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PREFACE

The International Symposium on Vibrations of Continuous Systems is a forum for
leading researchers from across the globe to meet with their colleagues and present both
old and new ideas on the field. Each participant has been encouraged to either present
results of recent, significant research or to reflect on some aspect of the vibration of
continuous systems which is particularly interesting, unexpected, or unusual. This latter
type of presentation — of which there are several in the program — was proposed to
encourage participants to draw on understanding obtained through — in many cases —
decades of research.

The location of the Fourth ISVCS is in one of the most beautiful places in Great Britain —
the Lake District National Park in north-west England. Here, within 30 miles (50 km) of
the coast you can find all of England’s highest mountains, topped by Scafell Pike at 3205
feet (977 m), 16 lakes and many picturesque villages, joined by winding mountain roads
and footpaths. All of the mountain summits can be reached on foot. For the more
adventurous there are spectacular ridge walks, such as Striding Edge on Helvellyn, and
classic rock climbs on Great Gable and the Langdale Pikes.

This Proceeding contains short summaries of the presentations to be made at the
Symposium and short biographical sketches submitted by many of the participants.

Editor
Ali H. Nayfeh

Reviewing Editors
Charles W. Bert
Peter Hagedorn
Yoshihiro Narita

General Chairman
Arthur W. Leissa



Analysis and Measurement of Flex Circuit Vibration in Hard Disk Drives

Matthew Brake and Jonathan Wickert
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

wickert@cmu.edu

The density of hard disk drives, as measured by the number of data bits stored within a unit area, has
grown at a historical rate of about 60% per year. With that trend, greater demands have been placed
on the mechanical design of drives in terms of low vibration. In particular, the vibration of flex
circuits has been identified as a disturbance which transmits motion to the read/write heads at a high
enough frequency that servo performance becomes degraded. A flex circuit connects the stationary
electronic components in a hard disk drive to the rotating arm that positions the read/write heads
above data tracks on the disk (Figure 1). These structures are formed as a laminate of polyimide,
adhesive, and copper conductors (Figure 2), and while previously viewed as a lightweight appendix,
they today couple dynamically with the arm and produce undesirable off-track position errors.

The vibration of flex circuits and the roles played by such design parameters as the circuit’s finite
curvature, laminated structure, free length, and boundary conditions at the arm and electronics block
are discussed. Deformation of the circuit is described in the context of the initial unstressed shape,
configurations in which stresses set and relax in response to elevated temperature, equilibrium, and
small amplitude vibration free and forced vibration about equilibrium. The vibration model (Figure
3) treats arm rotation and planar motion of the circuit in the directions tangent and normal to
equilibrium. Non-linearity associated with finite curvature, spring-back, and the arm’s geometry and
inertia are also incorporated to predict natural frequencies, mode shapes, and coupling factors
between the circuit’s and the read/write head’s motion.

For one case study, Figure 4 depicts the mechanism’s lowest four modes. Each element of the figure
is annotated to indicate the natural frequency and the ratio n of displacements between the read/write
head and the flex circuit. Although the n are only a fraction of a percent in modes two and higher,
they have design implications owing to the required precision. A data track on a typical
performance drive may be only 500 nm wide, with positioning tolerances of £25 nm for write and
+50 nm for read operations. In a situation where the flex circuit vibrates at an amplitude
corresponding to one thickness (114 um) and with the coupling ratio being 0.23% in the second
mode, the head responds with amplitude 260 nm, some ten times above the drive’s write inhibit
limit. By using laser interferometry and the test stand shown in Figure 5, the natural frequencies of
each mode was measured at 356 Hz, 844 Hz, and 1.23 kHz, values in good agreement with the
predictions. Despite layered construction and attachments to the arm and electronics block, the flex
circuit presents the light damping ratio of only 1.1% in the second mode.

Figure 6 depicts trends for the coupling ratio in a parameter study of free length. For the (even)
modes two, four, and six, n is relatively insensitive to design changes in L. On the other hand, n has
a zero crossing for the (odd) modes three and five at nearly the same free length (26 mm). At that
design point, the natural frequencies have increased relative to their nominal values, but the
displacement ratios for several modes have either been reduced significantly or driven to zero. Such
trade-offs may be desirable in certain applications. In short, the distributed parameter vibration
model can be used to advantage for optimizing flex circuit designs with respect to vibration
transmission. Parameter and optimization studies in the model’s other degrees of freedom, and the
implications of flex circuit vibration for control system design, are subjects of current investigation.



Figure 1: The flex circuit routes electrical leads Figure 2: Microscope image of the cross-section
from the arm and heads to an electronics block. depicting the conductor, adhesive, and polyimide.
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Figure 5: Laser interferometer head and prism for Figure 6: Variation of coupling factors with length.
measuring flex circuit natural frequencies.



Vibrations of Layered Plates and Shells via
Reissner’s Mixed Variational Theorem

Erasmo Carrera
Aerospace Department, Politecnico di Torino,
e.mail: carrera@polito.it

Due to the non-continuous distribution of thermo-mechanical material properties in the thickness direction,
multilayered plates and shells exhibit a directional nature of the elastic behavior which is exploited to design material
as well as structural properties. Examples of multilayered structures used in modern aerospace, automotive and ship
vehicles are laminated constructions made of anisotropic composite materials, sandwich panels, layered structures
used as thermal protection or intelligent structural systems embedding piczo-layers. In the recent years, considerable
attention is being paid to the development of appropriate two dimensional shell theories that can accurately describe
the static and dynamic response of multilayered anisotropic thick structures. Exhaustive overviews are given in the
articles by Kapania [1], Noor, Burton and Bert [2] and Soldatos and Timarci [3].

The directional nature of multilayered structures leads to higher transverse shear and normal stress de-
formabilty with respect to traditional, isotropic cases. Therefore, further requisites become essential towards a reliable
modeling of layered structures. Among them, the fulfillment of both continuity of displacement (so called Zig-Zag
effect, ZZ) and transverse shear and normal stresses (so called interlaminar continuity, 1C) at the interface between
two adjacent layers are such a necessary desideratum. In [4] these requisites were referred to by the acronyms C?-
requirements which state that both displacements and transverse stress componcents are C"—continuous functions in
the thickness shell coordinate z.

A comprehensive model of anisotropic multilayered plates and double curved shells fulfilling a priori the
interlaminar continuity requirements for the transverse shear and transverse normal stress as well as the static con-
ditions on the bounding surfaces of the shell is developed in this paper. To this end, Reissner’s Mixed Variational
Theorem (RMVT) [5], is employed to derive the equations governing the dynamic equilibrium and compatibility of
each layer, while the interlaminar continuity conditions are used to drive the equations at the multilayered level. Both
Layer-Wise (LW) and Equivalent Single Layer (ESL) models have been addressed. Following Reddy [6] it is intended
that those theories which preserve the number of variables independent of the number of layers are herein denotes as
ESLM., while those theories in which the same variables are independent in each layer, are denoted as LWM. Classi-
cal displacement formulations based on Principle on Virtual Displacements (PVD) and related Layer-Wise (LW) and
Equivalent Single Layer (ESL) models have been derived for comparison purposes. Linear up-to forth order thickness
expansions are discussed and closed form exact solution are presented. The evaluations of transverse stress effects
have been conducted by comparing constant, linear and higher order distributions of transverse displacement compo-
nents in the plate thickness directions, No assumptions have been made concerning the terms of type thickness to radii
shell ratio i/ 2. All these modelings are have been written in a unified manner by referring to techniques that have

been developed by the Author in carlier works [4].



Table 1. Circular frequency parameter w / -é‘;‘f, of Simply supported square plates Cross-ply skew-symmetric
and symmetric laminates (layers of equal thickness); & = 40, G4& = Gha=50, GEL =60, v = vy, = VrT=
0.25.

0790
a/h 2 4 10 20 100
LM4 4703 7345 10.088 10.859 11.151
LM3 4.680 7332 10087 10859 11.151
LM2 4.668 7329 10.087 10859 11.151
LMI1 4136 5660 6666 6874 6.947

EMZC3  4.685 7.444 10.144 10.877 11.152
EMZC2 4727 7395 10.119 10.896 11.152

EMZC1 4672 7.340 10.106 10.878 11.170
EMC4 4731 7408 10.124 10.871 11.152
EMC3 4799 7.527 10.181 10.889 11.153

EMC2 4711 7352 10.092 10861 11.152
EMCI 11.259 7.822 10367 11.018 11.259

LD4 4,707 7.345 10.088 10.859 11.152
LD3 4710 7346 10.088 10.859 10.152
LD2 4803 7519 10.178 10.888 11.153
LDI1 4848 7562 10.215 10921 11.184
EDZ3 4780 7.490 10.165 10.884 11.152
EDZ2 4838 7.545 10.189 11.891 11.153
EDZ1 4848 7.562 10.215 10921 11.184
ED4 4.745 7425 10.132 10.874 11.152
ED3 4.883 7.647 10.235 10906 11.154
ED2 4968 7.701 10.254 10911 11.154
EDI 5.544 8314 10545 11.072 11.261

The availability of this large amount of modelings permits one to furnish a quite exhaustive assessment of
available 2D theories for vibrational analysis of multilayered, composites plates and shells. Free vibrational response
of layered, simply supported plates, cylindrical and spherical shells made of isotropic as well as orthotropic layers has
been analyzed in this work.

Two examples of assessments are considered in Tables 1 and 2, which are related to plates and shells, respectively.
Acronyms have been used to denote different theories: L/E, denotes LW and ESL variables descriptions, respectively;
M and D, denotes formulation based on RMVT and PVD, respectively; Z and C denote inclusions of Zig-Zag Effects
and IC, respectively; 1,2,3,4 denote the order of the used expansion in the thickness layer/multilayer direction; d
denote discarding of o . effects.

Comparison of frequency predictions based upon the implemented two-dimensional models with a number of results
spread throughout the specialized literature and obtained via other models reveals that this advanced model provides
results in excellent agreement with the ones based on 3-D elasticity theory, and better as compared to the ones, violating
the interlaminar stress continuity requirements. Further conclusions are listed below. -~ The possibility of describing
a priori interlaminar continuous transverse normal stress o, makes the mixed theories more attractive with respect
to other available modelings. — A very accurate description of the vibrational response of highly anisotropic, thick
and very plates and shells requires layer-wise description. — Any refinements of classical models are meaningless,
unless the effects of interlaminar continuous transverse shear and normal stresses are both taken into account in a

multilayered shell theory.



Table 2. Effect of radii to length ratio 2/a on w x a?, / j—. Comparison to exact solution and to other refined

analyses. a/h=10, m=1, n=2 unless given in brackets. Three layered ringed shell 0/90/0, hy=hs=hz/2.

EL/ET=25. GLT)"ET"-'.5, GTTK‘ET=‘2, V,[,'}'=UTT=.25.
Rzla 5 10 50 100
Exact 10.305™ 10.0277% 9.834*"  9.815
PAR4, 10.496 10.223 10.032%¢  10.013
HYP4, 10.496 10.226 10.036%¢  10.018
UNI,, 10.462 10.187 9.996% 9977
PAR., 10.329 10.051 9.859%6 9840
HYP,, 10.328 10.050  9.858%6 9839
— Present Analysis
LW4 10.3054  10.027?2 9.834*¢ 9815
EMZC3  10.309'  10.030%2 9.837%¢ 9.818
EMZC3d 10324 10.043%2  9.847%¢  9.828
EMZCI 103281  10.046%2 9.850%¢  9.831
EMZCld  10.3281  10.046%2 9.850%6  9.831

ED3 10.453'%  10.17922  9.988%6  9.969
ED3d 10.470'%  10.193%2 9.998%6 9979
EDI 113181 11.063%°  10.879%" 10.862
EDId 113181 11.06420 10.880%° 10.862
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SOME EXACT SOLUTIONS AND ENERGY CONSIDERATIONS FOR VIBRATING
PIEZOELECTRIC CONTINUA

Piotr CUPIAL
Institute of Mechanics and Machine Design, Cracow University of Technology
Al. Jana Pawla II-go 37, 31-864 Krakow, Poland. Email: cupial@mech.pk.edu.pl

Piezoelectric elements find wide application in different areas of vibration measurement
and generation, as well as in other engineering applications. Nowadays, the interest in these
materials has increased due to their use as sensor and actuator elements in smart structures.
Piezoelectric elements also hold a promise of application in microelectromechanical systems
(MEMS).

Much physical insight into the behavior of vibrating piezoelectric continuous systems can
be gained by studying three-dimensional exact solutions. This will be discussed by studying two
problems: the longitudinal vibration of a piezoelectric rod poled along its axis and exact three-
dimensional vibration of the flexural and through-thickness modes of a rectangular plate
polarized normal to its middle plane. The type of problem that needs to be solved is illustrated by
the following equation of longitudinal free vibration of a piezoelectric rod poled along its axis (z-
axis) and the corresponding electrostatic equation:

u 0 ou . 0
A———[A(E—+¢é,—)]=0
P o az[ ( oz 62)] 1)
0,.. Ou .
_[933"_‘633@]=0
oz oz oz

to be solved with the following boundary conditions specified at the rod ends:

o9

u=0 or E@+é“—~=0
5 o

oz
. ou .
=0 or e_,,_,g—e;,gzizo

Here u is the longitudinal displacement, ¢ -electrostatic potential, 4 is the cross-sectional area
and p is the mass density. The other quantities appearing in equations (1) are defined as follows:

2¢,, ¢, : 2(ey,)’

2
2(c;3)° A .. +
T s Gy = €33~ ' SpTSg T
TR ST 4P ¢+,

E=cs; (2)

The elasticity constants (¢, ), piezoelectric coefficients (¢, ) and the dielectric permittivity (€, ),
appearing on the right side of expressions (2), are defined in references [1] and [2].

The properties of structures undergoing flexural vibration are well illustrated by
considering a 3-D solution of the free vibration of a rectangular plate, as discussed in detail in
reference [3]. The full formulation of the problem and a stable numerical algorithm are discussed
there. It is pointed out that the algorithm details have been found to be very important in the
case when the wavelength along both plate sides is the same, as discussed in detail in reference
[3]. The calculated distribution of the mechanical and electrical fields over the plate thickness is

7



very useful in the construction of approximate plate theories (an alternative approach used in the
construction of approximate theories of piezoelectric plates and shells is the asymptotic solution
discussed in reference [4]).

Even though analytical solutions provide important information about the behavior of
piezoelectric ¢ ontinuous s ystems, further insight into the effect of electromechanical coupling
can be gained using energy considerations. The balance of energy will be discussed for a general
3-D continuum and plots shown of the time variation of different kinds of energy for the case of
a vibrating rod and a rectangular plate. As a direct result of the energy balance for the special
case of free vibration, one can obtain expressions for Rayleigh’s quotient. For the longitudinal
vibration of a piezoelectric rod, described by equations (1), the following extension of the
classical expression for Rayleigh’s quotient is obtained:

!
JAEW, @)Y +6,U,(2)@;(2)}dz
&} == f 3)
[paU} (z)dz

0

Formula (3) and similar expressions derived for more complex free vibration problems allow
efficient analysis of the electromechanical coupling in vibrating piezoelectric elements.

Even though a number of solutions of vibration problems are available for linear
piezoelectric continua, very few results exist for non-linear problems. Geometrical non-linearity
becomes important when large displacement effects can not be neglected. The general non-linear
theory of elastic dielectrics, which includes non-linear piezoelectricity as a special case, is
described in references [5] and [6]. Equivalent equations of non-linear piezoelectricity can also
be obtained from a more general theory of electromagnetic interaction developed in reference
[7]. Even though the general non-linear formulation is well established now, new numerical
solutions o f the non-linear piezoelectric vibration problems are needed and are being s tudied
now by the author. Some important points of the modeling of non-linear piezoelectric behavior
will be briefly discussed. Additional work is also needed for the physical non-linearity brought
about by the ferroelectric behavior, characteristic e.g. of many piezoelectric ceramics, and
described in references [8] and [9].
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On the Free In-Plane Vibration Analysis of Rectangular Plates by the
Method of Superposition

by
D. J. Gorman
Professor Emeritus
Dep,t of Mech. Eng.
University of Ottawa
Ottawa, Canada KIN 6N5

Numerous technical papers related to the free lateral vibration of rectangular
plates have appeared in the literature over the decades and more are added every year.
The situation with regard to in-plane vibration of these same plates is quite different. This
is no doubt due, in large part, to the fact that natural frequencies of in-plane vibration are
typically much higher and often beyond the normal range of available excitation
frequencies.

It has been drawn to the writer’s attention, nevertheless, that there are many
realistic situations where such in-plane vibrations play an important role. Examples are
the interaction between high frequency acoustic wave excitation and the in-plane
vibration of ship hull segments. It has also been reported by people working in these
areas that, due to the high frequencies involved, numerical methods, such as the finite
element method, do not function satisfactorily when applied to such problems.

As a result o f t hese e xperiences the writer has been encouraged to explore the
obtaining of analytical type solutions to these problems based on the superposition
method, a method he has exploited successfully over the years to solve numerous
rectangular plate lateral vibration problems.

In this paper the analytical procedure and preliminary computed results are
described in detail. As a demonstration problem, the free in-plane vibration of the
completely free rectangular plate is analyzed in detail. It is shown that the possible
vibration modes fall into three well defined families, as a result of considering symmetry,
or anti-symmetry, about the plate central axis.

The work begins by development of the two governing differential equations and
expressions for the in-plane stresses, in dimensionless form. It is shown that only one
quarter of the actual plate need be analyzed. For each of the mode families a pair of edge-
driven forced vibration problems (building blocks) are developed and superimposed.
Constants appearing in the combined solution, as a result of Fourier coefficients utilized
in representation of the distributed harmonic edge forces, are so constrained as to satisfy
the prescribed boundary conditions and thereby generate the eigenvalue matrix from
which eigenvalues and free vibration mode shape information is obtained.

Convergence is rapid and excellent agreement is obtained when computed results
are compared with those reported in an earlier paper where solution was obtained by



means of a Rayleigh-Ritz approach utilizing a quite complicated set of shape functions

[1].

Analogy between the superposition method as employed here and as employed
earlier to resolve plate lateral vibration problems becomes apparent. Results are also
presented for in-plane vibration of fully clamped and simply supported rectangular plates.

The analytical approach to be taken when seeking solutions to numerous practical
problems such as plates with attached masses, plates with fixed point supports, and plates
with elastic edge support, etc., are discussed. This will form the subject of future research
work. One is able to conclude that the superposition method is ideally suited for
resolving vast families of in-plane rectangular plate free vibration problems.

Reference:

[1] Bardell, N. S., Langley, R. S., and Dunsdon, J. M., (1996), ‘On the free in-plane
vibration of isotropic rectangular plates’, Jour. of Sound and Vibration, 191(3), pp 459-
467.
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Timoshenko Beams of Rectangular Cross-Section

James R. Hutchinson
Department of Civil and Environmental Engineering
University of California, Davis CA 95616

Introduction

In a recent paper [1] a general expression for the shear coefficient in Timoshenko beams was derived
using energy principles. Stephen [2] had derived the same expression for the shear coefficient in an entirely
different way in 1980. For a rectangular beam that (S-H) shear coefficient is highly dependent on the aspect
ratio of the beam. This research investigates the reasons for that behavior by comparing the results for a simply-
supported beam with a new series solution that satisfies the three-dimensional linear-elastic equations. Com-
parisons are also made to both elementary and Mindlin plates. It is found that the Mindlin and three-dimensional
solutions match very closely. That good match allows the use of the Mindlin plate solutions as a basis of
comparison for the free-free beam. For both simply supported and free beams the use of the S-H coefficient
gave a good match only when the aspect ratio was small (< 2) or the wave length was large. A shear coefficient
which would cause matching of the three-dimensional and Mindlin solutions would have to be a function of the
wave length as well as the aspect ratio. Physical explanations are given for the high dependence on aspect ratio
and for the dependence on wave length.

In Ref. [1], Timoshenko beam theory, using the S-H coefficient, was compared to a three-dimensional
series solution of the governing equations for the completely free beam. The three-dimensional solution was
described in Hutchinson and Zillmer [3]. Because of limitations on the number of terms required in the series,
the convergence was not assured. The limitation was caused by the size of the characteristic matrix. The order
of the characteristic matrix for the three-dimensional problem was NxNy + NyNz + NzNx , where Nx, Ny, and N;
are the number of terms in the x, y and z directions. It was found, however that a series solution could be
developed for the simply supported case for which the order of the matrix would be Nx + Ny . This solution can
then be easily made to converge to any required accuracy.

Beam Solutions

The Timoshenko Beam equations and solutions, as well as the elementary Euler-Bernoulli beam equa-
tions and their solutions, appear in most textbooks on structural dynamics. The S-H coefficient for a beam of
rectangular cross-section is given in Ref. [1]. The Timoshenko beam equations solved with the above shear
coefficient is referred to as the Timoshenko solution in this paper.

Three-Dimensional Solution

The three-dimensional solution for the simply supported beam is formed from a subset of the solution
forms derived in Ref. [3]. The assumption of simple supports allows one to directly satisfy boundary conditions
on the ends. The remaining boundary conditions requiring satisfaction are:

Tn(a,,2) =0, T(a,y,2) = 0, Try(x,5,2) = 0, Tyz(x,b,2) = 0, 0x(a,y,z) = 0 and 0y(x,,2) =0
Two series are formed from linear combinations of the solution forms in Ref. [4]. The series are chosen so that

the four boundary conditions on shear stress are identically satisfied. The two boundary conditions on normal
stress are satisfied by setting:

Lbox(a,y)sin PBydy =0 and j:ay(x,b)costxxdx =0
where a=(n-1)wa n=123.Nyx
and B=2n-1)m2b n= 1,2,3...Ny

Evaluation of these integrals yields a matrix eigenvalue equation whose order is Nx + Ny,

Plate Solutions

The elementary plate has been treated in a number of books and papers. The SS-F-SS-F Mindlin plate
was treated by Mindlin et al. [4] in 1956. In that paper, the authors assume a shear coefficient of 72/12 and build
that into their equations (3) [4]. This drawback is easily remedied by going back to Mindlin’s 1951 paper [5] and
rederiving these equations. The completely free Mindlin plate was solved by Gorman and Ding [6] in 1996 using

11



the superposition method. Rather than trying to duplicate their solution, a new solution for this problem was
developed. This new series solution compares well with the Gorman and Ding results.

The choice of a best shear coefficient in the Mindlin theory has also received some attention. In his
1951 paper, Mindlin [5] determined the shear coefficient in two different ways. Ina 1984 paper, Hutchinson [7]
found that by matching the solution for straight crested flexural waves at long wave lengths a shear coefficient of
5/(6 - v) could be found. In Ref. [7] this shear coefficient was found best for the lower frequency modes of
circular plates. It also provided the closest match to the three-dimensional theory developed in this paper.

28—

Results for Simply Supported Beams L
Fig. 1 shows the beam of length 2c, width 2a, and depth 2b. In Fig. 2, the values S -
of a shear coefficient, which would make the Timoshenko beam theory match the /
three-dimensional solution, are shown as dashed lines. The solid line is the S-H A %
coefficient plotted as a function of the width-to-depth ratio. The numbers on the =0
dashed lines indicate the length-to-depth ratio. It can be seen that when the length- B
to-depth ratio is very small the shear coefficient varies little with the width-to- | 7.~
depth ratio, whereas, for larger length-to-depth ratios the shear coefficient shows //
much greater variation and approaches the S-H shear coefficient. )

Fig. 1 Coordinates and
A perhaps better comparison is made with the natural frequencies in Figs. Dimensions of the beam.
3 and 4. These figures show the variation of frequency with the width-to-depth ratio for length-to-depth ratios of
10 and 20. The figures show the frequencies as determined by the three-dimensional solution (3D), the Mindlin
plate solution (M), the Timoshenko beam solution (TB), the elementary plate solution (EP), and the elementary
beam solution (EB). The Mindlin solutions plotted as essentially the same curve as the three-dimensional
solutions and are labeled (3D-M).

One very interesting result, which is most evident in Figs. 3 and 4, is that the elementary plate solution
shows a frequency variation with the width-to-depth ratio that mimics the frequency variation for the three-
dimensional solution. The elementary plate formulation does not allow for any shear deformation or rotary
inertia. This leads to the conclusion that the large variation of frequency with the width-to depth ratio is not
brought about by the presence of shear deformation and rotary inertia, but rather by plate action. There are
several things occurring in plates that aren’t usually accounted for in beam theory. One, is the effect of the
variation of the displacement v (y direction) as a function of the width coordinate x on the inertia. This effect was
accounted for in Ref. [1] by assuming full anticlastic curvature and leads to increased inertia and hence a lower-
ing effect on the frequency. Another plate effect is the twisting effect that produces the twisting moment. This
effect was accounted for in Ref. [1] by the assumption of the shear stress distribution found from the three-
dimensional solution of the tip loaded cantilever. This assumption gave shear stresses 7xz as well as Tyz. Itis the
Txz stress that produces the resultant twisting moment in the plate. This twisting produces a stiffening effect and
hence increases the frequency. The combination of these plate effects leads to a rise in the frequency with an
increase in the width-to-depth ratio. The plate effects are the main cause of the frequency variation with the
width-to-depth ratio.

The plate effects also lead to an understanding of the reasons for the divergence of the Timoshenko
beam equations from the three-dimensional solution for large width-to-depth ratios and short wave length-to-
depth ratios. For a short wide beam, the end effects are significant. In the central portion of the beam, the
variation of the displacement with x will be greatly suppressed and the plate will not be able to take on the full
anticlastic curvature. The twisting effect will also be greatly suppressed. To see this more clearly Figs. 5 and 6
show the displacement v(x,0,0) calculated from Mindlin plate theory (M) and from the Timoshenko beam theory
(T) using the displacement field assumed in Ref. 1. Fig. 5 is for a length-to-depth ratio of 20 and a width-to-
depth ratio of 2. Fig. 6 is also for a length-to-depth ratio of 20 but with a width-to-depth ratio of 10. It can be
seen that for the width-to-depth ratio of 2 the displacements match but for a width-to-depth ratio of 10 they differ
greatly. The twisting moments were also calculated for these cases and again they matched for the width-to-
depth ratio of 2, but were greatly different for a width-to-depth ratio of 10 which is shown in Fig. 7.

Results for Free-Free Beams
In Fig. 8 the values of a shear coefficient, which would make the Timoshenko beam solution match the
Mindlin plate solution for the first mode. This figure shows the same type of behavior as for the simply sup-
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ported case. Similar results were found for higher modes. Figs. 9 and 10 show the variation of frequency with
the width-to-depth ratio for length-to-depth ratios of 10 and 20. Again it can be seen that the elementary plate
variation mimics the Mindlin plate variation. All conclusions drawn for the simply supported beam are equally
valid for all modes of the free-free beam.
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Vibration in Wide Woodcutting Bandsaws

Stanley. G. Hutton
Department of Mechanical Engineering
University of British Columbia
Vancouver, B. C., Canada V6T 174
hutton@mech.ubc.ca

Background

Large bandmills are widely used as head rigs for primary breakdown in the lumber industry.

Such bandmills may have 10 ft diameter wheels with the bandsaw being of the order of 12in wide. The
speed of the bands is of the order of 10,000f/min. It is very common for such mills to suffer from the
problem of washboarding in which a sinusoidal (washboard) pattern is left on the cut boards. This
problem is similar to the problem of chatter in metal cutting. The washboarding is caused by high
frequency oscillations of the travelling band and experience shows that the washboarding pattern occurs
in two distinct forms as shown in Figure 1. There is not a gradual change in the pattern between these
two cases, either one or the other is obtained or both together. A further important feature of the
washboarding is that it is extremely sensitive to the depth of cut. Below a certain depth of cut no
washboarding will occur and above this depth it will always occur.

Figure 2 and 3 show the vibration spectra of the travelling blade measured at a space fixed
location beneath the cut for the two types of washboarding pattern. In these spectra the wheels are
rotating at 520rpm (corresponding to a linear speed of 8,170 fmin) and the tooth passing frequency is
933Hz (the number of teeth that pass a space fixed point in one second).

Further parameters of interest are:

a) the band passing frequency ( the number of times that a specific point on the band passes a space
fixed point) which has the value in this case of 4Hz. If for example there was one bent
tooth or a high spot in the blade then the cutting force applied to the blade would experience a

variation at the band passing frequency.

b) the wheel rotation frequency which, in this case has a value of 8.7 Hz. As the wheels will not be
perfectly round or perfectly balanced it can be expected that there will be some axial excitation of
the band at the wheel rotation frequency and its harmonics

In general, therefore, one might expect variations in the cutting forces applied to the blade at:

a) the tooth passing frequency, due to the fact that in general the number of teeth in the cut will be
changing at this frequency and also due to the impact of each tooth as it enters the cut;

b) the band pass frequency and its harmonics due to any imperfections in the teeth or band geometry;

¢) the wheel rotation frequency and its harmonics.

Excitation Mechanisms

Of interest is the determination the excitation mechanisms that are responsible for the
washboarding and an analysis that quantifies this behaviour. Possible mechanisms are:
a) Resonance with forced excitation at the tooth passing frequency
b) Instability due to the regenerative character of the lateral flank cutting force.
¢) Instability due to parametric excitation of the axially loaded band
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d) Forced vibration due to modulation of the forces at the tooth passing frequency by the
band pass frequency

The paper presented will discuss these various mechanisms and draw some conclusions as to the
mechanisms actually responsible for the washboarding.

(b) Type I1

Figure 1 Bandsaw washboarding patterns
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PSD of (b520162140a.600) at Point 1 (n=520 rpm, Bite=0.0347 in, R,=14.0 kibs )
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Figure 2 Displacement Power Spectrum of the Blade for Type I Washboarding.

(18G2H2 n=520 rpm, Bite=0.035 in, D.,~=9.5 in, R=14 klbs, Douglas fir,
Type I: Wy =095, P.=44 mm, P,=31 mm, heavy)

PSD of (b520070140a.600) at Point 1 (n=520 rpm, Bite=0.0150 in, R;=14.0 kibs )
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Figure 3 Displacement Power Spectrum of the Blade for Type Il Washboarding.

(18G2H2 n=520 rpm, Bite=0.015 in, D, =9.5 in, Ry=14 klbs, Douglas fir,
Type 1I: W =1.0, P,=5.8mm, P,=29 mm, heavy)

16



GOOD OLD DYNAMIC STABILITY FUNCTIONS FOR BEAMS CARRYING RIGID
BODIES

S. llanko
Department of Mechanical Engineering, University of Canterbury, New Zealand

Structural and civil engineers have been using static and dynamic stability functions for the
determination of buckling loads and natural frequencies for several decades. In vibration analysis, this
method is convenient for determining the “exact natural frequencies” of continuous systems. Their
potential use in the analysis of some common mechanical systems such as beams carrying rigid bodies
seems to have been largely overlooked by researchers. Several recent journal publications contain
derivations of the boundary condition equations from first principles. These problems could have been
solved more conveniently using the dynamic stability functions, which give the same result.

Static stability functions [1,2] have been used extensively by civil engineers for calculating the critical
loads of frameworks. Dynamic stability functions, based on the method outlined by Velestos &
Newmark [3] were published in Table form by Armstrong [4]. Dynamic stability functions that took
into account the effect of axial force (geometric stiffness) were presented by Mohsin and Sadek [5].
An experimental study on skeletal frames in partial fulfilment of the requirements of an undergraduate
project [6] at the university of Manchester by the author, gave results that were in agreement with the
theoretical results using the functions presented in [5]. This method was extended to solve a variety of
continuous systems which contain tapered beams, Timoshenko beam-columns and folded plates to
name a few, [7-9] by Williams and a number of other researchers. The method involves setting up a
dynamic-stiffness matrix that takes into account the stiffness and mass distribution in a structure. The
coefficients of this matrix are transcendental functions of the frequency and the natural frequencies
may be calculated by searching the roots of the determinantal equation. This may be done by several
trial and error search procedures, which should use the Wittrick-Williams algorithm [10,11] to ensure
convergence on the required eigenvalue.

The purpose of this paper is to show how the method can be applied to a connected system containing
rigid bodies. Dynamic stability functions are stiffness coefficients that give the actions (forces or
moments) at the ends of a structural member (beam, bar, shaft etc) due to a prescribed unit
displacement (translation or rotation at one of the ends of the structural member). For the present
paper, we will confine our investigation to the study of a particular beam system. If one end of a beam
of length L and flexural rigidity £/ is pinned and the other end is given a rotation 6, then the resulting
actions at its ends are expressed in terms of a nominal elastic stiffness factor k = E//L and dynamic
stability functions, S, Q" and ¢”, as shown in Figure la. Similarly the actions due to a translation 5of
the end that isn't pinned, are expressed in terms of dynamic stability functions, Q”, ¢”, 7" and " as
shown in Figure 1b.

, kQ "L kT 8L
......... %2 J |
-------------- o 3 kS"0 | o
l kQ" 8L
kQ"q L kTt 8L
: Figure 1b
Figure la

Figure 2 shows a system that has been used by the author as an example in his vibration lectures.
Results for the special case of e;=e; have been published by Kopmaz and Telli [12]. This consists of
two Euler-Bernoulli beams that are pinned at one end and rigidly connected to a rigid body at the
other end. The centroid of the rigid body is located at distances e; and e, from the tips of the left and
right beams. The body has a mass m, and moment of inertia /, about its centroid. The beams on the
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left and right will be referred to as beam 1 and beam 2 and have the following properties. Mass per
unit length, m,,m,, flexural rigidities E/,,El,, and lengths L,,L,. Non-dimensional frequency

@’ L
parameters for the beams A,and A,are given by A' = B 4 o i=1,2 <)
Let the centre of mass be given a
: Ey)h, A
translation 4 and rotation ¢. This would prEvh, 4, G PrEnk 4,

result in translations of A— e;gand 4 + —— _ e a
@A

e, ¢ of the left and right side beams at the
point of attachment. They would both - ; , [ I EZZW/
rotate by angle ¢. Using the dynamic : e 2

stability functions we can express the e

moment and force at the ends of the two Figure 2

beams. By Newton’s third law of

motion, the forces and moments acting on the rigid body are therefore equal and opposite to those on

the beams. These actions are shown in Figures 3a,b and c. Using the free-body diagram of the rigid
body in Figure 3b, we can find the net force and moment, and by applying Newton’s second law of

F e
Fft—», €

""""""""""""""""""""""
------
......
........

Figure 3a Figure3b = /2 Figure 3¢
motion we can the derive equations of motion.
The net forces in beams 1 and 2 are given by:
k LJ L
Fo=| B2 [ B0 9) .42)
LI Ll
B kT
Fo=| =222 gl F2%a in. o .3
= (A o B e o
The moments in beams | and 2 are given by:
M, =(k|Sr)¢+(%QL}(A+el¢) and ...(4)
I
” k, 03
M, =(k2‘gz)¢_(_i%](5““z¢) -(5)
2

Now let us consider the motion of the rigid-body (see free-body diagram in Figure 3b).Applying
Newton’s second law of motion in the translational and rotational sense gives the following equations:

F,+ F, =—myA = 0*m,A ...(6)
M,+M,+Fe, -Fe,=-1,¢=0"l¢ (7

Substituting equations (2-5) into equations (6) and (7), and some simplification including non-
dimensionalisation of the parameters result in the following matrix equation:

[DEs}= {0} (8

where the coefficients of the dynamic stiffness matrix [D] are defined by:
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Dy, VIfyly—ap' s Di: = Dy =p’Ql-w0s +y’n I -ymTy; Di» =
787+ 2000+ ST +2m,05)+ (T + ytin})- 1 A +(9a-d)
L El m / e
Here, y =2, y=—2;a=—2; f=—2—; p = fori=12: ...(10
LY TR T P T m T, (9
The dynamic stability functions are [4]:
53 s S _
" p N4, Jainid, ) for #=1,2; ..(11a)
(c:osh(/'v'.f )sin(4,) — cos(4, )sinh(A4, ))
2 . &
o= (cosh(2, )sin(4,) + cos(4,)sinh(%, Wi i .(11b)
(cosh(4,)sin(4,) —cos(4,)sinh(A4,))
3
- 2/1{ cosh(4,)cos(4, )‘ for i=1.2: (10)
(cosh(l,. )sin(4,) —cos(4,)sinh(4, ))
and 4, = A,y‘/z, where ¢ = 2 ...(12a,b)
v m,

The natural frequency parameters are found be solving |D| = 0. As expected the solution of this
equation agrees with results of [12] which can be generated using a computer program available on
www [13]. Natural frequencies of other mechanical systems consisting of skeletal elements, rigid
bodies and partial support restraints may also be determined conveniently in this manner. With the use
of W-W algorithm, the use of dynamic stability functions remains a convenient method for natural
frequencies of continuous systems.
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Simultaneous Optimal Design of Stiffness and Damping
of a Flexible Structure Reinforced by FRP Sheets
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E-mail:kobay@eng.hokudai.ac.jp

INTRODUCTION

This paper presents an optimal design of a flexible structure reinforced by fiber-reinforced plastic (FRP)
sheets that takes into account both stiffness and damping characteristics. The optimal design of laminated
plates for maximum fundamental frequency and maximum buckling load has been investigated by many
researchers(!)~4). We propose an objective function that takes into account both stiffness and damping
characteristics. To improve vibration characteristics, the design variables are determined by using an opti-
mization technique. The validity of the present method is verified by numerical examples and by compari-
son with results of experiments.

MODELING

Figure 1 shows a cantilever steel plate reinforced by FRP sheets. The coordinates (x,y,z) in the middle
plane of the plate are taken as shown in the figure. Length and thickness of the steel plate are L and ¢; and
those of an FRP sheet are L, and ¢y, respectively. The principal directions of elasticity are denoted by L
and T, and 0 is the angle between L and x axes of an FRP. The widths of the steel plate and the FRP sheet
are both b. Expressing the loss factor of steel as &, the complex modulus of longitudinal elasticity of steel
can be written as E! = Es(14 j8;). The complex modulus of longitudinal elasticity £}, E7 of the principal
directions and the complex modulus of transverse elasticity G can be obtained by the rule of mixtures.

The whole plate is divided into two parts with different thickness, and each part of the plate is denoted
by element 1 and element 2 from the clamped edge. Only element 1 is reinforced by FRP sheets. Denoting
the transverse displacements of these elements as W and W5, we propose displacement functions that satisfy
the continuous conditions of displacement and slope at the stepped line located at x = —L/2 + Ly,

I 1 ) Ls
W;(x,y) = Zz a,-,ax’(x+5 2}’1,
i=01=0
I _ L ;
Wi(x,y) = ZZ bjfxl(x+E_L}'))’,+W| lx:—!g+£.,
i=01=0
L; oW,

+ (x+? "Lf)gix.___{?_'_f_" (1)
where a;; and bj; are unknown coefficients. For free
vibration, the transverse displacement may be ex-

»

A _ pressed as

; h =

2 . wx,pt) = Walx,y)sin(ex) (n=1,2), (2)

7 1 where o is the frequency in radians/second. Apply-

d . ing the Ritz method, complex eigenvalues f? are ob-
: 1 tained as follows:
‘ . B o = (1 + jn), )

Li L
3 cloment] i where 1) is the loss factor corresponding to the natu-

ral frequency .
Figure 1: Cantilever plate model
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The transverse displacement w can be expressed as

P
wlx,pt) = Z ka(x!y)qf(t) (n= 1,2) 4)
k=1

by using the time function g and the mode shape function W, ; given by the Ritz method. The equation
of motion is derived by using Lagrange’s equation. Assuming that an external force with amplitude F is
applied at (x,y) = (Ls/2,b/2), the generalized force ¢ is expressed as

Ok = FWy(Ls/2,b/2) = F f;. (5)
The state equation of the kth mode is expressed in the matrix form
Xy = AXi+BiF, (6)

1
e [ —((]oﬁ _zgka v Be={0, i}7, Xi = {q,qi}7,

where §; = 1/2 is the equivalent viscous damping of the kth mode. Assuming that displacement is mea-
sured at (x,y) = (L;/2,—b/2), the output equation can be written as

wi = CeXy = {ci, 0}X;, (7
where wy is the displacement of the kth mode and g = Wsx(L,/2, —b/2).
OPTIMAL DESIGN

In this study, an optimal design is formulated as a general optimal problem such that design variables
are determined by minimizing an objective function under constrained conditions. To improve the stiffness
and damping characteristics of the initial design structure, we propose the following objective function:

Ji = fn " X7 (@)PX; (0)do, (8)

where Xj(w) is obtained by Laplace transformation of Eq.(6) when k = 1. P is the symmetric, positive
definite solution of the algebraic Riccati equation:

ATP+PA+G'C = o, (9)
b L,
2 b O e :;
G ={a,0}, a’= {/,_ Widx + _/ W3 dx}dy.
= = ~F+y
The optimized structure obtained by using Eq.(8) is denoted by OPT 1.
Another optimized structure obtained by using the objective function:
wﬂlﬂl T -~ r -~
h= [T X (@6 CXi(0)do, (10)
0

is denoted by OPT 2. The value of Eq.(10) decreases even if the damping ratio does not increase, because
the response can be reduced across a broad frequency by increasing the stiffness of the structure. The
optimized structure obtained by using Eq.(8) under the condition Ly = L; is denoted by OPT 3. That is,
OPT 3 is reinforced by FRP sheets over the whole surface of the steel plate. Moreover, we consider the
optimized structure OPT 4 by using

i ml,init‘ (11)

W)

where subscript "init” denotes the initial structure before ompitization. The first natural frequency is maxi-
mized in the case of OPT 4,
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Table 1: Specification of the plate

E, | 206GPa || ps | 7-86 x 107kg/m’ Table 2: Design pamameters
3 3
g: 23%3;3 Pe 12X :33:5§"‘3 OPTI OPT2 OPT3 OPT4
o Pre |~ s g/m L(mm) 298 327 600 317
Vs : Xe : t(mm) 066 060 033 062
Vm | 038 || & 0.6 mm 0 239°  165°  21.0°  0.0°
tr | 072mm || & 130 mm -
Ly | 600mm || L 400 mm
Table 3: Numerical results Table 4: Experimental results
int OPT1 OPT2 OPT3 OPT4 init OPTI OPT2 OPT3 OPT4
o (rad/s) 882 167 188 124 232 w(rad/s) 882 158 188 11.6 228
L(%) 018 086 063 042 022 Ci(%) 018 096 054 050 024
H\(dB) -17.0 -268 -289 -244 -315 H(dB) -17.0 -266 292 -246 -31.5
H)dB) 318 847 905 168 158 HydB) 318 742 100 158 135

Thickness ¢/, length L, and fiber angle 6 of the FRP sheet are used as design variables. FRP sheets are
symmetrically pasted on both sides of the steel plate as (8/steel /8). A constrained condition for the mass
of the structure is introduced as

Mass = aMassinir, (12)

The simple genetic algorithm (GA) is used to seek the minimum value of each objective function. For these
structures, parameter o in Eq.(12) is set to 1.2. The simple GA is also used to identify unknown material
parameters of FRP in experiments.

RESULTS AND DISCUSSIONS

Table 1 shows the specifications of the initial plate. After optimization using the objecting functions,
the design variables are determined as in Table 2. Table 3 and 4 show numerical and experimental results,
respectively. Values of Hy and H, are static displacement H, = C1X7(0) and resonance peak of the first
natural frequency /5 = C)Xj (o). The damping ratio of OPT 1 is the largest of all optimized structures
and the natural frequency of OPT 1 is almost twice of the initial design structure in each table. It is verified
in the experiments that the stiffness and damping characteristics of OPT 1 are improved effectively.

CONCLUSIONS

The complex eigenvalues of a stepped plate reinforced by FRP sheets were obtained by the Ritz
method. Displacement functions that satisfy continuous conditions of displacement and slope at the stepped
line were used as admissible functions. The objective function to improve both the stiffness and damping
characteristics was proposed. Vibration characteristics of the optimized structure were superior to those of
a structure whose fundamental frequency was maximized.
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Coupled Belt-Pulley Vibration in Serpentine Drives with
Belt Bending Stiffness

Lingyuan Kong and Robert G. Parker
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Abstract

Serpentine belt drives with a long, flat, multi-ribbed belt have been widely used in
passenger automobiles and heavy duty trucks. Crankshaft torque pulsations due to engine
combustion and dynamic accessory torques excite rotational vibration of the pulleys, which
can be further transmitted to the belt spans although no direct transverse forces are applied
on these belt spans. Large transverse belt vibrations from pulley-belt coupling produce
noise, reduce belt life, and cause belt slip. Treating the belt spans as strings [1] can only
explain the coupling between the tensioner and the two adjacent belt spans.

Modeling the belt as a moving beam [2,3] provides a mechanism whereby pulley
rotation couples to transverse vibration of all spans, including those bounded by fixed
centers. This provides an explanation for the span vibrations observed in practice. This
mechanism applies at engine idle speeds where parametric excitation mechanisms based on
higher frequency excitation do not apply. In this study, free vibration analysis of a
continuous/discrete model [2,3] of a prototypical serpentine belt system (Figure 1) is
investigated which shows the modal coupling between all spans and pulleys.

K\

parallel lo
spans 1 ,2-\\.

ﬁm

Figure 1. A prototypical three-pulley serpentine belt drive.
Application of Hamilton’s principle yields the equations of motion (1)-(9) for the
system in Figure I.
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Linearization about the equilibria leads to a conservative gyroscopic system [3]. Solving
the corresponding continuous/discrete eigenvalue problem is complicated by the coupled
inhomogeneous boundary conditions (2) and (3). For example, to overcome this difficult, a
modification of Holzer’s method is used in [1] to determine a boundary condition error
function akin to a characteristic equation. But due to singularities and numerical ill-
behavedness of the characteristic equation, the accuracy and completeness of the calculated
natural frequencies can not be guaranteed. Further, this method can not be directly applied
to the present model because it needs the explicit form of a traveling string eigenfunction

and no such a form exists for a moving beam.
In the work, a spatial discretization is developed for the system with belt bending

stiffness and non-trivial equilibria. A key step is to reformulate the span deflections in
terms of variables satisfying homogeneous boundary conditions

yizwl—;—:xcosﬂlﬁ, y2=w2+:—;(x—l)cosﬂ29, Y3 =W, (10)
y.0,0)=0 y,(LO)=0 y,  (0,0)=0 y, . (L)=0,i=123 (1)

Note all span axial coordinates are non-dimensionized to the interval [0,1].
Additional mathematical formulations cast the hybrid system into a structured extended

operator form
MY +GY +KY =F, Y={y7,7,66,6,6,} (12)

<Y,U>= [ yide+ [ yigdet [ yiadi+ Y 0,5,+6,7, (13)

where the differential operators M and K are symmetric and G is skew-symmetric, as
expected for a conservative gyroscopic system. This form and the trivial boundary

conditions for y, make Galerkin discretization readily applicable with the expansion
Ny+Ny+Ny+4

Y= ) a @y, (x) (14)
k=l
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where  y, ={sin(knx),0,0,0,0,00}" k=12,..N, for the first span, and
v, ={0,0,0,1,0,0,0} for the pulley 1. For other spans and pulleys, the basis functions are

similar. The y, are global comparison functions where each one describes a deflection of

the entire system and satisfies all boundary conditions. They form a complete set. This
gives the following equations of motion and eigenvalue problem

[M]A +[G]A +[K]A =f (15)
- G)IIM],O-G-I'MG];) +[K]lp=0,A= pem 2 = {al’azs"'aﬁ,+~,+~,+4 }r (16)
M, =(MW,',W:) G, =(GW,6.W.‘> K= (K'Vj.%) Ji =<F,lf/,-) (17)

The matrices [M], [K], and [G] inherit the symmetry/skew-symmetry of the corresponding
differential operators in (12). These properties ensure that the eigenvalues are purely
imaginary, as required for a conservative gyroscopic system.

The method has several advantages: 1) It is easy to implement because of the simple
basis functions; 2) It is efficient, accurate, and reduces computation time; 3) It does not
require a user-specified bandwidth to search for natural frequencies; 4) It is numerically
robust and free of missing/false natural frequency concerns; 5) Because the method uses
Galerkin discretization, all properties of that approach are retained, including convergence
of the eigenvalues from above; and 6) Dynamic response analysis is easy to implement
using (15). The spatial discretization can be used to solve other hybrid continuous/discrete
eigenvalue problems.

New dynamic characteristics of the system induced by the belt bending stiffness are
investigated. For appreciable bending stiffness, all modes are spatially distributed and
involve transverse deflections of all spans in addition to the pulley rotations, in contrast to
zero bending stiffness models where the modes divide into rotational pulley and transverse
span modes.

While the natural frequencies generally increase with bending stiffness, the changes are
not monotonic. For small bending stiffness, some natural frequencies initially decrease.
This unusual phenomenon results because the system equilibrium changes with bending
stiffness in a way that tends to increase compliance for deflections about equilibrium.

Belt speed has reduced effect on the natural frequencies as bending stiffness increases
within practical ranges. In contrast to the string model where only transverse dominant
modes are affected by speed, all natural frequencies change with speed as bending stiffness
induced modal coupling increases. Unlike single span moving string and beam models,
serpentine drive natural frequencies do not decrease monotonically with speed.
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Three-Dimensional Vibration Analysis of Bodies of Revolution
by the Ritz Method

Arthur W. Leissa

Colorado State University
Fort Collins, Colorado USA

It has long been the desire of analysts to obtain truly three-dimensional (3-D) solutions to
problems in mechanics. Until three decades ago, when computers became fast enough, with
sufficient capacity, this was possible only in a few special cases, typically having questionable
physical meaning; for example, exact solutions of differential equations satisfying unrealistic
boundary conditions.

For the free vibration analysis of bodies of revolution, truly 3-D solutions are obtainable
more easily, because the modes separate into Fourier components in the circumferential (&)
direction, reducing the problem into ones which are mathematically 2-D. Figure 1 shows a
generating cross-section of a typical body of revolution, obtained by rotating it once about the y-
axis. For some configurations it is more convenient to use cross-sections laid out in cylindrical
coordinates, as shown in Fig.2. These types of cross-sections may be used to create a wide variety
of 3-D structural elements of practical, as well as mathematical, interest.

The Ritz method is used to solve these problems. The three displacement components
(ug,uz,ug ) are expressed as trigonometric functions in @, and power series in # and z, with arbitrary
coefficients for the series terms. The series are chosen so as to be applicable for fixed or free
conditions for each of the displacement components at each of the boundaries. Frequencies
(eigenvalues) and mode shapes (eigenfunctions) are obtained in the usual way by minimizing
(Var ~Tmex ). Exact solutions are approached as closely as desired by taking sufficient polynomial
terms.

Extensive, accurate results have been obtained in this manner for the frequencies of 3-D
bodies of revolution. These shapes are obtained by using various principal radii of curvature ( /2,
and 10, ) to the midsurface of the generating element in Fig.1; for example, a plate ( 5, = 0, =0 ),
and spherical ( o, = p, = a), circular cylindrical (o, = o0, £ = r/sing,), toroidal, paraboloidal,
ellipsoidal and hyperboloidal shells, thin or thick. One may have constant or variable thickness, h .
The meridional boundary angles ¢, and @, at the top and bottom may be chosen so as to obtain
shell segments, or closed shells. In addition to shells (hollow bodies), solid bodies may be
analyzed.

This presentation summarizes briefly the method of analysis, and gives results taken from a
few of the References cited below. Convergence of the solutions is discussed, along with the size of
determinants needed to obtain accurate frequencies (exact to four digits). Although a properly
constructed 3D finite element computer program could be used, determinants of at least ten times
this size would be required to obtain the same accuracy.

26



hy

L
Do
y(axis of revolution)
Figue 1. Cross-section of a curvilinear Figure 2. Right triangular cross-section with
generating element. cylindrical coordinates.
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Vibration of Nonlinearly Pretwisted Helicoidal Structures
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ABSTRACT

The paper presents a new approach for vibration analysis of helicoidal structures with a
large nonlinear pretwist. It also addresses the issue as to what extent the linearized twisting
curvature is applicable in the analysis of pretwisted plates. Employing a nonlinear helicoidal
model and a natural orthogonal coordinate system, the large nonlinear pretwist is formulated
and the energy stored in a distorted helicoil subjected to an external pressure normal to the
helicoil axis is derived. By integrating the internal strain energy and external pressure work
over the helicoidal domain via a variational principle, a homogeneous system is presented and
numerical solutions are obtained. Significant structural responses such as deformation
components and resultant, the effects of width and thickness of helicoil on bending are analyzed
and discussed. The analysis can be extended to other areas of interest such as turbomachinery
blades, drilling structures, motors in micro-electro-mechanical systems (MEMS) and also

DNA biomechanics.
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Chaotic Oscillations of a Double-Curved Shallow-Shell
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1. Introduction
Both experimental and analytical results are presented for chaotic oscillations of a double-curved
shallow shell with rectangular boundary. At the boundary, the shell is simply supported for the
deflection, and is elastically constrained for the in-plane displacement. The shell is excited by
lateral periodic acceleration. In the analysis, configuration of the shell is assumed to have
individual constant curvatures along each edge. The Donnell-Mushtari-Vlasov type equation is
used introducing lateral inertia force. Assuming deflection with multiple modes of vibration, basic
equation is reduced to nonlinear coupled differential equation by the Bubnov-Galerkin procedure.
Chaotic responses are obtained by numerical integration. Both results of the experiment and the
analysis are examined as follows; the frequency response curve shows regions where the chaotic
response is generated from periodic responses. The chaos is confirmed by the Poincaré projection
and the maximum Lyapunov exponent. Contribution of modes of vibration to the chaotic response
is analyzed by the Karhuen-Loéve transformation. The analytical results agree well with the
experimental ones. Moreover, the chaos of the shell involves more than three modes of vibration
simultaneously.
2. Procedure of Analytical Solution

As shown in Figure 1, the rectangular shell with double arcs of curvatures R. and R, is subjected
to the periodic acceleration ¢ +a,cos{2 . ¢ and a, correspond to the gravity and the amplitude of
excitation, respectively. £2 is exciting frequency. The shell boundary is assumed to be simply
supported for deflection. It is also assumed that opposite sides of the shell are constrained by same
springs. The springs have non-dimensional elastic coefficients k« and k, along x and y direction,
respectively. Denoting w and f as non-dimensional total deflection and stress function, governing
equation is given by

V4f=C[ﬁz(w'ﬁnzp—w’ﬁw!ﬂﬂ)'— a,ﬁzw,,m— ay“f',g‘;], (l)
L(w-:f)E“’;n+v4w~axﬁzf,!m_ ayf,&{"ﬁz(f.m‘,l w’ﬁ_2fi‘fﬂwﬁtfﬂ+j‘!§fwsmi)
~q;6(§—&)0(n—mn)—(p;+pycoswt)=0, )

where {=x/a and n=y/b are non-dimensional coordinates. V’=0%9&* B29%9n? is the Laplace
operator. & =a?/Rh and &, =a?* Ryh are non-dimensional shell curvatures. f=a/b is aspect ratio
of the length of the rectangular boundary, (p, p))=(9.a,) pa*/D (D=Eh*/12(1-v?) ) corresponds
to non-dimensional load intensities. In-plane displacements (1, v)=(U, V) a/h* are described by f
and w. At the boundary, resultant force is in equilibrium with the spring force.

To solve the equation, first the deflection w is assumed as:

W=;;b-mﬂ(r)5in maésinnrn, (m,n=1,2,3,...), 3)
where p,,, is unknown time function. sinmzn& sinnzn is the coordinate function which satisfies
the boundary condition. Inserting the foregoing equation to the compatibility equation (1), stress
function f consists of homogeneous solution and particular solution of the term j,,, . Inserting the
solution of /" and assumed deflection w into equation (2), and applying the Galerkin procedure the
equation is reduced to a set of nonlinear ordinary differential equations in the term of j,.,. Next,
static deformation is obtained. Using linear natural modes of vibration, the equation is transformed
to standard type of coupled equations as:
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5f’rr+2€iwl'5iar+ 0),-26,"5' J%ﬁ,‘j*b}b}"'%@?ﬁuﬂb}f;kb}—pdG,' cos wt=10
(G, ).k, 1=1,2,3,...), (4)
where 4 ;(7) denotes unknown time function corresponding to the i-th mode. Linear damping is
introduced in the equation. Harmonic response is calculated by the harmonic balance method.
Chaotic response is computed by numerical integration of the Runge-Kutta-Gill method.
3. Experimental Procedure
A phosphor-bronze sheet of thickness #=0.24 mm is used as a test shell. The test sheet is cut to a
square. Side lengths result in ¢=139.7 mm and 5=139.8 mm. The boundary of the shell is
connected to inner walls of the square frame by thin flexible films. Strip of the films are wrapped
round the edges of shell alternately, and are pasted to the wall. Shell boundary represents simply
support for the deflection and elastic constraint for the in-plane displacement. The shell has initial
deformation in double-curved shape due to the cutting process, the connection to the frame and the
gravity force. The maximum deflection in positive z-direction is approximately 0.3 mm.
Consequently, the shell has negative curvatures. The shell is subjected to the periodic acceleration
by an electro-magnetic vibration exciter. Multiple sets of laser displacement sensors enable
recording simultaneous chaotic responses at different points of the shell.
4. Results and Discussions
Static deformation and natural frequencies of the shell are measured in the experiment. Static
deflection under concentrated load is shown in Figure 2. Restoring force of the shell shows
characteristics of soft-hardening type including negative gradient. Table 1 shows natural
frequencies of small amplitude of vibration. Using the results of restoring force and natural
frequencies of the experiment, shell curvatures are approximated as &=6.3 and &=7.5
including the effects of the gravity. Spring coefficients are also identified as &=0.1 and k,=0.01 .
Analytical results are also shown in Figure 2 and Table 1. Frequency of the lowest mode has large
discrepancy due to initial imperfection of the shell. However, higher frequency of the analysis
agrees well with the result of the experiment. Figure 3 shows the frequency response curve.
Amplitude of responses are plotted by a root-mean-square value wims to the exciting frequency @ .
Notation (m,n): j denotes the type of response. (m,n) is generated mode of vibration, in which
integers m and n imply predominant half wave number of the deflection in the x-direction and
y-direction, respectively. j indicates the resonance response, for example, /=1 represents a
principal resonance and j=1/2 is the subharmonic resonance of 1/2 order. Main chaotic responses
are denoted by C,; and C; . Regions of the chaos C; and C, preserve within the ranges
(1.2~1.5)@ 1) and (1.6~1.9)@,,, respectively. Analytical region of the C, is in the domains of
(1.3~1.5)@q,,), and the region of the C; covers (1.7~1.8)a@y, ;). Chaotic responses are generated in
the frequency region of the same ratio to the lowest natural frequency. Poincaré maps of the
chaotic responses in the C; are shown in Figure 4. Each map is recorded by changing phase delay
6 from the maximum amplitude of the exciting force. Both results coincide very well in details. As
the phase angle shifts, clear formations are observed for folding and stretching of the fractal figure.
Moreover, the maximum Lyapunov exponent Ansx of the experiment and the Lyapunov dimension
d,. of the analysis are shown in Figure 5. Amax is converged to 1.3 as the embedded dimension
exceeds e=6, and d, in the analysis is also converged to a constant value over the number /.=3 of
vibration mode. Therefore, number of modes generated in the chaos is found to be three. Modes
that contribute to the chaos are examined by the simultaneous time responses at multiple points.
Applying the KL-transformation to the time-data for the analysis, principal components are
calculated as shown in Figure 6. The lowest mode (1,1) and the in-phase modes of combined (3,1)
and (1,3) make the highest contribution to the chaotic response. The symmetric modes of lower
order contribute to the chaotic response of the shell with doubly curved configuration.
References

(1) Nagai, K. and Yamaguchi, T., "Chaotic oscillations of a shallow cylindrical shell with rectangular
boundary under cyclic excitaion", High Pressure Technology, ASME,PVP-Vol. 297,(1995),pp.107-115.

31



(2) Yamaguchi, T. and Nagai, K., "Chaotic vibration of a cylindrical shell-panel with an in-plane
elastic-support at boundary", Nonlinear Dynamics Vol.13,(1997), pp.259-277.

(3) Nagai, K. , Kasuga, K. , Kamada, M. , Yamaguchi, T. and Tanifuji, K., "Experiment on chaotic
oscillations of a post-buckled reinforced beam constrained by an axial spring", International Journal of
Japan Society of Mechanical Engineers Vol.41, (1998), No.3, pp.563-569.

(4) Nagai, K. , Yamaguchi, T. and Murata, T., "Chaotic oscillations of a cylindrical Shell-Panel with
Concentrated Mass under Gravity and Cyclic Load", Proceedings of the 3rd International Symposium on
Vibrations of Continuous Systems, Grand Teton, WY, U.S.A, July 23-27, 2001, pp.49-51.

1T T T T T IFT T T T
1+ 4 s
s el
: 1 0 =x/3
R T ST e
W "
+FT T T T T +FT T T T T
13 - (13 -
_: o} a : g 2! ok 'O* 4
T 1 =F o=xr2
= N PR S K | S TR
-3 2 -1 L] ] i | -2 - ° I
1FT T l" T T dFT T I“’ T T B
Fig.l Dynamic model and coordinate system Az 1 L ]
ot a 15 _a 1
200F T T M i 1 :\:’ @=2x/3 1
— Analytical result e O R
1 perimental Result 4 3 .
100« Ex = {a) Experiment (b) Anu.lgzls
({w=471) (w=50.0)

Fig.4 Poincaré maps of chaotic responses
(p,=480,E =07, n =06)

400./,»—'1-—_.;._:. —< 4
-2 4 T T T T T
"NL L L i 10k

(a) Experiment 7
-3 2 A 0 (@ =47.1)
Fig.2 Static deflection of the shell-panel B
( measured point ; & = 0.57, 1= 0.57 ) £
<
Table | Natural frequency and
vibration mode of the shell-panel I |
.| Mode Experimental| Analytical
Mode (i J)| symbol [ result @, | result @, 10 .
x b) Analysi
(.1 yP’ 24.3 29.9 o ( Forgms -y S
(2,1) M 47.7 53.8 _&_.6- E
(1.2) =] 56.3 54.7 af )
(2,2) H 81.2 82.1 al ]
(3.1) 1] 99.8 101 3 - . =
s [ B 110 102 L
Fig.5 Lyapunov Dimension of
4 ; . e ‘ the shell-panel (p,=480)
—{1, 1}:1/1 (a) Experiment
it 4
2 G (1an | e A‘m] i
E2 i 10! (1, 1) 99.6% ysis| 2
z ! 4
2 40 .
1+ 1 e 0’ b (3. 1+ (1.3) 037%
5 1
0 . : : A _ B0t | O3 003% J
20 40 60 ® 80 100 120 E [ 0. 17-(1.30.0059%
4 . : . - ol
ARRI / (b) Analysis i | (2. 1) 0.0035% “
e 1 o
Cy (W12 (g, 1y 107 b s i i =
2 /Vf : it 0 T 4 & 8
£ 20 Cy- / 1 Number of eivenvalues
! Sk Fig.6 Principal components
I \L‘”;m R vl by KL t;%nsfonmgion
-~ = 480, w = 50.
(1| P TRy r - —1—‘/—‘——1. (P4 )

T100 120
20 40 60 & 80

Fig%.l'a Frequency responses
(p,-480,¢ =001, 07,1 -06)

32



Layerwise Optimization (LO) Approach
for the Maximum Frequency of Laminated Rectangular Plates

Y oshihiro Narita
Hokkaido Institute of Technology, 7-15 Maeda, Teineku, Sapporo, Japan 006-8585
e-mail: narita@hit.ac.jp

1. INTRODUCION

An original concept of a layerwise optimization (LO) approach was first presented in a paper [1] for free
vibration of symmetrically laminated rectangular plates. A set of design variables, which are the fiber orientation
angles in the layers, are determined to maximize the fundamental frequencies of the laminated plates. The LO
approach is based on a simple physical observation that the outer layer has more stiffening effect than the inner layer
in bending of laminated plates and is more influential on determining the natural frequency. This observation is
made use of in a LO procedure that the optimal stacking sequence for the maximum natural frequency of laminated
plates can be determined sequentially in the order from the outermost to the innermost layer. The numerical
examples are given for 8-layer rectangular plates with various uniform boundary conditions, and it is also shown for
24-layer plates that a LO approach is equally effective to plates with many layers.

2. OUTLINE OF THE PROBLEM AND OPTIMIZATION
A symmetrically laminated rectangular plate is considered, where in each layer the major and minor principal
material axes are denoted by the L and T axes, respectively. The E; and Ey are elastic moduli in the L and 7
directions, respectively, Gt is the shear modulus and v r is the major Poisson ratio. The dimension of the whole
plate is given by axbxh (thickness). The total number of layers is denoted by 2V, where N layers exist in the upper
(lower) half of cross-section.
Natural frequency is normalized as a frequency parameter

Q=wd'(p/D,)"*, with Dy=Eh /12(1-v,;vy, ) (reference bending rigidity)

The frequency parameter Q for the fundamental (lowest) mode is used as an object finction and will be designed
to maximize in the present optimization. The design variables are taken Iobeasetofﬁberm'ia';taﬁm angles in the
N layers of the upper (lower) half of the cross-section [0/ 6?/.../0%/.../ 6™]s where 6™ is a fiber orientation angle
in the A-th layer (k=1:outermost, &=N: innermost) and a subscript “‘s” denotes symmetric lamination.

When the fiber orientation angles are directly taken for design variables, one inevitably faces intensive
computational problems wherein optimum solutions must be determined in multi-dimensional spaces. The LO
approach dissolves such conventional mathematical and/or computational problems and reduces the
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multi-dimensional search for optimum solutions into a few iterative cycles of one-dimensional search.

For this purpose, a physical observation that “the outer layer has more stiffening effect than the inner layer in
bending of laminated plates and is more influential on the natural frequency” is utilized. This physical fact may be
interpreted as “the outer layer plays more decisive role in determining the maximum frequency of laminated plates™.
Based on this consideration, a hypothesis that

The optimum stacking sequence [6("/ 6. ./ G‘NWr the maximum natural frequency of laminated plates can
be determined sequentially in the order from the outermost to the innermost layer
is proposed and is used in a layerwise optimization (LO) process. In the present study, an optimization algorithm
based on the hypothesis is used as an iterative O procedure.

3.REULTS AND DISCUSSIONS

The elastic constants used in the examples are taken for Graphite/epoxy composite as £ = 138 GPa, E;=8.96 GPa ;
Gur=7.1 GPa and vi1=0.30. The frequencies were calculated by using the MxN =10x10 solutions in the Ritz
method [2].  The design variables are presented in the usual notation as [ 6 "/ 0 @/ 6 ®/ 6 @], where 0 is the fiber
orientation angle of the 1st layer (outermost) and 6 ¥ is that of the 4th layer (innermost).

The optimum solutions are obtained by the iterative LO procedure for twenty one different cases in boundary
conditions. To each set of boundary conditions, the optimum fiber orientation angle [ 6“7 6@/ 6@/ g ) epe and
the corresponding maximum fundamental frequency Q. are obtained with different number of iterative cycles
(NIC) required for convergence. The 0 is determined in an increment of 6=5° . To validate optimality of
the obtained solutions, comparison is made in Fig.1 to see that the plates with the present optimum solutions [ 6 1/
0@/ 0% 0 ) actually give higher frequencies than those with other stacking sequences. Typical stacking
sequences of the symmetric 8-layered plates are chosen for comparison as [0/0/0/0]s, [0/90/0/90]s, [30/-30/30/-30]s,
[45/-45/45/-45]s and [0/-45/45/90]s. 'The first two (i.e., [0/0/0/0]s are [0/90/0/90]s) are macroscopically specially
orthotropic.  The next two ([30/-30/30/-30]s and [45/-45/45/-45]s) are alternating angle-ply sequence. The last
one ([0/-45/45/90]s) is a quasi-isotropic case. It is observed that all the present optimum solutions (denoted by
W) yield higher frequencies than those of plates with the five typical stacking sequences.

An iterative LO procedure is thus shown to be very effective to improve solution accuracy for 8-layer plates.
Since a LO approach depends on the physical observation that the outer layer contributes more than any other layers
of the plate to the bending stiffness, one may raise a question on how well the LO procedure works for very thin
layers, i.e. laminated plates with many layers. Hence 24-layer plates are considered as a representative of plates
with many layers to answer this question. Table 1 shows some examples for Q. and [670%.. 6V}, for
24-layer square plates. The results are compared with the frequency parameters for plates with  [0)5]s, [(0/90)]s,
[(45/-45)¢]s and [(0/-45/45/90);]s lay-ups. The present optimum solutions are shown to yield higher values than the
reference values and the effectiveness of the .O approach applied to laminated plates with many layers is obvious.

34



REFERENCES

[1] Y. NARITA 2003 Journal of Sound and Vibration (Special Issue in Honor of ProfLeissa), (to appear). Layerwise Optimization
for the Maximum Frequency of Laminated Composite Plates.

[2] Y. NARITA, 2000, Combinations for the Free-Vibration Behaviors of Anisotropic Rectangular Plates under General Edge
Conditions, J. Appl. Mech., 67, pp.568-573.

100 = — ===

80

70 Ce— >

60

50 S B B e S R S e e e

40

30

20

Frequency Pararmmeter (2 (fundarrenta mode)

10

EEE G EE R b BB BBl E 8

Boundary Conditions

Fig.] Comparison between the optimum frequency and frequencies of symmetric 8-layer square plates with various
stacking sequences (a/=1, W: optimum frequency, @: [0/0/0/0]s, : [0/90/0/90]s, A: [30/-30/30/-30]s, A\:
[45/-45/45/-45]s, @: [0/-45/45/90]s )

Table 1 Converged optimum solutions and reference frequencies for typical lay-ups of symmetrically laminated
24-layer square plates (a/b=1, Increment is 6=5°).

B.C. Q it Q [0,,)s Q0/90)], Q[(45/-45)s], Q[(0/-45/45/90),],
[9‘”/6(2]/6‘3}/ 9“’/9(5’/9“’.‘"9"’/9m/B“’/8“"’;’9‘"’;"6"”]3.09:

SSFF 11.30 5.053 5.201 10.79 8.772
[-45/45/-45/-45/45/-45/45/—45/-45/-45/45/45]s, (NIC=1)

SSSSs 56.53 44.31 4431 56.39 50.62
[45/-45/-45/45/-45/45/45/-45/-45/45/45/45]s, (NIC=1)

CcCcccC 93.67 93.61 93.67 90.94 92.56
[90/0/0/90/0/90/90/0/90/0/90/0]s, (NIC=1)
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AN ANALYTICAL-NUMERICAL COMBINED METHOD FOR CAR DISC
VIBRATION AND SQUEAL

Huajiang Ouyang and John E Mottershead
Department of Engineering, the University of Liverpool
Liverpool, L69 3GH, United Kingdom

1. Introduction

Car disc brakes often generate unwanted vibration and noise. One type of noise in the
frequency range above 1 kHz, called squeal, is very unpleasant. Squealing brakes are
difficult and e xpensive to correct. C ustomers b ecome c oncerned about t he quality and
reliability of the vehicle when it has got a squealing disc brake. High warranty cost has
been incurred to the manufacturer. It is recognized that the brake-emanated vibration and
noise is caused by the dry friction at the disc and pads interface. To achieve good braking
performance, the pads must possess a high friction c oefficient. H owever, high friction
materials invariably promote noise occurrence. Thus it is very challenging to design car
disc brakes that have both good braking and noise performance.

The first concerted effort to study disc brake squeal was conducted in MIRA in late
1950’s. Since then, great progress has been made towards the understanding of disc brake
squeal and the i mproved design o f disc brakes. H owever, disc brake squeal is still an
unsolved problem. There are considerable difficulties in the study of disc brake squeal.

First of all, the friction at the disc and the pads interface is not well understood. Its
behaviour is influenced by the temperature and humidity, in addition to forces and
deformations. Secondly, there exists dynamic contact between the disc and pads, which
poses a nonlinear problem. Furthermore, the contact interface is moving. Therefore, it is a
moving load problem as well. Finally, a disc brake is a very complicated system. The
computing load involved can be formidable.

This paper describes the methodology established at the University of Liverpool and
presents some of the latest results of the dynamic stability of the disc brake system. It is
an analytical-numerical combined approach. As such, the work fully fits the two themes
of this symposium — vibrations of continuous systems. It is thought that there are four
aspects of modeling issues, which will be elaborated in this paper.

2. The System Model

A car disc brake system consists of a rotating disc and non-rotating, stationary pads,
carrier bracket, calliper and mounting pins. The pads are loosely housed in the calliper
and located by the carrier bracket. The calliper itself is allowed to slide fairly freely along
the two mounting pins in a floating calliper design. A typical floating-type vented disc
brake system is shown in Figure 1.
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Figure 1. A car disc brake of floating calliper design

The disc is mounted to the car wheel and thus rotates at the same speed as the wheel.
When the disc brake is applied, the two pads are brought into contact with the disc
surfaces. Most of the kinetic energy of the travelling car is converted to heat through
friction. But a small part of it becomes sound energy and generates noise. Since a
squealing brake is difficult and expensive to correct, ideally the noise issue should be
resolved at the design stage. Modelling and simulating vibration and squeal is an
important way of understanding the problem and designing quieter disc brakes.

The authors conceptually divide a whole disc brake system into two parts: the rotating
disc approximated as a thin, annular plate, and the non-rotating, stationary, components
described by many thousands of finite elements. This separation also facilitates the
formulation of the vibration and squeal as a moving load problem.

3. The Contact Model

During operation, the contact between the disc and pads is not complete. In addition, the
contact area varies with time. This is a dynamic contact problem. In this study, a
nonlinear static contact analysis is carried out for the sliding contact interface to establish
the static contact area and pressure distribution. Both sets of information is used to define
the material properties of the friction film at the disc and pads interface. Thus the
dynamic contact is simplified as a static contact. If the former is pursued, the sheer
amount of computation is overwhelming and thus has not been conducted at this stage.

4. The Friction Model

It is the friction that causes the unwanted disc vibration and squeal. Therefore, the friction
model is fundamentally important. Because of other complexities, only the simple
Coulomb friction law is used. However, the friction occurring at the disc and pads
interface contributes to the non-conservative forces in a very special way, that is, as a
friction couples acting onto the disc. This way of incorporating friction forces, usually
referred to as a squeal mechanism, is based on the North’s original idea. It will be
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demonstrated through numerical results that this squeal mechanism indeed can bring the
whole disc brake system into dynamic (flutter) instability.

5. The Dynamics Model

The finite element model for the car disc brake under present investigation has about one
hundred and eighty thousand degrees-of-freedom. It is time consuming to compute the
frequencies and modes and it is quite unnecessary to use such a detailed model. Each
stationary component of the disc is treated as a substructure and the Craig-Bampton
dynamic reduction is used to reduce each component finite element model. Different
numbers of retained modes and nodes are tried and compared with a full model.

The rotating engagement between the disc and pads is treated as a moving load problem.
It is felt that by bringing in the moving load element into the model, the model should
represent a real disc brake in a better way. However, this adds much extra complexity.

Through the displacement continuity at the disc and pads interface, a complex-valued,
asymmetric eigenvalue formulation is established. If an eigenvalue has a positive real
part, the corresponding imaginary part is considered an unstable frequency. Numerically
predicted unstable frequencies are taken to mean squeal frequencies in reality.

6. Results and Discussion

It can be appreciated that there are a number of uncertain system parameters and
locations, in particular at some contact interfaces. Consequently, a form of tuning based
on experimental data is conducted at first. Then the system eigenvalues under normal
operating conditions are computed and listed in tables.

A large collection of experimental data from modal testing and laser holography have
been obtained. Some of them are presented to show that the established methodology
indeed works and the systems parameters used represent the system satisfactorily.

7. Conclusions

Friction-induced vibration and squeal of disc brake are studied in the paper. The rotating
disc is represented by a Kirchoff plate while the stationary components are modeled by a
large finite element model. A distinct squeal mechanism based on North’s friction couple
is incorporated into the model and combined with a moving load treatment. Numerically
predicted unstable frequencies are close to experimentally established squeal frequencies
in general. The method and program established is a valuable tool for disc brake design.

References

To be given in the full paper and the talk.
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ABSTRACT

The dynamic stability of simply supported, circular cylindrical shells under periodic axial loads is analysed.
Nonlinearities due to finite-amplitude shell motion are considered by using the Donnell’s nonlinear shallow-
shell theory. A finite length, simply supported shell is considered; the boundary conditions are satisfied,
including the contribution of external axial loads acting at the shell edges. The effect of a contained liquid
on the dynamic stability is investigated.

1. INTRODUCTION

The fundamental investigation on the stability of circular cylindrical shells is due to Von Karman and Tsien
(1941), who analysed the static stability (buckling) and the posicritical behaviour of axially loaded shells.
Koval (1974) used the Donnell’s nonlinear shallow-shell theory to study the effect of a longitudinal
resonance in the parametric transversal instability of a circular shell. Hsu (1974) used the Donnell’s linear
shallow-shell theory to analyse the parametric instability of a circular cylindrical shell. The same problem
was studied by Nagai and Yamaki (1978) using the Donnell’s linear shallow-shell theory, considering
different boundary conditions. Popov er al. (1998) analysed the parametric stability and the postcritical
behaviour of an infinitely long circular cylindrical shell, dropping the boundary conditions. The effect of
internal resonances between asymmetric modes was analysed in detail. Gongalves and Del Prado (2000)
analysed the dynamic buckling of a perfect circular cylindrical shell under axial static and dynamic loads.
Donnell’s nonlinear shallow-shell theory was used and the membrane theory was considered to evaluate the
in-plane stresses.

In the present paper, the dynamic stability and postscritical dynamics of a circular cylindrical shell
subjected to periodic axial loads is analysed. The Donnell’s nonlinear shallow-shell theory is used; the
effect of a contained fluid is considered and simply supported boundary conditions are satisfied. The
dynamics of axisymmetric modes is considered, avoiding the approximation of the membrane theory for the
in-plane stress evaluation. The dynamical system obtained through a Galerkin procedure is analysed with
numerical techniques.

2. GOVERNING EQUATIONS

The Donnell’s nonlinear shallow-shell theory is used. The equation of motion for finite-amplitude, flexural
vibrations of a thin, circular cylindrical shell is given by (Evensen, 1967; Amabili et al. 1998; Amabili et al.
1999a)

‘ : . 1 &°F I'F 'w oF Aw AF  'w
DViwrchwrphw= f+p+t——F+| 757 + ) il 15
R éx R*@0° dx° Réxd8 Réxdl JAx° R 26°
(1)
with the compatibility equation
;V‘Fz—L{?:“"‘_;[[ alw ]:‘(?:u: (?:w,:l‘
Eh R Ax* Réxéo dx* R'78°

(2)
where p = Eh’/[l2(l ! )] is the flexural stiffness, £ the Young's modulus, vthe Poisson ratio, / the shell

thickness, R the mean shell radius, p the mass density of the shell, ¢ the damping coefficient, F is the in-
plane stress function, p is the pressure acting on the shell surface due to the fluid-structure interaction and [
is a distributed external load. Moreover, simply supported boundary conditions are considered and the

continuity in & is imposed. The axial load is: ;'\7'(;) =-N+N,coswt -

The radial displacement w is expanded by using the linear shell eigenmodes as basis; in particular, the
flexural response may be written as follows:
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N M M
w(x,0,1) = ZZ[AM_["MU) cos (m n@)+ 8, ., . () sin(rrnﬂ]]sin(im x)+ z Ay o(t)sin(4,,, , x),
m=1m=1 m=1
(4)
where /lm — mff/L, t is the time; A, (1), B, (1) and A, () are unknown functions of  and J=nyn. In the
numerical calculations, N, and M will be assigned equal to 3 and 5, respectively. Expansion (4) is suggested
by the presence of quadratic and cubic nonlinearities.

3. FLUID-STRUCTURE INTERACTION
The shell is assumed to be empty or completely fluid-filled. An incompressible inviscid fluid is considered
and the effect of the dynamic pressure acting on the shell surface is linearized. The fluid velocity field can
be described in terms of the velocity potential @:

¢ ¢ 100 170

Vi = e
(’xr+(9r"+r(?r rt a9’

(5)
The fluid velocity field is givenby v = -V @ .

3. NUMERICAL RESULTS

A numerical analysis is performed on a test shell, studied in (Popov er al. 1998; Gongalves and Del Prado,
2000), having the following characteristics: 4 =2x10" m, R=0.2m, L= 0.4 m, E = 2.1x10"N/m?, v=0.3,
P = 7850 kg/m’; in the case of fluid-filled shell, pr= 1000 kg/m’. The fundamental frequency of the empty
shell is equal to 2 nx503.7 rad/s and is obtained for m=1 and n=5. When the shell is excited by an axial
periodic load, two kind of excitations are present on the modal equations: (i) a direct excitation of the
axisymmetric modes due to the Poisson’s effect; (ii) a parametric excitation of all modes.

In the present problem, when @/ @, s=1.9, the frequency of excitation is close to the principal parametric
resonance of the fundamental mode. In Figure | the maximum amplitude of periodic oscillation is

represented for fundamental mode 4, s, versus the dynamic load N;/N,,: where N, = Ehz,/(quS(I —y?)) is

the classical critical load per unit length in the circumferential direction. Increasing the dynamic excitation
level N, a period doubling bifurcation, due to a parametric instability, is found for N;/N., = 0.46. Before
the bifurcation the shell vibrates with the same frequency of excitation (1T
oscillation), and the dynamics is due to the axisymmetric modes only.
Afier the period doubling bifurcation a sub-critical branch 2 can be
observed. For the same problem, in Ref. (Popov et al. 1998) the
parametric instability has been found at N/N,,=0.39, the difference can be
addressed to the use of the membrane theory in (Popov ez al. 1998).

No/Ner | @/ s ¢ Presence of fluid
0.448 1.9 0.089 No
0.86 1.9 0.089 Yes
0.416 2 0.089 No
0.722 2 0.089 Yes
0.492 2.1 0.089 No
0.724 2] 0.089 Yes
0.24 1.9 0.016 No
0.46 1.9 £,5=0.089 (Kelvin-Voigt No Fig. 1. Dynamic instability (empty shell). Static
damping model) load N/Ne=0, £<0.089. @/ @ 5=1 .9._ “—' stable
Table 1. Critical dynamic load: the damping ratio is constant on all modes ;;)r[):lt;ﬁ::g_ unstable solution, ‘PD" Period

if not specified.

In order to quantify the effect of a contained fluid and the damping, the dynamic critical loads are computed
for different excitation frequencies, damping ratios and considering empty and water-filled shells; the
results are reported in Table 1. It is of interest that the presence of a contained fluid enlarges the critical
load; this safety effect is due only to the inertial effect of fluid.
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Periodic and non-stationary responses are now analyzed in detail by 2—— :

means of direct simulations and bifurcation diagram of Poincaré maps. 15 P

The case of an empty shell is shown in Figure 2; the following 4 -

parameters are considered: N/N,=0.6, Ni/N.=0.01; ¢=0.0008. The [

diagram is obtained by decreasing the excitation frequency. A 1% <
<

nerturbation of the natural frequency of the companion mode is used in
order to simulate a small imperfection. At @/w,s0=1.251 the -0.5

jparametric instability of the companion mode B, s is met; indeed, 4 e

because of the small perturbation, the natural frequency of the - W

companion mode is 1% higher than the natural frequency of mode Ay [ : ) i
At @@ 50=1.207 the mode A4, is excited and, for /e, so=1.157, bs '_;E-i 12 a3
mode B,s collapses to the trivial solution. In the region o _

@ @ 50)€(0.996,1.077) alternate periodic and quasi-periodic orbits can ;ﬂr:i;m?:: "&"“M?"" Hw o

o oo the Finear fr

be found. At @/, 5=0.975 a sudden jump to a chaotic orbit is found.
At @@, 50=0.929 a jump to an orbit around the bifurcated static position takes place; the amplitude of
oscillation is quite large (not shown), i.e. the shell collapses.

CONCLUSIONS

The parametric instability and the postcritical behaviour of a circular cylindrical shell subjected to dynamic
axial loads are analysed. The Donnell’s nonlincar shallow-shell theory has been used, and partial
differential equations have been deiscretized by means of the Galerkin procedure, using a relatively large
set of modes in the expansion. The combined effect of a static axial preload and dynamic loading is
considered, in order to investigate the stability bounds and post-critical behaviour. Dynamic stability
bounds for empty shells are compared with the results present in literature. The contained liquid gives rise
to an increment of the linear damping and an added mass effect, which reduces the linear natural
frequencies of vibration. The contained liquid causes also interesting variations in the dynamic stability
bounds.
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THEORETICAL AND EXPERIMENTAL MODAL ANALYSIS OF THE MODES OF
DOUBLE EIGENFREQUENCIES IN ULTRASONIC MOTORS BY A HARMONIC
EXCITATION OF THE PIEZOCERAMIC ELEMENTS

W. Seemann
Institute of Mechanics, University of Karlsruhe

In recent years ultrasonic motors have become very popular. In these motors the motion is generated
not by electrodynamic forces like in conventional motors but instead one part of the system —the sta-
tor-- is excited by piezoceramic elements in such a way that some points of the stator move on elliptic
trajectories. In rotational motors a ring is pressed to these points so that due to frictional forces the
ring begins to rotate. One principle of an ultrasonic motor is the travelling wave motor in which bend-
ing waves may be used to generate the elliptic motion. The bending waves themselves are excited by
piezoceramic elements which are bonded to the stator. A travelling wave may be generated iftwo
groups of piezoceramics are excited both with a temporal and spatial phase shift. In order to get large
amplitudes the two modes have to be excited in resonance. As the excitation frequency is the same for
the two modes, the resonance frequencies of both modes should be equal or nearby.

For rotational motors this requirement may be fulfilled due to the rotational symmetry. For stators of
linear motors, however, production uncertainties may lead to large differences between the eigenfre-
quencies of the two corresponding modes. One idea is to manipulate the stator after the production
process in order to shift the resonance frequencies. This, however necessitates that the position of the
mode shapes are known. In theory the mode shapes can be determined for example by a finite element
analysis. As in the finite element model the eigenfrequencies should be identical every function which
is a combination of the two corresponding mode shapes is also a mode. In reality, the two correspond-
ing eigenfrequencies differ to a certain amount and therefore, the modes are spatially fixed in the sys-
tem and in general they differ from those obtained by FEM.

The lecture presents some ideas how the eigenfrequencies and the modes of the real system can be
determined experimentally. First the stator of the ultrasonic linear motor is modeled as a periodic sys-
tem. The excitation of the two modes is done by piezoceramic elements which are bonded in such a
way that each group excites one of the modes. In order to obtain eigenfrequencies which differ from
each other, an asymmetry is introduced in the theoretical model. Results are obtained depending on the
amount and position of the asymmetry. Also in the theoretical model the effect of the temporal phase
shift is investigated. If the two piezoceramic groups are excited harmonically with a temporal phase
shift of 90 degrees for the symmetric system a pure travelling bending wave is obtained. If there is an
asymmetry the phase shift of the vibration may be different from the phase shift of the electrical exci-
tation and if damping is taken into consideration the situation even gets more complicated.

Model ) .
Piezoceramic
\ Group 1
— ]
Piezoceramic
Group 2

Model of a stator of a linear ultrasonic motor
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v Piezoceramics

Lx[m —

| | [ | | |
x=0 x=g x=g x=g x=g x=a x=3
Model as a periodic system (x=0 corresponds to x=3) with asymmetry at x=a
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THE FREE VIBRATION ANALYSIS OF LAMINATED ELLIPTIC PLATES BY A
MESHLESS METHOD

Anand V. Singh
Department of Mechanical and Materials Engineering, The University of Western Ontario,
London, Ontario, Canada
email; avsingh@eng.uwo.ca

Introduction. The earliest investigation on the vibration of elliptic plate dates back to 1802 by Chladni
and nearly one and one half century later Mary Waller [1] published in 1950 the comparison of her
experimental results with those of Chladni. During the fifties of the last century, some researchers
obtained frequency equation for the vibration of elliptic plate in terms of Mathieu’s functions. Leissa [2]
published a paper on the free vibration of a simply supported e lliptical plate using the Rayleigh-Ritz
method. In this study, he reported experimental work done on the vibration of free elliptical plate by
Mary Waller in 1950 and many other distinguished researchers who obtained frequency equation using
the Mathieu’s function. The free transverse vibration of elliptical plates with rectangular orthotropy and
completely free edges was analyzed by Narita[3] who also used the Ritz method by considering complete
power series as a trial function and obtained the natural frequencies for a range ofaspect ratios. He
continued along the same line to analyze orthotropic elliptical plates resting on arbitrarily distributed
point supports [4].  Recently, Hosokawa et al. [S] published a paper that involved both a numerical
solution for the free vibration analysis of clamped anti-symmetrically laminated elliptical plates and the
experimental study of the same.

In the present study, a modified version of the Rayleigh-Ritz method is used to study the free vibration
analysis of fiber reinforced laminated elliptical plate, the domain of which is first mapped into a circular
domain and then further mapped into a square using natural coordinates and cubic interpolating functions.
The geometry is represented by a set of sixteen nodes in the model. In a similar manner, for the
displacement fields, a different set of nodal points is introduced and the shape functions are then obtained
using considerably higher order polynomials than those used for the geometric shape functions. By
keeping the plate geometry unchanged, the convergence in the solution is obtained by increasing the order
of the displacement shape functions.

Formulation. The numerical method, which is a kind of subparametric finite element is based on the
first order shear deformable plate theory also known as the Reissner-Mindlin Theory of plates. The
displacement components along the Cartesian axes at an arbitrary point in the plate are denoted by
u',v'and w'respectively. Under this scheme, the displacement components are expressed in terms of the
displacement c omponents at the middle plane o fthe plate and also the components o f rotation o f the
normal to this plane as: u'=u+z ff|, vV'=v+zf,, w'=w. Here, symbols u, v, w denote the displacement
components along x, y, and z axes respectively; f; and 3> are components of rotation of the normal to the
middle plane of the plate; and z is the distance measured from the reference plane in the direction
perpendicular to the plate. The primed indices correspond to an arbitrary point (x, y, z)in the plate
whereas the unprimed ones are associated with the corresponding parameter at the middle plane (x,y,0).
For the flexural modes of the plate vibration, it is appropriate to assume u =0and v=0, i.e. no stretching
of the middle plane. The shear correction factor (k =5/6) is used in this method to compensate for the
parabolic distribution of the transverse shear stress along the thickness. The ellipse having @ and b as the
major and minor axes respectively in x-y plane can be mapped into a circle in the s-r plane by using
s=x/aand ¢ = y/b. The differentials are also modified accordingly as: dx = ads and dy = bdr . Using
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this, it is very simple to note that 8/dx=(1/a)d/ds, 8/8y=(1/b)d/dtand the infinitesimal area
dA=dxdy= abdsdt . In the following, the geometry is defined in s-f coordinate system with the help of
the natural coordinates.

The geometry of a plate being studied is bounded by a quadrilateral region with curved edges in the s - ¢
plane. This region is considered to represent the middle surface of the plate of which the thickness (h) is
assumed to be uniform across the region and small in comparison with the dimensions along s and 7 axes.
Furthermore, the natural co-ordinates £ and 7, bounded by —1< (£ or ) <+1, together with the shape

functions N ;(&,n) for j=1,23,....8 are usedin this study to interpolate the c oordinates (s,t)of an
arbitrary point inside the quadrilateral region.

16 16
s(6m) = LN;(Ems; (&m = ZN;Em ¢ (1
J= Jj=

Hereafter, all the functional forms of the plate quantities are expressed in terms of the natural co-ordinates
& and 7. The Jacobian matrix [J(&,7)] and its determinant 'J(c_f, r})| are used in the derivation of the
plate equations. As mentioned earlier, the interpolating functions of much higher order than those used

above for the geometry are considered for the displacement fields. For this, a different set of
displacement nodes are introduced and each node is assigned three degrees of freedom pertaining to w

,Byand f, respectively. The displacement and rotation components are represented by the following.
n n n
w:‘zl Wj(‘-f"'?) Wj ﬂl :ZI Wj(ésn) q)j ﬂz = ?:-] Wj(‘f”?)@j (2)
J= Jj= Jj=

The interpolating functions y;(&,7) in eq. (2) are deduced in the same manner as N;(&,m)in eq. (1).
Indices W;, ® ;and O correspond tow, #,and 3, respectively, at the jth displacement node. Complete

polynomials ineachg and 7 are used in the displacement interpolation. To achieve this, nodes are

introduced at the four edges as well as in the interior of the plate geometry. If p and ¢ denote respectively
the orders of the polynomials in &and 7, the number of displacement nodes needed is n = ( p+1)g+1).

Numerical Example. To validate the numerical procedure described briefly, an anti-symmetrically
laminated clamped elliptic plate with the stacking sequence of 30°/—30°/30°/—30°is considered and
analysed using p=¢=11. The plate parameters are denoted by: @ = major axis, b = minor axis, h =

thickness, p = mass density, ® = circular frequency in radian per second, D = flexural rigidity, etc. The
condition applied at the boundary is: w=p =, =0. The natural frequency parameter

Q=wD/ph b* are calculated for the first four modes of the laminated plate and presented in the Table

for three different materials, viz. E-Glass/Epoxy, Boron/Epoxy and Graphite Epoxy. Also included in this
table are the values of the natural frequencies obtained earlier by Hosokawa et al. [5]. The present
method has used the first order shear deformation theory of plates, whereas the work by Hosokawa is
based on the classical thin plate theory. The two sets of results are found to be in good agreement with
cach other. When the calculations were performed for an isotropic circular plate with b/a =1.0and also
for an isotropic elliptical plate with /a =2.0, the results prom the present method were found to match
almost exactly with the results from others researchers.
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Table 2. Dimensionless Natural Frequencies Q = @ JDI phb* of four layered elliptical plates with the
stacking sequence of 30°/-30°/30°/-30°.

E-Glass / Epoxy: E, =60.7GPa, E, | E, =0.40857, G, / E; =0.19753, v;; =0.23

a/b Mode 1 Mode 2 Mode 3 Mode 4
Present Ref. [5] Present Ref[5] Present Ref.[5] Present Ref|[5]
1.0 8.2789 8.1294 15523 15945 18.760 17.826 25.596  26.337
1.2 6.7646 6.7302 13364 13.562 14.749 14429 22370 22.387
1.5 5.6297 5.6750 10.178 10.150 13.051 13.242 16.544 16.273
20 4.8482 49364 7.5378 7.6033 11.277 11.204 12.061 12.331
25 45174 46173 63661 64693 8.8710 8.8890 11.603 11.911
30 43389 44432 5.7383  5.8542 7.5953 7.6393 10.081 9.8241
4.0 4.1483 4.2573 5.0951 52120 6.3422 6.3625 8.0735 7.7235
Boron / Epoxy: E, =209GPa, E, / E; =0.09091, G, / E; =0.1=030622, v, =0.2]

a/b Mode | Mode 2 Mode 3 Mode 4
Present Ref. [5] Present Ref.[S] Present Ref.[S] Present Ref[5]
1.0 6.8395 62734 10.855 11.226 16.347 14.619 16.860 17.409
1.2 52810 49732 9.0291 9.6750 12.594 10.956 14.210 15.393
1.5 4.0627 39353 7.2922 7.9485 9.4360 8.4029 11.855 12.609
2.0 3.1954 3.1607 5.3680 5.6024 7.6755 7.4049 8.4682  8.6595
2.5 28336 28165 43294 45110 64220 6.6178 7.0679  6.9295
3.0 26476 26320 3.7582 39107 52736 54752 6.7543  6.6586
40 24612 24445 33182 3.2924 4.1305 4.2958 54111 54693
Graphite / Epoxy: E, =138GPa, E, / E; =0.06493, G, / E, =0.05145, v|; =0.30

a/b Mode 1 Mode 2 Mode 3 Mode 4
Present Ref.[5] Present Ref.[5] Present Ref[S] Present Ref[5]
1.0 6.8457 62489 10926 11.080 16331 14.650 16.858 17.199
1.2 52933 49359 9.0562 9.5392 12.633 10.941 14.115 15.243
1.5 4.0754 3.8923 7.2609 7.9018 9.5144 8.2838 11.776 12.582
2.0 3.2018 3.1198 53307 5.5419 7.7278 7.3067  8.4658 8.6120
2.5 2.8337 27800 43030 4.4518 64110 6.5558  7.0885 6.8440
3.0 2.6433 25992 3.7373 3.8560 52600 54113 6.7558 6.5809
40 24530 24162 33167 3.2463 4.1182 42377 54157 54042

46



THEORETICAL PREDICTION OF LIMIT CYCLE
OSCILLATIONS FOR AIRCRAFT IN TRANSONIC
FLOW

Earl H. Dowell’

Duke University, Durham, North Carolina 27708-0300

ABSTRACT

Limit cycle oscillations have been observed in flight in various military aircraft
including the F-16, F-18 and B-1 as well as commercial aircraft due to the interaction
between the dynamics of the flexible structure and the surrounding aerodynamic flow.
Limit cycle oscillations also have been observed in wind tunnel models and when the
governing nonlinearity is in the structural model, e.g. freeplay or geometric strain-
displacement effects, good correlation has been obtained with theoretical models.
However nonlinear aerodynamic effects such as large shock wave motion or separated
flow have proven to be more difficult to model theoretically and no definitive

correlation between theory and experiments has yet been achieved.

In this presentation, recent advances in theoretical prediction of nonlinear effects in
the aerodynamic flow interacting with the flexible structure are presented for three
configurations where experimental data are available. These are the supercritical
airfoil, NLR 7301, tested at the German transonic wind tunnel facility in Gottingen;
the AGARD 445.6 wing tested at the Transonic Dynamics Tunnel at the NASA
Langley Research Center; and the operational aircraft, F-16, flight tested at Eglin Air
Force Base. Initial correlations between theory and experiment are shown which are
encouraging. These are the beginnings of a more extensive planned validation and

verification process.

'J.A. Jones Professor, Department of Mechanical Engineering and Materials Science and Director of
the Center for Nonlinear and Complex Systems. Dean Emeritus, Pratt School of Engineering.

47



DYNAMICS OF A FLEXIBLE CABLE LOOP
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Abstract

This paper considers the stability and dynamics of a very flexible cable loop structure. There is
a subtle interplay between gravitational loading (achieved through changing length and hence self-
weight) and (linear) free vibrations. The cable stiffness exhibits a softening nonlinearity which leads
to an unstable symmetric bifurcation as the cable changes from an upright position and then droops
heavily, and suddenly, to one side. The qualitative nature of the behavior is captured by a relatively
simple model, and comparisons are made with an analysis of the continuous system. Both pre- and
post-buckling dynamics are included in the study together with some preliminary experimental results.

The model

Consider the simple loop structure shown in Figure 1 consisting of a plastic-coated steel coil cable.
By varying the length (say, through feeding in more material through one of the built-in ends) we
can observe some interesting dynamics and stability (Ioos and Joseph [1] attribute this model to T.B.
Benjamin in their book). The softening nature of the rod causes the system to exhibit an unstable-

[ront view side vigw

Figure 1: Schematic of the rod.

symmetric bifurcation which subsequently stabilizes for large deflections. In purely qualitative terms
we can write down the form of the potential governing this behavior as

1T T
= —-— i - —‘/\ l
7207 349 M (1)
where A is associated with the cable length, and @ is associated with the lateral deflection of the loop.

The corresponding equilibrium conditions are then given by [2
1 1 ;

l = l ’ -
Vi=—qg®°-=¢® - Ag=0, (2)

120 6
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which can be solved to give the equilibrium paths:

g =0
_ 1, 1 4
BN (3)
The stability of these paths depends on the second derivative of potential energy:
"o 1 4 l 2
Visg? a0 A @
and evaluating this expression along the equilibrium paths of equation (3) we get
"
= =2
1 2
V) = 5;[104 V00 +1203]

5 [104 VIooT120] - A, (5)

where the subscripts f and p denote fundamental and post-buckled, respectively.

The equilibria for this system are shown in Figure 2(a) where we observe a stable-symmetric bifurca-
tion (super-critical pitchfork) which subsequently restabilizes, i.e., as the length of the rod is increased
the loop grows in its upright (trivial) equilibrium until it droops over (to one side or the other). This
process is dynamic since there is no locally adjacent stable configuration.

For small amplitude vibrations about these nonlinear equilibrium paths we can make use of Rayleigh’s
method to relate the natural frequency to the underlying potential energy. This is plotted in Figure
2(b), in which we observe the decay in the natural frequency prior to initial buckling. The system will
naturally settle onto a remote post-buckled equilibrium (i.e., heavily drooped over) with a new natural
frequency.

0%

(a) \ /

@ i i

-4 ] [} 2 q 4 @

Figure 2: Equilibrium and dynamics of the cable.

This study has been developed in a number of directions:

e Initial Imperfections - symmetric structures inevitably have some initial geometric imperfection
which tends to have a relatively important influence on instability, i.e., the inherent symmetry of
the system is broken. The governing potential can be easily augmented to take account of this.

e Damping - the inevitable presence of a little energy disspation will cause the system to become
overdamped just prior to buckling. For example, with 3 = 0.1 oscillations would cease when
A = —0.0025.
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e Nonstationarity - incorporating the inertia terms, integrating the equation of motion can be
achieved while sweeping through the control parameter (the length of the rod). An example of
this is shown in Figure 3 including a reverse sweep to highlight hysteresis.

T(A)

Figure 3: A slow sweep through the butterfly bifurcation.

e A classical mechanics solution can also be obtained based on a conventional vectorial approach
[3]. Some configurations are shown in Figure 4 for three different lengths (three snapshots of

time) as the loop starts to droop (dynamically) from the upright position.

o

Figure 4: Some equilibrium shapes based on the continuum model.
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Nonlinear Longitudinal Vibrations of Transversely
Polarized Piezoceramics

Utz von Wagner and Sandeep Kumar Parashar
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1 Introduction

Characteristic nonlinear vibration behavior can be found when piezoceramic actuators are excited even by weak
electric fields. In this presentation the authors attempt to model this behavior using higher order dissipative
and nondissipative terms respectively in the constitutive equations. Hamilton’s prineciple is used to obtain the
equation of motion. The partial differential equation is directly attacked to get the solution and as an alternative
approach Rayleigh-Ritz method is also used. The results of these two different approaches are compared.

2 Experiments

Experimental studies of piezoceramics subjected to weak electric field have revealed typical nonlinear vibration
behavior, e.g. dependence of the resonance frequency on the amplitude, superharmonics at twice and three times
of the excitation frequency and a nonlinear relationship between excitation voltage and vibration amplitude [2].
Figure 1 shows a free piezoceramic beam, which is transversely polarized in z-direction. In the experiment,
longitudinal vibration of the piezoceramic is excited at different excitation voltages using the dg;-effect near to
the first resonance. The displacement amplitude is measured with the help of a laser-vibrometer and the current
is measured using shunts. The experimental results plotted in Figure 2 clearly show the nonlinear vibration
behavior of this piezoceramic.

i
h
|

e b =N

Figure 1: Experiment: transversally polarized piezoceramic actuator.

3 Nonlinear Modelling

To model the nonlinear vibration behavior, linear constitutive relations of piezoceramics are modified in the
following manner

Typ = EOS,, — nE; + EQ'S,, + EVS2, + EM(S2,) + EAS3, + E{(SL,), (1)
where T,, and S,, denote the stress and the strain respectively in z-direction. E°) and v are the elastic
modulus and the piezoelectric coupling factor for the one-dimensional longitudinal vibration. E() and E®?) are
the parameters of the quadratic and cubic nonlinear nondissipative elastic terms while Eﬂ” and E‘?) are the

corresponding dissipative terms.
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Figure 2: Experiment: displacement amplitude response close to first resonance.

4 Direct solution of the field equation

Using Hamilton's principle, the equation of motion
—pii + EOu" 4 2EMy'y" + 3ED 4" + F(u) 4 25{”11"& + 21‘}“}”'1;” + 3P w2y GE(Q)u'u”u’ =10 (2)

and corresponding boundary conditions can be obtained. The excitation can be found in the boundary con-
ditions. Now the partial differential equation is directly solved using perturbation techniques to obtain the
solution ([1]). If the quadratic terms are considered to be of the same order as the cubic ones, they will not
appear in the solution. Hence in the first step, the quadratic terms are considered to be of the order & while the
damping, cubic t.onns and t]lP mcmtatmn terms will be considered to be of the order €. Using the coordinate
transformation £ = a.nd 5= and rewriting the above partial differential equation results in

2
T :
——ii + wpu” + eaju'u” + 2o u?u" + 2ku” + 2auu" + 2% " + 2asu’ ! + e2asu'n” = 0. (3)

Using the perturbation method with the expansion

u(€,t) = ugl(€,t) + cug(E.0) + =2uslE,1) + .. 512=u.:3, 2814 i

gives the zeroth solution o
ug(€,t) = Asin 5& cos S (4)

where the amplitude A can be obtained from vanishing secular terms of the equation of second order.

5 Rayleigh-Ritz method

As an alternative approach the Rayleigh-Ritz method is used to obtain the equation of motion. The following

Ritz ansatz is used for discretization
w(x,t) = Up(x)pi(t) (5)

where Uy is the first eigenform of the linear problem. Then, the equation of motion is given as
mipk + dipx + :k "ok + n‘i Ip? + fi.fli’ﬂ”\ +r§r )pf + :L,}p,\p; = fi”(mm (6)

This equation of motion can also be solved approximately using perturbation techniques.
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Experiments conducted at one half and one third of the first resonance frequency have revealed, that the
quadratic and cubic nonlinearities at the piezoceramics are of comparable order of magnitude. Following these
experimental results, both quadratic and cubic nonlinearities should be considered to be of the same order e.
This will result in the fact, that the quadratic nonlinearities will not influence the zeroth approximation of the
vibration response.

Hence, in both methods, quadratic nonlinearities are neglected and cubic parameters are determined, which
fit the theoretical curves to the experimental ones. The comparison of the two solution methods with the
experiment shows a good agreement of all three curves (Figure 3).
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Figure 3: Comparison of amplitude responses from the two methods and the experiment.

6 Conclusions

The nonlinear behavior of a piezoceramic actuator is modeled by introducing quadratic and cubic nonlinearities
in constitutive equations. Due to experimental observations, both dissipative and nondissipative terms are
used. The resulting equations of motion are solved using perturbation techniques by directly attacking the field
equation or by solving equations which are discretized via Rayleigh-Ritz. Using parameters identified for the
piezoceramics, a good coincidence between the experimental and the two theoretical results can be observed.
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Friction-Induced Instabilities in a Disk Brake Model
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Abstract: The dynamics of a structural car brake model is examined to explain brake noise by friction-induced in-
stabilities including thermal effects. After discretizing the governing boundary value problem by a modal expansion
technique, a highly nonlinear system of ordinary differential equations is obtained. A stability analysis is performed
which shows instabilities for high and for low driving speed responsible for brake noise. Several suggestions are made

to obtain stable operation conditions without noise.

Introduction

Automotive brake noise has become an increasingly important issue for both vehicle quietness and comfort.
Several distinet mechanisms have been investigated which provoke instabilities in the brake system assumed
to be responsible for this brake noise [1]. A detailed survey of past and recent developments is given by Nishi-
waki [2] and Yang and Gibson [3]. All previous theoretical investigations can be divided in two categories. The
first one uses large scaled finite-element models for the whole brake system and will not be discussed in the
following. In contrast, the second category deals with closed form analytical or semi-analytical approaches
[4] where simple disk and pad models are introduced and, as an important detail, relative motion between
disk and pad is included.

In the present contribution, a structural brake model is introduced characterized by pad motion in cir-
cumferential direction and both friction and heating at the contact points between pads and disk. While
in two earlier papers [5,6] of the authors the main interest was focused on the detection of instabilities for
higher vehicle speed, here the considerations are extended to the range of low speed when stick-slip motions
cannot longer be avoided. Additionally, thermal effects will be included considering the heat production by
the friction contact between pads and thermoelastic ring. The objective is to find a conclusive explanation
for brake squeal and hot spotting within a realistic speed range of the vehicle. Therefore, the stability of the
steady state response of the disk brake model is proven to identify growing thermoelastic vibrations of the
ring and interacting pad oscillations.

Modeling

Dynamic simulations of an expensive FEM brake model demonstrate that the axial vibrations of the brake
disk are dominant compared to the oscillations found in radial and circumferential direction. Therefore, an
analytical model for the brake system is established. The brake disk is approximated by a slender thermo-
elastic ring of mass density p, Young’s modulus F and damping coefficients dy ». The ring of mean radius R,
thickness h and radial dimension b rotates with constant angular velocity €. k is the thermal conductivity,
& the linear thermal expansion coefficient and ¢, the specific heat; 3 denotes the heat transfer coefficient
between ring and surroundings. The two stationary brake pads are connected to the rotating ring by two
separate one-point contacts assuming that the pads have identical physical properties. Each pad is modeled
as a rigid body of mass M viscoelastically (spring constants ¢y . and damping coeflicients d,, . ) suspended in
axial and circumferential direction and loaded by an external axial brake force F'y » such that a separation of

pads and ring in axial direction is avoided.
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Between the rotating ring and the sliding pads, dry so-called Stribeck friction is assumed. Typically, the
friction coefficient is a function of the relative (angular) velocity between the contacting parts and exhibits
different stick and sliding friction coefficients py, and p,, respectively. At the two contact points between pads
and ring, heat is fed into the ring which is proportional to the power of the friction forces.

Formulation

It seems to be adequate to formulate the model equations applying a stationary reference frame to avoid
parametric vibrations. Then, a time-invariant boundary value problem results with the complication that
it appears as a highly nonlinear system of differential equations. The transformation @ = Qt+ ¢ (time t)
connects the Euler variable ¢ and the material coordinate ¢. There are bending vibrations w(ep,t) of the
ring and the temperature field 9(¢, z,¢) (axial thickness coordinate —-;—‘- <z< +§} in it interacting with the
circumferential pad oscillations Ry (t) (k = 1,2). With respect to the axial pad vibrations it is assumed that
there is a permanent contact to the ring at the location g = Pi(t) (k = 1,2) so that the corresponding
displacements coincide with w(wck, t). Identifying the relative (angular) velocity Q. = Q - If;'k(t} (superior
dots denote derivatives with respect to time t) between the contacting parts, an analytic description of the
friction characteristic can be given. Assuming that the temperature field is a linear function of z (taking into
consideration that, in particular, in-plane circumferential deformations are not permitted), the thermoelastic
field equations of the ring as a system of two coupled partial differential equations together with two additional
integro-differential equations describing the circumferential pad motion can be written.

The initial-boundary value problem obtained is highly nonlinear and, in general, cannot exactly be solved.
In a first solution step which can be performed analytically, the steady-state response is calculated assuming
that the brake forces are identical on both sides. Observing then the brake system’s d ynamics about the op-
erating stationary state, inserting a superposition of steady-state solutions and small perturbations into the
equations of motion and transforming the position coordinate into the operating state, the governing equations
for the perturbations can be given. As the next solution step, the expansion theorem is applied to discretize
the ring. A Fourier series for ring displacement and temperature (fulfilling all conditions of periodicity) and
applying Galerkin’s approach to the ring equations as well evaluating the integro-differential equations lead
to a set of 4(n + 1 — jo) + 2 homogeneous nonlinear ordinary differential equations.

The stability of the steady state response of the disk brake model is proven by an eigenvalue analysis of the
corresponding variational equations about the stationary solution supplemented by the computation of the
top-Lyapunov exponent corresponding to the discretized strongly nonlinear equations of motion. While for
high operating speed rates, the dynamics is smooth and the suggested linearization obviously leads to correct
results, the eigenvalue analysis (based on the variational equations) becomes questionable for low speed range
because the stationary operation state in that case may be close to the discontinuity at .., = 0. Now it
is appropriate to verify the results of the eigenvalue analysis by the computation of the largest Lyapunov
exponent. But for nonlinear systems with discontinuities, there is no mathematical proof of any definition of
AL so that also this approach is problematic, however, in most cases satisfying results are obtained from an

engineering point of view.

Results and Discussion

First, a reference case neglecting thermal effects is discussed. Based on a calculation of the maximum real part
of the eigenvalues A; of the system matrix, for a three-term truncation of the ring (jo = 1,n = 3), a stability
chart is presented for the undercritical speed range 5 < 1 and for different “circular frequencies” wy = \/m
of the pads in circumferential direction. It is assumed that 7 is sufficiently high so that stick slip phenomena,
first of all, cannot occur and Coulomb’s friction law with a constant sliding friction coefficient j, in the
considered speed range can be assumed. A comparison with the normalized eigenfrequencies w, (i = 1,2,...)
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of the rotating ring (neglecting the circumferential pad dynamics) shows that the instabilities may occur if
wy & w;, i.e., the nonlinear interaction of ring and pad dynamics (together with gyroscopic effects) leads to
so—called internal resonance which gives rise to the appearing instabilities. A detailed parameter study can
be found in the thesis [7].

Now taking into consideration the Stribeck friction characteristic and activating stick-slip in a speed range
0<7n<24-1071, the corresponding stability chart is given next. Obviously (as well-known), the stick-slip
vibrations in form of a limit cycle destabilize the steady operation state of the brake system for every value
wy, the instability bands shown earlier are slightly modified. Since, in particular, the results originating from
an eigenvalue analysis of the variational equations are questionable, they are compared for the special case
wy = 1 with those obtained from a computation of Ay associated with the original nonlinear equation set.
Considering the stability boundaries, a good agreement of the results of the two methods can be stated.

In a last supplement, thermal effects are included which modify the results only quantitatively.

Conclusions

Friction-induced instabilities in a structural disk brake model have been examined to explain brake noise and
hot spotting for high but also low vehicle speed. The stability analysis of the linearized originally strongly
nonlinear model equations (supported by a computation of the top-Lyapunov exponent of the nonlinear equa-
tions) clearly shows that instabilities of the system due to internal resonances and accompanied by gyroscopic
effects occur. For a realistic choice of all the system parameters as mass, stiffiness, damping, friction coefficients,
brake force, etc., these instabilities may appear in realistic speed ranges from about 100 - 150 km/h until
very low values for which stick-slip phenomena have to be taken into consideration. It can be suppoéed that
thermal effects modify the instability regions but not substantially and only in such a form that the increasing
disk/pad vibrations are coupled with an increasingly oscillating temperature field which might be responsible
for hot spotting in the brake disk. Additional instability ranges originating from the thermoelastic properties
of the ring and the heat feeding at the contact points between pads and disk seem not to be generated.

To avoid these friction—induced instabilities, a specific tuning of the parameters can be suggested. Since
a decreased brake force or friction coefficient — which would stabilize the system - cannot be recommended
because of safety reasons, only increased damping coefficients (realized, for instance, by ceramic brake compo-
nents) are really helpful within all speed ranges. A certain choice of the different stiffness parameters may shift
instability domains to higher or lower speed ranges but in most engineering applications this is not helpful
because for a car, braking can be required for every speed.
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FOR FREE VIBRATION OF STRUCTURES

F. W. Williams
Department of Building and Construction, City University of Hong Kong, Kowloon, HONG KONG

D. Kennedy
Cardiff School of Engineering, Cardiff University, Cardiff CF24 0YF, UK

Let a member be hypothetically represented by an infinite number of finite elements, with its internal
freedoms d; numbered first and those of its connection nodes, d., numbered last. For vibration

(buckling can be dealt with similarly) the dynamic stiffness matrix of order » — c can be partitioned as

2 2
kij—o"m;; K -0 m;

M
l 2 2
Kie —o"mj. Kg —o"mg,
where @ = circular frequency, k = the static stiffness matrix and m = the mass matrix.
Eliminating d; by the usual static FEM substructuring procedure gives
1
ke =k¢e - wzmcr.' - (k:ir: = wzmﬁcIkif - (‘-’zm:‘i)r (k:’c - ("zm:‘c) : (2)

Inversion by Cramer’s rule shows that all elements (7, ) of k. have the same denominator 4,, and

that it and the numerators k;’,}- are given by Eq. (3), in which fn(coz) indicates functions consisting of

only even powers of @ .
A, = det{k; —o*m;) = fn((oz), ké‘,j = fn(a)2 ) (3)

Clearly if any values of k;’,-j which are zero for all values of @ (e.g. due to lack of flexural and axial

coupling) are excluded, neither 4,, nor the ké’,j can be zero at @ =0, and so normalising them by

dividing by their values there gives
Zm=l+a2(u2+a4a)4+... ;gg;=l+b2(oz+b4a)4+... 4

in which the crucial point is that the first term is unity.

P2
Figure 1. Member end forces and displacements.
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Figure 1 shows d, @, pand m, the displacement, rotation, force and moment amplitudes at ends 1 and
2 of a Bernoulli-Euler member, which are all multiplied by sin ¢ . The member has length L, flexural
rigidity £/, mass per unit length x and axial force P. For Bemnoulli-Euler beams, P=0 and the

transcendental flexural stiffnesses are given (Williams and Wittrick, 1970), using k = EI /L and the A
of Eq. (7), by Egs (5)-(8).

[ yk/12 ckjL —ek/12 sk [di] [p
ak -0k/L Bk | 6 m

Symmetric yk/I}  —¢k/L | d> i P2 ®
] ak |02] [m3]
a=(SC'-CS)/o B=(8'-S)/c y=(sC'+Ccs)A3 o
s=(C'-CP/o e=(S+8W/o  £=(s8)/o v
A4 =2t ufEr o=(-cc’) (7)
S=sinA C=cosA §'=sinhA C'=coshAi (8)

The above notation is standard except for the abbreviations of Eq. (8). Because Eqgs (5) — (8) include @
only via A, Eq. (4) gives

Am =1+cgA* +cg® +... Koy =14 dgat +dad® 4 9)

However substituting the expansions of the trigonometric and hyperbolic functions of Eq. (8) into the
o of Eq. (7) and into the six numerators of Eq. (6) gives, in every case, polynomials which satisfy Eq.

(9) except that they start with a term in A* instead of with 1. Hence dividing o and all the numerators
by the first term in the expansion for o (= /14/6) gives Am and the replacement for Eq. (6) as

a-—-{6(SC'—CS')/ﬂ.3}/Zm ﬁ={6(S’—S)/A3}/Zm
r={6(SC'+CS')/A }/Zm 5={6(C'—C)/,12}/21'm dm =6(1-CC)[2* (10)

£=16(S+S')//1 }/Zm = {6(85')//12}/2.»1

Il

Here the brackets { } contain the numerators, which may be denoted as a”, ", y", 8", ¢" and &"
and have the first term in their polynomials as, respectively, 4, 2, 12, 6, 12 and 6. Hence normalising

them to become a” , B" etc, by dividing by their values at @ = 0, which implies that k. of Eq. (2) is
normalised by using its value when @ = 0, gives

ket =kess=p"=y" 12 ka2 =—kesa =E"=E"J6  keiz =—e" =—£"/12 s

kela =—ke3 =6" =" [6 koo =keas =a” =a"[4  kepa =p" = p" /2
Hence the stiffness matrix of Eq. (5) can alternatively be written as
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[ 12k7/1> 6kE/L -12ke/1® 6kS/L |
4ka  -6kS[L  2%kp

_ _ 12

Symmetric l2k}'/L2 *Gkﬁ/L 12

dka

where @=a"/ 4m , etc. Hence the @, etc, become modification factors acting on the well-known
stiffnesses of the slope-deflection equations, to which the Bernoulli-Euler equations limit when @ = 0.

The transcendental formulations of Egs (10)-(12) have fundamental importance because they represent
the exact equivalence with the hypothetical infinite order FEM representation of Eqgs (1)-(3). Hence the
conventional Egs (6) and (7) can be regarded as simplifications of Eq. (10) for use when computing
because they are faster. In particular, although the above derivation lacks the mathematical rigour of the

original proof that Eq. (10) gives the FEM Am it has appealing simplicity and elegance and it also
establishes a very satisfyingly comprehensive equivalence with the infinite order FEM solution.

Incidentally, Eq.(11) can be viewed as giving the coefficients of the matrix k”, which is also given by

normalising the k. which follows from Eq.(2) as
2 2 *
k" =det{k;; —@*m;}x (ke —@ mg.) - (kfc —a)szc)k (k,-c —mzmw) (13)

where Kk is the matrix containing the co-factors when Cramer’s rule is applied.

The Am of Eq. (10) was only discovered recently and was named the member stiffness determinant.
This is the first method developed for deriving it because previously it was found by trial and error and
then verified by an appropriate procedure.

It is easily seen that @? rather than @ is fundamental to the transcendental eigensolution, both because

the FEM analogy given above uses ®? and also because the expressions of Eq (6) and the & of Eq (7)
contain only even powers of @ in their expansions. This will seem natural to those with an FEM
background, but those working with transcendental eigenvalue problems have usually thought of @ (or

even A, implying Jo ) as being the eigenparameter. Switching to ®® has practical advantages. For
example a recent recursive adaptation of standard inverse iteration to enable, for the first time, (almost)
machine accuracy modes to be found for the transcendental eigenproblem has been shown, both

theoretically and by numerical experiments, to converge faster when formulated in terms of w? instead
of in terms of @ .
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EXACT MULTI-LEVEL TRANSCENDENTAL EIGENVALUE
SOLUTION METHOD BY ANALOGY WITH THE NATURAL
FREQUENCIES OF STRUCTURES

F.W. Williams
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W.P. Howson and A. Watson
Cardiff School of Engineering, Cardiff University, Cardiff, CF24 0YF, UK

Many disciplines involve eigenvalue problems and these often give spectra with alternating
populated and void bands, e.g. pass- and stop-bands. The topical mathematics application reported
here involves the tree topology shown in Figure 1. It illustrates the truly exceptional power of the
Wittrick-Williams ( W-W) a lgorithm'?, originally d eveloped for structural m echanics, in order to
stimulate its use in other disciplines, particularly those requiring exact solutions of transcendental
eigenproblems.

Specifically, a single component at level 1 branches into b identical components at level 2
which themselves branch similarly, etc., to nlevels. The components have their end c onditions
linked where branching occurs. The band spectrum shown in Figure 1 is for increasing values of n
when all components obey the same simple second order Sturm-Liouville differential equation
—y”" =Ay. The identical bullet-shaped curves bound the populated bands and repeat to infinity with

the intermediate gaps void except for extremely high multiplicity eigenvalues atin (i=1,2, ......... ).

A very recent mathematical study of this problem for n infinite’ (n finite is more probable in
other disciplines) could not obtain confirmatory numerical results for n large. This deficiency is
currently being very successfully rectified by transfer from structural mechanics of the powerful
multi-level substructuring® corollary of the W-W algorithm for solving such transcendental
eigenproblems. Briefly, if A, is any value of A, the W-W algorithm calculates J, the number of

eigenvalues below A . This has spawned many totally reliable eigenvalue computation methods.

Alternatively, the eigenvalue count for an interval (l,,lu] equals J, -J,. Hence: using
successive intervals reveals the eigenvalue distribution, or modal density, plot; this incidentally
reveals the band structure shown and; using almost infinitesimal intervals identifies multiple
eigenvalues and their multiplicity.

The multi-level W-W corollary is most powerful when groups of components repeat
frequently. Hence for the present problem a subsystem consisting of a set of b identical members at
level n and their linked member at level (n-1) was analysed first to obtain equations relating solely
to the left-hand end of the subsystem. b such subsystems and a member at level (n-2) were then
similarly analysed, etc., until the complete tree was formed. For n =43 and b = 2, a SUN Ultra 10
333 MHz computer using double precision arithmetic (= 16 significant figures) gave J in 0.000071
seconds without ill-conditioning, despite there being = 10'* components and no refinements such as
pivoting. Eigenvalue multiplicities of Nt divided by 2, 6, 14, 30 etc. (i.e. with multiplicities of order
= 10"") were found extremely straightforwardly, where Ny = total number of eigenvalues in (0, 7].
These multiplicities agreed with formulas for any b or n derived theoretically from an analogous
structural mechanics problem, as described further below.
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The tree with n =4 and b = 3 of Figure 2 has been drawn and lettered to aid the following discussion
of the behaviour of the structures, which assumes that all members are co-linear although clarity
prevents them being shown as such. The structure is always clamped at node A and at all 27 of the
nodes denoted by O-W. Each of O-W denotes three nodes, which are differentiated from each other
by using subscripts t, m and b for, respectively, the top, middle and bottom nodes. Attention is
confined below to consideration of the multiplicity of eigenvalues, by establishing a set of
independent but not necessarily orthogonal modes.

Consider first the possible modes of vibration for which a = ir, where a = A% These
correspond to the clamped/clamped natural frequencies of each bar. Now consider any one of the 27
paths from any of nodes O-W to node A. The path contains four members and it is clearly possible
for each of these to vibrate in-phase with each other and with equal amplitudes, while none of the
other members vibrate. This is because there is no displacement at the three nodes at which the four
members meet, since the frequency is a ¢ lamped/clamped natural frequency, and there is c learly
force equilibrium at the three joints due to the amplitudes being equal. These 27 modes are clearly
independent of each other, because each of them involves a different one of the 27 members at level
3, but are readily seen not to be mutually orthogonal. Other modes are easily visualised, but are
readily shown to be combinations of two or more of these 27. For example, if the two members of
the path QHQy, (or QHQn) vibrate in anti-phase they give y = 0 (i.e. zero axial displacement) and
equilibrium at H, but can be obtained by subtracting the mode for the path QuHCBA (or QuHCBA)
from that of equal amplitude for the path QHCBA. Similarly the mode for path O,FCBDIJ S; can be
obtained by subtraction of those for OmFCBA and SJDBA, etc. Hence there are only 27
independent modes for this example. Since this is the number of members at level n-1 it follows by
generalisation to any b or n that M,, the number of independent modes of vibration for which a = ix,

is equal to b™".

It is readily shown that eigenvalues at a = (i-2)n correspond to clamped/free vibrations of a
single member. Hence any path originating from all three nodes at any one of O-W, going to the
node two levels to its left and returning to all three nodes at a different one of O-W defines a
possible mode as follows. A typical such path is P*GCHQ* where the asterisk denotes the paths
PG, P,,G and PG are all present, etc. Hence, so long as all members vibrate with equal amplitudes,
compatibility (i.e. y is shared) is guaranteed at G and H if each of the six members represented by
P*G and Q*H vibrate in-phase with their right-hand ends clamped and their left-hand ends free,
while CG and CH vibrate in anti-phase with these six members and with their right-hand ends free
and C clamped. So long as the paths CGP* and CHQ* vibrate with equal amplitudes in anti-phase
to each other there is force equilibrium at C. Hence this mode satisfies all necessary compatibility
and equilibrium conditions and so is one possible mode of the entire structure of Figure 2. Clearl
b-1 independent modes of this type exist for each of C, D and E, i.e. in general there are (b-1)b™ )
such modes. However in addition the four members AB, BC, BD and BE form a similar pattern to
the one just discussed and so contribute one further mode only, since member AB is at level zero. In
general for higher n, i.e. n>5, there are (b«l)b(“'5 ) of these, noting that the equilibrating force at C
comes from one (or more) of CFO*, CGP* and CHQ* vibrating in-phase with ABC and that the
equilibrating forces at D and E arise similarly. Hence if n is even M,, the total number of
independent modes at a = (i-Y2)x, is (b-1){b"V+b™ )+ . +b} + 1 whereas if n is odd the member at
level 0 will not participate so we can neglect the ‘extra mode’ which occurs when there is an even
number of levels, giving (b-1){b"*+b™+...+1} independent modes. Summing these series gives

M, =P +1)/(b+1) (neven)
=™V -1 /b+1) (n odd)

(1)
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The above arguments can be extended to obtain the mode multiplicities My for any k. In
effect such modes are clamped at node levels n-ik (i=1,2,...,int(n/k)) and hence

M, =(b-1)b" " —b" )y (b* —1)+int(t/k) (k=12...) @
t=n-k int{(n-1)k}

Note that when k=2 equation (2) gives both the n even and n odd cases of equation (1).

Current studies include: fragmentation of all of the above multiple eigenvalues due to the
introduction of a potential, which modifies the Sturm-Liouville equation to —y"+qy=Ay and;

trees of fourth and higher order Sturm-Liouville equations. In structures, these repectively
correspond to axial vibration of trees of tapered bars and to flexural vibration of trees of beams.
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ON THE FREE VIBRATION OF FULLY-FREE AND PINNED SPHERICAL SHELLS

Philippe Young
School of Engineering and Computer Science, University of Exeter

The free vibration of both fluid-filled and empty multi-layered hollow s pherical shells has been
studied with a focus on understanding the response of the human head to impact.

For the fully free case the emphasis was placed on the behaviour of the first ovalling (n = 2) mode
of spheroidal oscillation as material and geometric parameters are varied. The motivation for
focusing our attention on this mode is a parametric study (Young and Morfey [1]) on the response
of a fluid-filled shell to a radially applied force, which has shown that both the onset of dynamic
pressure effects in a fluid-filled shell and the magnitude of the observed pressures can be very
accurately predicted by the ratio of the impact duration to the period of oscillation of the first
ovalling mode. Numerical results obtained using the full three dimensional elasticity equations are
compared with results obtained using simpler membrane and shell theories to explore the range of
applicability of these theories. It is shown that for a remarkably wide range of geometric and
material parameters, which encompass values typical for the human head, the first ovalling mode of
a fluid-filled shell behaves like a membrane filled with incompressible fluid and a simple closed
form expression is derived which closely approximates the natural frequencies obtained using the

exact three dimensional equations.

The period of oscillation of the first few axi-symmetric modes of vibration of a pinned fluid-filled
shell were then explored. The motivation for this was the prediction of impact duration for blunt
unprotected head impact. Again a number of interesting results were obtained and will be

discussed.

1. Young, P.G. and Morfey, C.L., 1998, “Intra-cranial pressure transients caused by head impacts,”
Proceedings of the 1998 IRCOBI Conference on the Biomechanics of Impact, pp.391-403.
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VIBRATION PROBLEM OF NON-UNIFORM BEAMS
Si Yuan*, Cheng Xiao*, Kangsheng Ye* and F. W. Williams**
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INTRODUCTION
When exact dynamic stiffnesses are used for solving free vibration problems of skeletal
structures, continuous systems are reduced to the transcendental matrix eigenproblem
K(w)D =0 (1
where o is the circular frequency, K(w) is the global dynamic stiffness matrix and D is the joint
displacement amplitude vector, which becomes the mode vector at the natural frequencies.

The most successful and reliable methods for computation of the natural frequencies from (1) are
those based on the Wittrick-Williams (WW) algorithm!"/, which gives the total number of frequencies
below an arbitrary trial value as being

J = Jy(w*) + s{K(w*)} (2)
Here s{K} is the sign count of K , which equals the number of negative leading diagonal elements of
the upper triangular matrix K* obtained from K by ordinary Gaussian elimination, and J, is the
total number of so-called member fixed-end natural frequencies @, , that are below w*. Repeating

(2) for different w* yields several alternative iterative methods" that effectively narrowly bound the

sought frequency to the desired accuracy.
The above dynamic stiffness method (DSM) is considered to be exact if: (a) the exact dynamic
stiffnesses are used in K(w)and; (b) J, can be exactly counted, which in turn implies the exact

evaluation of thew, , for each individual member. For uniform members in skeletal structures, this
can be achieved conveniently, whereas great difficulty exists for non-uniform members, i.e. for

members with variable cross-sections. Therefore this paper considers the exact calculation of the
fixed-end natural frequencies @, , of non-uniform beams and their associated vibration modes.

THE MAIN IDEA
The vibration problem of fixed-end non-uniform beams can be expressed as the fourth order ODE
eigenproblem
(EI(x)v")" = Am(x)v =0, El,m>0, 0<x<L
v(0)=0, V(0)=0, v(L)=0, V(L)=0
where: A = @*; EI(x) and m(x) show that the flexural rigidity and mass per unit length vary with x
and: v is the mode function. Problem (3) is a special case of the fourth order Sturm-Liouville (SL)
problem, which can be solved by any general code for solving fourth order SL problems. However,
the fourth order SL problem is very challenging and to the authors’ best knowledge, the only recent
code that directly and specially solves such problems is SLEUTH". The present paper, however,
presents an alternative solution method, which uses the exact dynamic stiffness method and any of the

available standard adaptive linear ODE solvers.
The main idea of the proposed method is based on the fact that the WW algorithm (2) becomes

particularly simple if all @,, >@* (i.e. J, =0). This can be achieved by appropriately subdividing

members into sufficient sub-members to give the following simple solution strategy.

3
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(1) Mesh Generation: divide the beam into sufficient sub-members for every A, of them all to

exceed the trial value A * | thus eliminating the difficult need to calculate J,;

(2) Calculation of Stiffnesses: calculate exact dynamic stiffnesses by solving the governing ODEs
using a standard adaptive linear ODE solver, so that the variable cross-sections are exactly
modelled, which virtually eliminates any discretisation errors;

(3) The rest is the same as in the usual DSM and the most recent method™ has been used in this
paper, which can quickly produce highly accurate frequencies and mode vectors.

ADDITIONAL DETAIL
In the following, some key treatments are explained in greater detail.
(1) Mesh Generation
The mesh to be generated should be sufficiently fine to raise the minimum A, in each sub-

member high enough to exceed the upper bound of the group of sought eigenvalues, but should not be
unnecessarily fine, so as to avoid excessively increasing the computational effort.

a) Initial mesh. The initial goal is aimed at finding a set of appropriate bounds for the sought
frequencies. Since there is not much information provided, a uniform mesh (say N uniform sub-
members) can be used for simplicity, even though more sophisticated approaches exist. Then two
models of piecewise constant cross-sections are considered as shown in Fig. 1, where the lower/upper
bound model uses the m and EI values at which m/EI/ is maximum/minimum for the considered
sub-member. Then the usual DSM is applied to the two models to roughly determine (say by using
bisection) two sets of the sought eigenvalues, which form both lower and upper bounds for each
natural frequency required.

b) Optimum mesh. When initial bounds have been obtained by a), more accurate frequencies and
mode vectors are computed one by one by using the exact model and an optimum mesh, which should
use a minimum number of sub-members for which all A, , are greater than the upper bound A, of the

largest eigenvalue being sought. This can easily be done by using the fact that, for a uniform beam,
the minimum dimensionless A,, can be directly calculated in a straightforward way, and therefore

each sub-member length / can be determined by / < 4.73004/ 44, max (m/EI) . Repeated use of this

formula from one end of the beam to the other generates an optimum mesh.
(2) Stiffness Calculation
For optimum meshes, the exact dynamic stiffnesses are used, the calculation of which, taking &,

as an example, can be achieved by solving the following linear ODE problem

(EI(x)V")" = A" m(x)v =0 with v(0)=1, V(0)=0, v(/)=0, V()=0 (4)
Then &, can be obtained from the above solution v by simple calculations. In addition, the derivative
k/, with respect to A, which is used to form the exact mass matrix"”, can also be obtained by solving
the different linear ODE problem

(EI(x)¥")" — A" m(x)¥ =m(x)v with ¥(0) =0, ¥(0)=0, #(/)=0, ¥'(/)=0 (5)
Hence numerically exact dynamic stiffnesses and their derivatives can be obtained conveniently and
reliably by using any standard adaptive linear ODE solver

-------------------------

.....................
.....

.......
---------

........

.....
........

......................

Fig. la Lower bound model  Fig 1b Exact model Fig. 1c  Upper bound model
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Table 1 Results for Example 1

Frequency This Paper SLEUTH ™!
Index 0 Time (Sec) 0] Time (Sec)
| 31.67264485 0.070 31.67264514 0.040 B
5 378.1937270 0.050 378.1937293 0.060
10 1388.283922 0.080 1388.283936 0.120
40 20747.72295 0.270 20747.72313 . L192
45 26188.78994 0.310 26188.79018 1.091
50 32262.54698 0.340 3226254728 1.603
Total Time 9.293 30.92
Table 2 Results for Example 2
Frequency This Paper SLEUTH P!
Index @ Time (Sec) (0] Time (Sec)
50 10587.28984 0411 10587.28995 0.691
55 12787.56186 0.451 12787.56199 1.011
60 15195.40670 0.501 15195.40685 0.901
85 30348.22327 0.701 30348.22355 1.472
90 34001.50504 0.731 34001.50538 1.602
95 37862.35965 0.771 37862.36003 1.763
Total Time 29.89 61.00

NUMERICAL EXAMPLES

Two examples are shown in this section to exhibit the efficiency and validity of the proposed
method. The solutions are compared with those obtained using SLEUTH"” . For both examples and
for both the present method and SLEUTH, the error tolerance was set as 7o/ =10"*. The exact
dynamic stiffnesses were calculated by using the ODE solver COLSYS!".

Example 1. E/(x)=3+sin(x), m(x)=2+sin(10x), L =1

The first 50 natural frequencies and mode functions were computed and the natural frequencies
are shown in Table 1, in which both the time needed to find individual natural frequencies and the
total time taken are given.

Example 2. EI(x)=(x+1)"/12, m(x)=x+1, L =1

The 50th to 99th frequencies and mode functions were computed, see Table 2.
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