'\ 500
§ . B m 0-pk
s af e
o P N S0 .
20} ”
- W
n.
1220 970 720 470 220
S mm
(b) Bearing diameter d=4mm
L mm
500 750 1000 1250 1500
100 . - T
80 - . O O
* o e 500 1000
~ - B m 0-pk
UL ™,
£ e o .
§ 40
& M""“\ .
20 + -

0
1470

61

970 720 470
S mm

(c) Bearing diameter d=6mm
Fig.5 Observed nonsynchronous vibration

220



Forced Linear and Non-Linear Vibration of a Piezoceramic Transformer

Wolfgang Seemann and Rainer Gausmann
University of Kaiserslautern
Post Box 3049
67653 Kaiserslautern
Germany
Seemann @mv.uni-kl.de

Since long it is known that electric voltage can be transformed mechanically by using piezoceramic devices.
This presentation describes a device, which consists of two piezoceramic elements and three metal parts. The
configuration is such that the system has the form of a slender rod. The first, third and last section of this rod
are made of metal and the second and the fourth section are made of piezoceramic material, which is
polarized in longitudinal direction.
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Figure 1: Piezoceramic-based transformer

To use the system as a voltage transformer a time harmonic electric field is applied at one of the
piezoceramic elements so that the rod is vibrating in longitudinal direction. Due to the strain, which occurs
during vibration, an electric field is generated at the second piezoceramic element. An integration of this
electric field leads to the voltage which can be measured at the second ceramic. The electric field, however,
depends on the electric impedance which is connected to the electrodes. If the electrodes are short-circuited,
the voltage between the two electrodes is zero. If the electrodes are open circuited the charge between the
electrodes is zero. These are the two limiting cases. As either the voltage or the current is zero, no energy is
dissipated so that this leads to undamped forced vibration of the whole system. If an impedance in the form
of a resistor, a capacitance or a combination of both is connected to the electrodes, energy may be dissipated.

In a first step a linear model of the whole system is presented. In this model all the sections are modeled as
rods. The metal parts are assumed to undergo elastic longitudinal vibration as well as the ceramic parts. In
the ceramics, however, the mechanical field and the electric field are coupled. This coupling is assumed to be
linear leading to linear constitutive equations. In general, linear constitutive equations are used especially if
the electric field in the ceramic is weak. Between the sections transition conditions are formulated:
Continuity of the longitudinal displacement and continuity of the longitudinal stress. The boundary
conditions at the ends of the system are assumed to be: vanishing longitudinal stress.

The equations of motion are then given by five wave equations for the different sections. The electric field
and thus the exciting voltage enters the equations through the boundary conditions. As the main interest is on
the forced vibration it can be shown that for a time harmonic excitation a particular solution can be found if
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all displacements and the electric field are also time harmonic. This leads to ordinary differential equations
for the displacements in the sections. One problem is that the electric field and the strain are coupled and that
the electric field in the ceramic has to be integrated in order to get the voltage amplitude. This is even more a
problem for the second ceramic as the voltage between the electrodes is not known a priori. Instead, due to
the impedance only a relation between the voltage amplitude and the current amplitude is given.

For several configurations the displacement amplitudes and the voltage amplitudes at the second ceramic are
shown. As was to be expected for the open and short circuited electrodes no damping occurs. If a resistor is
connected to the electrodes, the maximum amplitude is limited and the resonance frequency lies between the

resonance frequencies of the open and short circuited frequencies.

The results of the theoretical model are compared with measurements of a real system. It can be seen that the
results agree very well, especially if the transverse contraction is also taken into account in the theoretical
model. Due to the fact that in real systems there is always some damping, the amplitudes of the real system
are finite near the resonance. In the theoretical model this can be taken into account by introducing a

complex Young’s modulus.

Significant differences, however, occur if the voltage at the exciting ceramic is increased slightly. The
electric field within the ceramic is then in the range below 100 V/mm. Normally, for such electric fields the
ceramic is assumed to behave quite linear. Nevertheless, the experiments show that for such moderate
electric fields within the ceramic strong nonlinearities may occur. In the experiments this was such that near
resonance for a time harmonic voltage the current signal was only periodic but not harmonic. But not only a
distortion of the current signal was observed. Also the voltage at the second ceramic showed the same
behavior like the current at the exciting ceramic. The distortion could be such strong that the frequency of the
current was twice the frequency of the exciting voltage. This gives a hint that in these frequency ranges non-
linear constitutive models for the piezoceramic should be used. Some non-linear constitutive equations and
their effects on the results are currently under investigation and will be presented during the presentation.
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Figure 2: Experimental results showing the strong non-linear behavior
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VIBRATION CHARACTERISTICS OF THIN FGM CYLINDRICAL SHELLS

C.B. Sharma and M.N. Naeem
Department of Mathematics, UMIST, Manchester, M60 1QD UK

Introduction

Many biological materials found in nature have special material properties as variables of
geometrical parameters and shapes. It is especially true of load sustaining structures like bones of living
beings, branches and trunks of trees and various biological hard tissues, etc. Much research has been
done to study the principles of designs and processes abundant in the biological world. The concept of
functionally graded materials (FGM) is a small step in the direction of developing new, smart materials
for engineering and technological applications based on the concept of the smart material characteristics
present in nature as a consequence of continuous process of intelligent optimization. FGMs are advanced
materials with special mechanical and heat resistant material properties. Recently [1] powder metallurgy
techniques have been used in the FGM fabrication. The composition is multi-constituent and materials
are distributed continuously in the thickness direction in accordance with a volume fraction law. The
most well known FGM is compositionally graded from a ceramic to a metal to incorporate such diverse
properties as heat, wear and oxidation resistance of ceramics with the high toughness, strength,
machinability and bending capability of metals.

FGMs concept and its applications in practice have been studied extensively e.g. in cutting tool
technology, machine and engine components. In such applications diverse qualities of metals such as
heat, wear, corrosion resistance, toughness, durability and machinability are brought together. Most
research work has been confined to thermal stress analysis and deformation due to their heat shielding
properties. The use of FGMs can also be made in the field of structural vibration where the inherent
properties can be tailored to suit the problem under consideration. Cylindrical shells can be structured
from FGMs and their stability characteristics such as vibration and buckling etc., can be studied.
Although an extensive amount of research work has been carried out to study the vibration characteristics
of isotropic as well as composite cylindrical shells, there is not much evidence of work on vibration of
FGM shells. In a recent paper Loy et al [2] have analysed frequency characteristics of FGM cylindrical
shells for simply supported boundary conditions.

In this paper vibration frequencies for FGM shells are analysed and influence of boundary
conditions is analysed. The simplest form of FGM has been used where two material constituents
(stainless steel and nickel in the present case) change gradually from one to the other through the shell
thickness. Since closed form solutions are limited to simple cases so approximate method of solution is
employed here and numerical evaluation of frequencies is carried out. The analysis is capable of dealing
with arbitrary end conditions but the important ones like SS, CF, CS, CC are studied here. Axial modal
dependence is given in terms of Ritz polynomials for a rapid convergence of Ritz method used here and
Sanders [3] thin shell theory equations are utilised. To study the FGM characteristics for the constitutive
materials a volume fraction law is used to take into account for the variation in the materials
compositions. Frequency parameters calculated here are compared with some available cases in the
literature concerning the stability of shells and related structures. An excellent agreement was achieved
for the natural frequency parameters.

Theoretical Considerations

Functionally graded materials (FGMs) are fabricated from two or more material ingredients.
Strong heat resistant materials are specifically used for the structures exposed to high temperature
conditions. Clearly the material properties of FGMs are functions of material properties and volume
fractions of the constituent materials.

For a FGM fabricated from k constituent materials a particular property P can be expressed in the
form
'—'Ptvi (i= 1,2....1() (N
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Where P; and V; are the material property and volume fraction of the ith constituent and for the repeated
index 1 in equation (1) summation convention is implied. It is also obvious from the volume fraction

k
assumption that 2 Vi=1. Volume fraction for a cylindrical shell is defined by the expression
i=l
V=((2z+h)/2h)" (2)
Where h is uniform thickness of the shell with the reference middle surface and p is the power law
exponent, 0 <p<cc. Here a circular cylindrical shell fabricated using the simplest FGM consisting of two

material constituents is considered. With E,, E,, vi, v, and p,, p» as Young's moduli, Poisson’s ratio and
mass densities for the materials 1 and 2 respectively, the corresponding material properties, E v and p of
the FGM are expressed as

E = (E| - Ey) ((2z+h)/2h)* + E;
v=(v,=-v32) ((2z+h)/2h)’ + v, (3)
p=(p1—p2) ((2z+h)/2h)* + p,

The material properties of the shell vary continuously from the material 2 at the inner surface to material
1 at the outer surface. It is obvious that at the inner surface, z=h/2, E=E,, v =v, and p= p, (material 2) and
at the outer surface z=h/2, E=E,, v = v, and p= p; (material 1), where z=0 corresponds to the middle
surface of the shell. A cylindrical shell fabricated of functionally graded material is essentially an
inhomogeneous shell consisting of a mixture of isotropic materials. Unlike shells laminated of fibre-
reinforced material where transverse shear deformation effects can be significant, for a FGM shell a
classical thin shell theory is applicable if radius-to-thickness ratio is < 20.

In this paper a formulation based on Sanders thin shell theory [2] is carried out for a FGM shell.
Strain and kinetic energy expressions are evaluated taking into account asymmetry of material properties
about the shell mid-surface due to the presence of coupling stiffness, which do not exist for a
homogeneous isotropic shell. Displacement vector is written down in usual manner where axial modal
dependence is assumed in the form of Ritz polynomial functions. Application of energy method results in
a generalized eigenvalue problem which is then solved using a Matlab package. Eigenvalues and
eigenvectors correspond to natural frequency parameters and modal forms respectively.

Results and Discussion

Due to space limitation only results discussed here are for a cylindrical shell with SS and CC
boundary conditions only. Table 1 lists the frequency parameters for an isotropic SS shell evaluated by
the method in [2] and also the present analysis. An excellent agreement is evident. FGM shells are of
two types: Type I with steel used for the inner surface and nickel for the outer surface and in type II
where the roles of these two materials are reversed. In Table 2 frequencies are listed for an SS shell of
type 1 for a given set of geometrical parameters and a given power law exponent p. Agreement between
the two sets of corresponding results is once again excellent with present results slightly underestimating
the results in [2]. Given in Table 3 are the results for a type II shell. Pattern being the same as in Table 2.
It is obvious that the general vibratory behaviour for a FGM shell is similar to an isotropic shell as regards
frequency variation with circumferential wave number. From Table 2 and 3 it is also obvious that as p
increases for the type I the frequencies descend from steel shell in the inner surface to nickel shell in the
outer surface and for a shell of type II the converse is true. Tables 4 and 5 correspond to a CC shell of
type 1 and II respectively. Pattern is the same as for the SS case given in Tables 2 and 3. Only difference
being that the corresponding frequencies in CC case are higher than those for SS case as expected. This
analysis can be extended to other boundary conditions.
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Table 1. Comparison of frequency parameters for various boundary conditions (m=1) for an isotropic
case. Shell parameters: L/R=20, R/h=100, v=0.3.

SS CS cC
n I I I I I I
1 0.016101 0.016101 0.023987 0.023988 0.032885 0.032915
2 0.009382 0.009381 0.011225 0.011236 0.013932 0.013934
3 0.022105 0.022105 0.022310 0.022310 0.022672 0.022673
4 0.042095 0.042095 0.042139 0.042139 0.042208 0..042208

I. Loy C.T,LamK.Y., Shu C. [4]

Table 2. Comparison for natural frequencies (Hz) for FGM ¢

II. Present method.

Type 1. Shell parameters: L/R=20, R/h=500, v=0.3.

ylindrical shell with SS conditions (m=1)

n Steel (p=0) p=0.5 p=1 p=5

I 11 I 11 I 11 I 11
| 13.548 13.548 13.321 13.321 13:211 13.211 12.998 12.988
2 4.592 4.5916 45168 4.5118 4.4370 4474 4.4068 4.4024
3 4.263 4.2628 4.1911 4.1839 4.1150 4.148 4.0891 4.0828
- 7.225 7.2247 7.0976 7.0926 6.9760 7.033 6.9251 6.9211

I. Loy C.T., Lam K.Y., Reddy [2]

Table 3. Comparison for natural frequencies (Hz) for an FGM ¢

II. Present Method.

Type I1. Shell parameters: L/R=20, R/h=500, v=0.3.

ylindrical shell with SS conditions (m=1)

n Nickel (p=0) p=0.5 p=1 p=5
I 11 I 11 I il I I
| 12.894 12.894 13.103 13.103 13.211 13.211 13.433 13.433
2 4.3690 4.3687 44382 4.4425 4.4742 4.4797 4.5504 4.5542
3 4.0489 4.0484 4.1252 4.1214 4.1486 4.1565 4.2191 4.2247
4 6.8577 6.8574 6.9754 6.9794 7.0330 7.0381 7.1510 7.1546
I. Loy C.T., Lam K.Y., Reddy [4] II. Present Method.
Table 4. Natural frequencies (Hz) of a CC FGM cylindrical shell Type I (m=1)
Shell parameters: L/R=20, R/h=500, v=0.3.. Present method.
n Steel Nickel p=0.5 p=0.7 p=1 p=2 p=5 p=15
(p=0) (p=0)
1 27.666 26.351 27.212 27.107 26.969 26.772 26.565 26.430
2 9.814 9.331 9.639 9.615 9.5606 9.482 9.406 9.361
3 5.976 5.679 5.871 5.844 5.819 5.772 5.7263 5.698
4 7.623 7.237 7.485 7.455 7.422 7.362 7.3038 7.265
Table 5. Natural frequencies (Hz) of a CC FGM cylindrical shell Type II (m=1)
Shell parameters: L/R=20, R/h=500, v=0.3. Present method.
n Steel Nickel p=0.5 p=0.7 p=1 p=2 p= p=15
(p=0) P=0
] 27.666 26.351 26.771 26.875 26.992 27.208 27.445 27.592
2 9.814 9.331 9.484 9.523 9.563 9.644 9.736 9.771
3 5.976 5.679 5.778 5.801 5.827 5.874 5.923 5.955
4 7.623 7.237 7.367 7.395 7.427 7.490 7.551 7.594
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FREE VIBRATION ANALYSIS OF THICK SHELLS OF REVOLUTION

A.V.Singh

Department of Mechanical and
Materials Engineering
The University of Western Ontario
London, Ontario, Canada, N6A 5B9

Figure 1 shows the sectional view of an axially symmetric solid, bounded by four curved edges in
r —z plane. The geometry of the problem is defined by prescribing the (r, z) coordinates of the eight points

shown in the figure. The natural coordinates (£ and 77) are used to map this area into a square. The

relationship between the two coordinate systems (r — z) and (£ — 7) respectively is well known, as this type
of mapping is done in the formulation of an eight node isoparametric finite element (Weaver and Johnston,
1984). The coordinates (r,z) of an arbitrary point within the cross sectional area are represented by

8 8
r(é&.m) = IN; (& z(&m = EINf(fJ?) % (1)
i=l1 i=

Here, N;(&,myand (5. z;); fori= 1,2, 3, ...8; are respectively the shape functions and the coordinates
of the eight points defining the geometry. The infinitesimal volume dV with reference to the cylindrical
coordinates (r,6, z) can be written as:

dV = rd@drdz = r&.n) |/ n)|dédnde (2)

~

Figure 1. Sectional View of an Axially Symmetric Solid

In order to develop the numerical procedure for the free vibration analysis, the basic equations for axially
symmetric solids from the theory of elasticity in (7, 6, z) coordinates are used. These equations include strain
displacement relations, stress strain relations and energy expressions.
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For example the strain-displacement relationships used in the present study are:
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Where, u, v and w represent the displacement components along r, z and @ (circumferential) directions
respectively.

The solution procedure is based on the Rayleigh-Ritz method, which requires pre-defined
displacement fields with fully satisfied geometric (essential) boundary conditions. To define the
displacement fields, the following form of the simple algebraic polynomial is chosen.

f€)=ay A=5" +a;(1=E"1A+E) + -oevvee +a,,(1-EA+E" + a,(1+&)" (4)

The advantages of using such a polynomial, in the solution procedure, are that the polynomial is complete
and the enforcement of the geometric boundary conditions are simple and straightforward. The admissible
displacement fields are generated by multiplying the polynomial A& ) by its counterpart (7). The
coefficients resulting from the product of the polynomials are denoted by a set of two-dimensional arrays:
ay , by and c; for u, v and w respectively. For illustration purpose, the displacement component u is
represented by the following double summation series in which n denotes the Fourier harmonic mode of

vibration.
P

u= Z i ap f;(&)fi (1) cos n@ (5

k=1 j=I
The dimensionless frequency parameter is represented by: Q =,/(p/E) wa, where p = mass density of the

material; E = the modulus of elasticity; @= natural frequency in radian/second; and a = a length parameter.
Typically a prominent dimension pertaining to the main characteristics of the problem is selected for a.

One should note that the numerical procedure developed herein is valid for a general solid of
revolution generated by rotating a planar section bounded by four straight or curved edges. Therefore; by
changing parameters, it is possible to analyze problems having a wide range of shapes and sizes. Values of E
and p are already attached to the non-dimensional frequency parameter 2. The value of the Poisson’s ratio
v is taken to be 0.3 in all of the following results. In the calculations using the Ritz method, the accuracy of
the results depends upon the number of terms used in polynomials f; (£ ) and f; (77 ), which are complete
functions in the sense that there is no term missing between the first and last terms. If sufficiently large
number of terms is used, the method is expected to yield exact results. The selection of the number of terms
depends upon the geometry of the solid of revolution. In the present study, numerical computation has been
carried out with eight terms (i.e. ¢ = 8) in f; (£ ) and four term (i.e. p=4) in f; (7). With these values of p
and g, the order is 96 for each of the stiffness and mass matrices, which are computed numerically by
Gaussian quadrature, with eight and four integration points in ¢ and 7 directions respectively. The
convergence study has been conducted during this study and results for many additional cases have been
generated, but are not included in this paper due to the page limitation. To establish the applicability and
validation of the present formulation, some results for the free vibration of a cylindrical solid and moderately
thick spherical shell are presented in Tables 1 and 2 respectively. The results are compared with the
published data by Leissa and So (1995) and Singh and Mirza (1985).
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Table 1. Comparison of the frequencies for cylindrical solid clamped at the bottom.

L/ia=2.0
Mode
n=0 N=1 n=2 n=3
Present | Leissaand | Present | Leissaand | Present | Leissaand | Present | Leissa and

So (95) So (95) So (95) So (95)
1 0.7980 0.7975 0.3140 0.3138 1.3410 1.3408 2.0234 2.0205
2 1.8365 1.8357 0.8958 0.8955 1.5628 1.5616 2.2961 2.2934
3 1.9660 1.9653 1.6069 1.6050 2.1424 2.1400 2.6657 2.6600
4 2.5951 2.5936 1.7702 1.7700 2.3352 2.3320 2.8923 | 2.8844
5 2,6719 2.66350 2.0770 20751 | 2.7103 2.6960 3.3396 | 3.3180

Table 2. Comparison of the frequencies for the spherical shell clamped at the open edge ¢ = 60°.

h/R = 0.05
Mode
n=1 n=2 n=3 n=4

Present | Singh and Present | Singh and Present | Singhand | Present | Singhand
Mirza (85) Mirza (85) Mirza (85) Mirza (85)

1 0.9007 0.8990 1.0916 1.0790 1.2264 1.2140 1.3998 1.3931

2 1.2071 1.2092 1.4750 1.4756 1.7741 1.7657 2.2122 2.1028

3 1.7884 1.7596 2.2329 2.1842 2.7676 2.6141 3.3418 3.0760

4 2.2592 2.2397 3.2212 3.0864 4.1377 3.6792 5.0005 4.2431

5 3.0291 2.7194 3.8304 3.3194 4.5975 4.1620 5.5276 5.0022
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Vibration Studies of Composite Laminated Structural
Components

Kostas P. Soldatos
University of Nottingham, Pope Building, Nottingham NG7 2RD, UK
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This paper summarises the progress that its authors (Soldatos and Messina, 1998, 2000; Messina and
Soldatos, 1999a-d; Messina and Soldatos, in preparation) have recently made in studying the free vibrations of
a certain type of laminated composite structural components. The geometric configuration of the components
considered is that of a rectangular plate, an open cylindrical panel with rectangular plan-form or a closed
cylindrical shell. In the most general case, each layer of such a structural component is assumed as made of a
linearly elastic monoclinic material, so that all possible kinds of relevant cross-ply and angle-ply material lay-
ups are particular cases. Moreover, the study can consider any possible set of variationally consistent set of
boundary conditions applied at the edges of the structural component.

The mathematical model is based on a generalised, five-degrees-of-freedom, shear deformable laminated
cylindrical shell theory (Soldatos and Timarci, 1993) but for simplicity its Love-type classical shell theory
analogue (Timarci and Soldatos, 1995) is only considered. The theory involves two general functions of the
transverse co-ordinate parameter, the a-posteriori specification of which can reduce it into anyone of the
conventional five-degrees-of freedom theories, like the so-called uniform- and parabolic-shear deformable
laminate theories. An important feature of the present theory is however the fact that, unlike the afore-
mentioned conventional shell theories, appropriate choices of the shape functions involved enable the
satisfaction of the interlaminar stresses continuity at the component material interfaces, without increasing the
number of the degrees of freedom involved.

The mathematical analysis is based on the Ritz method, which is applied on the energy functional of the afore-
mentioned generalised shell theory. The resulting formulation is general enough to incorporate into the Ritz-
type analysis any set of basis functions but only simple power series and orthogonal polynomials have so far
been used in the numerical applications performed. Both of these sets of basis functions are complete in the
appropriate Hilbert functional space. As a result, their conjunction with the Ritz method can lead, in an
asymptotic sense, to numerical results that are practically equivalent to those that could be obtained through
the exact solution of the corresponding set of governing differential equations. The fact that, for any given set
of edge boundary conditions, both sets of basis functions lead to practically identical numerical results
(Messina and Soldatos, 1999d) is only a verification of this theoretical result.

This research study started with the free vibration analysis of laminated structural components having all their
edges free of traction (Soldatos and Messina, 1998; Messina and Soldatos, 1999a), namely a class of structural
elements which is privileged for laboratory tests. It also started with the relatively simple material configuration
of the cross-ply lay-up (Soldatos and Messina, 1998; Messina and Soldatos, 1999b-d) before proceeds further
with more complicated angle-ply material arrangements (Messina and Soldatos, 1999a; Soldatos and Messina,
2000). The simpler cross-ply material arrangement has already allowed the incorporation into the theoretical
analysis of shape functions that enable the satisfaction of the interlaminar stresses continuity at the component
material interfaces (Timarci and Soldatos, 1995; Soldatos and Messina, 1998; Messina and Soldatos, 1999c).
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The interlaminar stresses continuity was not implemented in the initial relevant studies that dealt with the more
complicated angle-ply material arrangement (Messina and Soldatos, 1999a; Soldatos and Messina, 2000). The
manner however has recently been found to handle this problem successfully and some relevant numerical
results that have already been obtained are in the process of classification and physical interpretation (Messina
and Soldatos, in preparation).

It should be noted that the efficiency and the accuracy of the described analysis were always carefully tested
before, gradually, each one of its different pieces was brought into publicity. This was achieved by means of
successful numerical comparisons with corresponding results that, dealing with particular cases, had already
been obtained on the basis of other theoretical/analytical approaches (Leissa, 1973; Gorman, 1978; Leissa and
Narita, 1984; Khdeir and Reddy, 1990; Narita er al. 1992; Qatu, 1991, 1992; Qatu and Leissa, 1991;
Frederiksen, 1995; Soldatos and Ye, 1995; Timarci and Soldatos, 1995; Xavier et al. 1995; Anderson and
Nayfeh, 1996; So and Leissa, 1997; Singh and Kumar, 1998a, 1998b; Timarci and Soldatos, 2000) and/or
experimental methods (Anderson and Nayfeh, 1996; Jones et al.,1996).
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; S INTRODUCTION

There are a number of investigations,
including the well-known paper by Southwell,
which deal with the vibrations of a rotating
circular plate"’~‘®’, But almost all of them consider
the bending vibrations of the plate under the effect
of in-plane tensions due to the steady rotation.
Moreover, the equations of motion for the steady
rotation are based on the Timoshenko type equa-
tion”(hereafter is called the classical equation).

The authors have studyed the in-plane
vibrations of a rotating circular plate in order to
analyze the free vibrations of a rotating vessel.
Based on the theoretical analysis, we found that
the classical equation is inaccurate because of the
in-plane deformation of the plate being neglected
when considering the centrifugal force. The
in-plane vibrations of the rotating circular plate
have been not so much interested in as the
bending vibrations, and in the best of authors'
knowledge, there is no paper that examines, in
detail the in-plane vibrations of the rotating
circular plate.

In this paper, a refined solution procedure is
presented for the in-plane free vibrations of a
circular plate, which vibrates infinitesimally under
the initial tensions due to the steady rotations. The
basic equations for both the steady rotation and the
in-plane vibration are derived from the stationary
conditions of the Lagrangians. The equations of
motion are solved exactly by power series
expansions. In the numerical calculations, in-plane
stress distributions of the circular plate in the
steady rotation and frequencies and mode shapes
in the vibration are presented. The characteristics
are discussed comparing the results by the present
theory and those by the classical theory.

73

Fig.1 Geometry and co-ordinates of a rotating
circular plate.
2. BASIC EQUATIONS
2. 1 For steady rotation
Let us consider the equation of motion of a
uniform thin circular plate rotating at the angular
velocity 2.

Figure 1 shows the geometry and the
co-ordinates of the circular plate. The origin is
taken to be at the center O on the middle surface
and the circular plate rotates about the vertical axis
passing through the origin. The thickness, outer
radius and inner radius are denoted by A, a and b,
respectively. Let the displacement in the radial
direction due to the steady rotation be u*.

The classical equation of motion is given from
Timoshenko” as

RUYdz+( 1/2)dU/dz - U'/e?= - az (1)

where

z=r/a, U'=u"a, g?=(1-42) pQa%/E (2)



and £ ,v ,p are Young's modulus, Poisson's ratio,
and the mass density, respectively. We propose the
equation of motion as follows;

RUYd+(1/z)dUdz - (- @?+U2)U=-a2  (3)

The boundary conditions at z=/ and z= 7 (=b/a)
are

( QU dz+vUz)6U=0 (4)

2. 2 For in-plane vibration

Next we consider the basic equations of the
circular plate which vibrates infinitesimally under
the initial tensions due to the steady rotation. Let
the displacements in the radial and circumferential
directions are u and v, respectively. Each
displacement component is assumed as follows:

u=u'+u, v=v (5)

where % and v are the displacements due to the
vibration. The kinetic energy is

:r=1/2f6 _]'rph[( Juw 3t - Qv)?
+{ v/ 3t + Q(r+u)?) rdrd6 (6)

where 7 denotes the time. The strain energy is

V=EW2(1-°) [ [ [ei+es+2veres
+{ (1-v)/2 }ye? Jrdrdd (7

where £ and &9 are the normal strain expressions
and yr¢ is the shearing strain expression and

&= gw Fr+1/2{( 3w 3r)2+( 3/ 7r)?)
eo=wr+(1/r) av/ 360+1/(2r?) {( Fuw 56)?
+( v 36)? }
yo=(1/) dw 720+ v/ Fr - vir
+1/r( dw/ 3r+ dw/ 76+ av/ dr-3v/ 70)
(8)

Now define the Lagrangian at any instant of time

as
L=1=y (9)

Substitute Egs.(5) ~ (8) into Eq.(9) and
neglect the higher order terms. Applying
Hamilton's principle to the Lagrangian of the

vibration, & J , Ldt=0  and subtracting the equation

of motion (3) and the boundary conditions (4),
one can obtain the equations of motion and the
boundary conditions for the ‘in-plane vibrations.
The equations of motion are

E, = 12020 + 2Q 070t - 9°0 | ot* |+ 26°0 | &2
+0U/z-Ulz+(1-v)I(2z)-8*U/56?
+(1+v)/2-8*V 18206 - (3-v)/2z-0V/36
+0/ azle(ho? 1 D)- 8016z)
+031884ha} | Dz)- 60126}~ voU™ |6z - 807z
+0/&2{oU* 1 62020000z + v(T + 57 126))]
+(1-v)/2-8U* 15242/ 2)9*T / 967
~(1/2)07 186 +8*F / 5200}= 0

E, = 4z{Q°7 -2Q 8000t - 5*/or? |
+(1-v)/2-28%V | 82® +1/z - 3*V/36>
+U-v)12- (P02 - P2)+ (3-v) 1 22- 60700
+(1+v)/2-8*Ulez08 + vU* | 3z - 32U/oz00
+8/8z{z(ho* 1 D)- 076z
+8/36{ho 1 Dz)- 07106
+(1-v)12-U* 12201/ 290 1 56 + 5207/ 3236
+3%U* &% 607 186}=0

(10)
where
z=rla, U=%/a, V=V/a, n=bla
D=Eh/(1-v?), A=p(l-v?)a®/E
ot =EN1-v?)-(dU* /dz +VU* /z)
o5 =EN1-v?*)-(U*/z+wdU* | &)
(11)

and O, 06" are the initial stresses due to the
steady rotation.

3 . SOLUTIONS OF EQUATIONS OF MOTION
The solution of Eq. (1) is given as
U=K; z+Ko/z - (a?/8)z? (12)

where K7 and K> are arbitrary constants.
The solution of Eq. (3) can be obtained as

U=K; Ji(az)+K:Y(az)+Us (13)

Here, Kiand K> are arbitrary constants which
can be determined by the boundary conditions.
The functions J; (@ z) and Y (@ z) are Bessel
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Fig.2 Relation between stress and nondimensional
number of revolutions of a disk without a
hole (edge free , n =0)

functions of the first and the second kinds of order
one and Us is a particular solution which is
expressed by a power series of z.

The solution of Eqs. (10) may be obtained as

U=U(z)sin(n6 - pt) , V=V(z)cos(n@ - pt)

U(z)=) , On Z2™N, V(z)=)  RnZ?N
m=0 m=0

(14)
where # and p are the number of nodal diameter
and the circular frequency , and Om, Rm are
undetermined coefficients which are determined in
turn by substituting Eqs.(14) into Eqs.(10) and N
is a root of the characteristic equation.

4 . NUMERICAL EXAMPLES

In the numerical caluculations, Poisson' ratio is
taken as v =0.3.

Figure 2 shows the relation between the
nondimensional number of revolution parameter
o and nondimensional stress parameters S, S

and Figure 3 does the relation between the
nondimensional frequency parameter B and o,
in which

B=vAp, (Sr.St)=E/(1-¥?)(0:,06")  (15)
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F denotes the forward waves and B does the
backward waves.

Fig.3 Relation between frequency and number of
revolutions (edge free, n =0 )
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1. INTRODUCTION

The first author co-invented'? the Wittrick-Williams (W-W) algorithm, the only reliable
method for solving transcendental eigenvalue problems arising when calculating the undamped
natural frequencies of vibrating structures. Such problems arise when member differential equations
include distributed member mass. Hence assembling the member stiffness matrices in the usual
manner yields the transcendental eigenproblem

K@D =0 (1)

where ® = circular frequency of vibration and D = amplitude vector of the modal deflections
D sin @t. The W-W algorithm gives J, the number of natural frequencies below @, a trial value of
o, as

J=Zn + s{K(an)} (2

where: the summation is over all members; J, is the number of natural frequencies of a member
which would be exceeded by @ if its ends were to be clamped and; s{K(a)}, the ‘sign count’ of
K(a), can be calculated as the number of negative elements on the leading diagonal of K(m)*,
where the superscript A denotes the upper triangular matrix obtained numerically from K(a) by the
usual form of Gauss elimination, in which appropriate multiples of the pivotal row are subtracted
from all (unscaled) succeeding rows and rows become pivotal in sequence. Eqn.(2) enables the
development of many logical procedures for converging on any required natural frequencies by
choosing appropriate successive values of @, (of which bisection is simple but slow) because J is

known for every @y used. Hence the W-W algorithm, i.c. Eqn.(2), requires K(a) to be assembled by
solving the differential equations governing the components of the structure and also requires J, to
be found for each component member from the same differential equations.

2.  INFORMATIVE PROOF OF THE W-W ALGORITHM

Of four early derivations of the W-W algorithm, the followin g’ is the most informative for the
present purpose. It starts from the generalised linear eigenvalue problem

(K-AM)D =0 3)
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where K = the (N x N) static stiffness matrix; M = the (N x N) mass matrix, A = @ and D sin ot =
the modal displacement vector of all freedoms retained in the mathematical model of the real
structure.

The Sturm sequence property applies to Eqn.(3) when K and M are symmetric and K is
positive definite. In effect it states that the number of natural frequencies (i.e. J) below any trial
value o, (= 033) of the eigenparameter equals s{K - A\M}, where s{} has the meaning defined

above.

The first step of the proof of the W-W algorithm is to start from the hypothetical ‘infinite
order Sturm sequence problem’ obtained by letting N—eo in Eqn.(3).

The second step is to apply the form of Gauss elimination described above to this matrix but
to arrest it after N; = N — N rows have been pivotal, where N. = No. of freedoms at the joints (i.e.
connection nodes) between members. Thus N; is the infinite number of freedoms between their ends
possessed by real numbers. Hence Eqn.(3) becomes Egns.(4) and (5), from which the key result is

Eqn.(6).

K; - AM;; Kic - AMic D; 0 4)
K -AMi."  Ke-AM. ||D. 0
(Kii = A-N‘[ii)‘5 C Di 0
_ (5)
0 K\) D. 0
KD, = 0 ©

Note that C is of no further use and that with the exception that N is then finite, the process of
obtaining Eqn.(6) from Eqn.(4) is that used to reduce by exact means the order of a finite element
problem, e.g. by sub-structuring, although the matrix K(A) is then often expressed as

K) = (Kee - AMeo) = (Kie" - AMic" )(Kii - AMi) ! (Kic - AMio) (7

The third step is to recognise that exabrly the same K(A) as that of Eqn.(6) can be derived
directly, by solving the differential equations for vibration of the component members of the
structure to allow exactly for their distributed mass, instead of accepting the discretisation errors of
traditional finite element methods. Because this obviates the necessity to use Eqns.(4) - (7) it also

avoids the impossibility of assembling the infinite order eigenvalue problem of Eqn.(3) with N—eo,
which is why it was referred to as hypothetical earlier.

The fourth step is to complete the arrested Gauss elimination that gave Eqn.(5). Hence

J=s{K-AM} = s{Ki - A\M;} +s{K(L)} (8)
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The fifth and final step is that s{K; -A{M;} can be found via its physical interpretation as the
sum of Jy, for all members of the structure and hence Eqn.(8) becomes the W-W algorithm, i.e.

Eqn.(2).
3. ANALOGOUS PROBLEMS IN OTHER DISCIPLINES

Analogies between problems in different disciplines can be advantageous to one or both of the
problems. Apart from the obvious critical buckling problem, the W-W algorithm for vibration of
continuous structures has been beneficially applied to: vibration of spinning structures®; heat
diffusion in composite layers’; fluid vibration in pipe systems®; modes of flexible structures’, wave
propagation along periodically supported prismatic structures®; H.. filtering in control theory’ and
surface wave propagation in stratified material'®. However there are almost certainly many other
analogous problems and these are now being systematically sought by searching EDINA, The Web
of Science and other databases, covering all disciplines. The key words used are designed to seek
all problems solvable as a linear eigenproblem with a Sturm sequence property and then arguing,
from the derivation of Section 2, that if the underlying physical problem is continuous and its
differential equations are soluble (analytically or numerically) then ‘technology transfer’ with
structural free vibration problems is potentially mutually beneficial. This includes transfer of the W-
W algorithm, which is the subject of the authors” EPSRC grant GR/R05437/01.
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