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PREFACE

The International Symposium on Vibrations of Continuous Systems is a forum for leading 
researchers from across the globe to meet with their colleagues and present both old and new 
ideas on the field. Each participant has been encouraged to either present results of recent, 
significant research or to reflect on some aspect of the vibrations of continuous systems which is 
particularly interesting, unexpected, or unusual. This latter type of presentation was proposed to 
encourage participants to draw on understanding obtained through - in many cases - decades of 
research. In addition to the technical sessions, there is ample opportunity for the participants to 
meet in a very informal manner during excursions and hikes. Both technical and non-technical 
intensive discussions take place at these occasions. Past experience shows that all participants 
greatly benefit from getting to know their colleagues from around the world at a level not 
accomplished during normal conference settings.

The Seventh ISVCS takes place July 19-25, 2009 at the Hotel Litwor in Zakopane. Zakopane 
and its surrounding is considered the most attractive tourist region in Poland. The town of 
Zakopane is situated in southern Poland about 90 km to the south of Krakow, the historic city 
with a population of about 800 000 that was the capital of Poland until the 16th century. It lies in 
a valley at the foot of the Tatra Mountains on the border between Poland and Slovakia. The Tatra 
Mountains are the highest mountains in Poland with the highest peak Mount Rysy at 2499 m 
above sea level.

These Proceedings contain 26 summaries of the presentations to be made at the Symposium and 
short biographical sketches submitted by the participants.
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High-Frequency Self-Excitation in Paper Calenders 

Eberhard W. Brommundt 
Institut für Dynamik und Schwingungen, Technische Universität Braunschweig, 

PF 3329, D-38023 Braunschweig, Germany, Eberhard@Brommundt.de 

For printability, the surface of paper is finished by calendering: the paper sheet passes 
through the nip between two rolls where the web is compressed and its surface smoothened, cf. 
Figure 1. Often, after an operating period of one or two weeks, barring occurs: waves develop on 
the surfaces of the rolls producing wavy patterns on the paper, the bars, and the machine must be 
shut down. 

Self-excitation due to various time delays, 
contained in the roll system, in combination with re-
generative wear seem to feed the deteriorating proc-
ess, see Hader [1] and the literature quoted there. We 
believe that wear need not be the triggering effect. 
Maybe, there exists the combination of two proc-
esses: The first one is a friction induced self-
excitation which can emerge even in a mill with ide-
ally cylindrical rolls, to be discussed below. That be-
ing the case, the self-excited oscillation will produce 
corrugation by wear which, secondly, amplified by 
regeneration, may eventually govern the process. 

The model contains two elastic rolls 1, 2, their 
hubs suspended as shown in Figure 1; the quantities 
ax1,...,ay2 serve to adjust the nominal positions. Roll 
1, its cover disregarded, is driven by a motor with 
M = constant via a flexible clutch. The paper and 

roll 2 are driven from below by friction at the con-
tact. In the nip, the paper exhibits a nonlinear hyster-
etic characteristic, cf. Figure 4; the compression de-
pends locally on the motions and deformations of the 
rolls. The slip between rolls and the paper are gov-
erned by the dynamic equilibrium conditions in the 
nip, taking Coulomb friction into account. 

The rings deform like a curved thick beam and 
undergo the displacements u( ,t), w( ,t), see Figure 
2, as well as the shear v( ,t), not shown there. All 
three are measured with respect to the non-rotating 
Eulerian frame of polar coordinates of Figure 2. Af-
ter establishing the kinetic energy T and the elastic 
potential U the system is discretized: Generalized 

variables qk(t), k = 1,...,48, are introduced which are governed by the Lagrange equations 

Figure 2: Deformations at the midline of 
a ring: a) initial shape, b) azimuthal dis-
placement u( ,t), and bending w( ,t)
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Figure 1: The system. Dimensions of the 
rolls and displacements of their centers 
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d , 1,...,48,  dim( )  length,
d k k

k k k

T T U Q k q
t q q q

 (1)  (1) 

where the generalized forces Qk follow fromwhere the generalized forces Qk follow from ,k kW Q q ,k kW Q q  an

1

d W  is the virtual work of the 

forces not contained in the potential U, i.e. the dampings and the forces at the nip.  

After the discretization, we have for roll 1, cf. Figures 1,2,3, mounted on a three point sup-
port which does not rotate, the 23 generalized variables q1,...,q23, cf. (2), and 1 3( )/ :M q t R

1 1 1 2

1 1 3 4 1 5 1 6 1 7 1 8 1 9 1

1 1 10 11 1 12 1 13 1 14 1 15 1 16 1

1 1 17 18

( ) , ( ) , (2)
( , ) cos( ) sin( ) cos(2 ) sin(2 ) cos(3 ) sin(3 ),
( , ) cos( ) sin( ) cos(2 ) sin(2 ) cos(3 ) sin(3 ),
( , ) cos(

x t q y t q
u t q q q q q q q
v t q q q q q q q
w t q q 1 19 1 20 1 21 1 22 1 23 1) sin( ) cos(2 ) sin(2 ) cos(3 ) sin(3 ).q q q q q

Similarly, the motion and deformation of roll 2 is described by the 24 variables q24,...,q47, 2 = 
and q  is the velocity of the longitudinally inextensible sheet of paper of the mass mP.24 2( )/ ,q t R 48( )t

Figure 3: Geometric rela-
tions at the nip of the rolls 

Figure 3 shows the instantaneous geometrical situation at the 
nip: the paper is compressed by the deformed rolls 1 and 2 (enlarged, 
not to scale); s = common Eulerian location along the nip. The transi-
tions from the Eulerian polar coordinates of Figure 2 to s etc. follow 
from geometrical relations, read from Figure 3, by series expansions 
with respect to 1, and 2 and algebraic manipulation. The vertical 
paper compression H1 – H(s,t) = h1(s,t) + h2(s,t) := h(s,t), see Figure 3, 
leads to the strain 1( , ) ( , ) ;p s t h s t H compression positive! 

Correspondingly, the instantaneous relative velocities between 
the paper and the roll surfaces are formulated as functions of (s,t).

Figure 4: Stress-strain 
relation for the paper

The normal stresses in the paper (pressure positive) have a hyster-
etic character. For loading, pl, and unloading, pul, the following hold

1 ;

( ) exp( ) 1 ,

( ) exp(( ) )

pl p l l p l

pul p ul ul p r ul

E

E
 (3) 

where El, Eul, l, ul are given parameters and the residual strain r fol-
lows for a known local material maximum m from pl( m) = ul( m).

After several further assumptions, the contributions of the contact 
and friction forces along the nip to the virtual work W are established. 
Then the Lagrangian procedure (1) leads to the equations of motion  

2
1 48( , ), : ( ,..., ) .Ti q qMq Gq Cq Bq B q Kq f q q q  (4) 
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The 48x48 matrices M, G, C, B, Bi, K contain the inertia, gyroscopic, centrifugal, damping, inter-
nal damping, and stiffness coefficients, respectively; the right-hand side  contains the nonlin-
earities. Diagonal are the matrices 1 := 1 I23, 2 := 2 I24, and = diag( 1, 2,0); In := nxn-
identity.

( , )f q q

To solve the set of 48 nonlinear ordinary 
differential equations (4) numerically, about 60 
basic parameters are required. For example (cf. 
Figure 1): R1 = 0.31 m, R2 = 0.42 m, a1 = 36 mm, 
a2 = 66 mm, H1 = 0.15 mm, (F1 – F2) = 600 N, vP

 25 m/s, 01 = 0.30, 02 = 0.25 (friction), etc. 

For the case of stationary displacements q0
with constant paper and angular velocities the 
nip length of (3.46 + 5.46) mm = 8.92 mm re-
sults, cf. Figure 5, and the contact quantities 
shown there. (In spite of the small length of the 
nip the relative velocities between paper and 
rolls change their signs twice along the transit!) 
The stability of the stationary solution is studied 
by the (linear) variational equation about q0 ob-
tained from (4) by numerical differentiation. 

The following Table shows for the variational equation the 12 smallest of the 48 eigenvalues 
k/2 , ordered by decreasing magnitude. Counted from below, the 9th, i.e. 40, has a positive real 

part: The stationary solution q0 is unstable. 

Table: Eigenvalues jk k kf   Hz  (i.e.: real and imaginary parts of   are divided by 2 ), k = 37,...,48 

37...40     -9.7934 + 664.78 j     -5.3461 + 545.95 j   -0.1775 +  212.31 j 0.0024664 + 149.37 j

41...44 -0.053657 + 88.456 j  -0.078737 + 83.293 j -0.013371 + 46.693 j -0.0060862 + 40.40 j 

45...48 -0.008636 + 28.673 j  -0.007034 + 24.243 j -0.003016 + 16.522 j  -0.006305 + 7.0342 j 

Figure 5: a) Paper impression, b) relative ve-
locities paper  rolls 1,2, c) normal pressure, 
d) tangential stresses paper  rolls 1,2

Figure 6: Self-excited oscillations. a) Rela-
tive velocities vrel1,2 between rolls and pa-
per at s = -3 mm, b) frictional powers P1,2
between rolls and paper

The numerical solution of the nonlinear 
equation (4) leads, after transients, to a periodic 
self-excited oscillation qs(t), vibrating with the 
frequency fs  150 Hz f40. Figure 6a shows for 
that motion the oscillations of the relative veloci-
ties in the nip at s = -3 mm, and Figure 6b shows 
the powers of the friction forces between paper 
and roll surfaces. They have considerable oscil-
lating parts which, after synchronization by un-
balances, will initiate roll corrugations. 

The model offers some hints how to stabi-
lize the operation of such a machine. For better 
technical relevance the model should include the 
soft cover of the lower roll and take longitudinal 
and shear deformation of the paper into account. 

3

4

[1] Hader, P.: Selbsterregte Schwingungen von Papierkalandern. Dissertation, Duisburg-Essen. 
      Shaker Verlag, Aachen (2005). 



� Seventh International Symposium on the Vibrations of Continuous Systems, July, 2009

Vibrations of plates and shells in the case
of thermo-mechanical coupling

E. Carrera, S. Br�schetto
Aeronaut�cs and Space Eng�neer�ng Department, Pol�tecn�co d� Tor�no, Italy

e.ma�l: erasmo.carrera@pol�to.�t

Temperature var�at�ons are one of the most �mportant causes of fa�lure mechan�sms �n typ�cal aerospace structures,

such as plates and shells. These structures are subjected to severe thermal env�ronments: h�gh temperatures, h�gh gra-

d�ents and cycl�c temperature changes. Due to these �mpl�cat�ons, the effects of both h�gh-temperature and mechan�cal

load�ngs have to be cons�dered �n the des�gn process of such structures. A great deal of work has recently been devoted

to the development of computat�onal models to study the behav�or of h�gh-temperature plates and shells [�]. Among

the var�ous top�cs, the present work focuses on v�brat�on analys�s.

The analysis is accomplished considering full coupling between the mechanical and thermal field. An exhaustive

compar�son between the v�brat�on frequenc�es of the pure mechan�cal case and the v�brat�on frequenc�es of the full

coupled thermo-mechan�cal case �s made. Now�nsk� [�] wrote that the d�fferences g�ven by the effect of the thermo-

mechan�cal coupl�ng are about 0.3%-1.3%. There �s no benchmark w�th�n the framework of a fully coupled theory

ava�lable. Th�s work a�ms to cover th�s gap. Th�s dynam�c analys�s has been accompl�shed us�ng several h�gher-order

two-dimensional models obtained in the framework of Carrera’s Unified Formulation (CUF) [3]. In the case of multi-

layered structures, these models can be equivalent single layer or layer wise and the order of expansion in the thickness

direction is taken as a free parameter (N=1 to N=4). The governing equations are obtained by extending the Principle

of Virtual Displacements (PVD) to the thermo-mechanical coupling by simply adding the internal thermal work [4]:

const�stent const�tut�ve equat�ons must be cons�dered �n th�s case. The govern�ng equat�ons are solved �n closed form

us�ng Nav�er’s solut�on. Impos�ng the �n-plane v�brat�on mode, by means of the wave number, a certa�n number of

v�brat�on modes through the th�ckness, wh�ch depend on the degrees of freedom of the employed two-d�mens�onal

model, can be obta�ned.

Constitutive Equations. The const�tut�ve equat�ons for the thermo-mechan�cal coupl�ng �n the case of a general

layer k are:

σk
p = Qk

pp
k
p +Qk

pn
k
n − λk

pθk ,

σk
n = Qk

np
k
p +Qk

nn
k
n − λk

nθk , (1)

ηk = λkT
p k

p + λkT
n k

n + χkθk ,

where σ and  are the stresses and strains, split into in-plane (p) and out-plane (n) components. η �s the entropy and

θ the temperature referr�ng to a reference value. Matr�ces Q and λ contain the elastic coefficients and the coefficients

of thermo-mechan�cal coupl�ng, respect�vely. Scalar χ �s equal to ρCv

Tr
where ρ �s the mass dens�ty, Cv is the specific

heat and Tr �s the reference temperature.

�
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Governing equations. The var�at�onal statement �s obta�ned from the PVD for the pure mechan�cal case by s�mply

add�ng the �nternal thermal work:


V


δTp σp + δTnσn − δθη


dV = −δLin , (2)

where V stands for the volume of the cons�dered mult�layered structure and δLin =

V
ρδuT ü dV is the external

v�rtual work made by the �nert�al forces. u �s the d�splacement vector, ü �s the second temporal der�vat�ve and ρ �s the

mass dens�ty. The govern�ng equat�ons are obta�ned by subst�tut�on of the const�tut�ve equat�ons, geometr�cal relat�ons

and CUF; this latter permits several two-dimensional models to be obtained.

In the case of thermo-mechanical coupling, the vibration problem is investigated using the governing equations (a

thermostatic approximation is used):

Kkτs
uu uτ +Kkτs

uθ θτ =Müτ (3)

Kkτs
θu uτ +Kkτs

θθ θτ = 0 .

If the effect of the thermal field is not considered, the system is simplified as:

Kkτs
uu uτ =Müτ . (4)

The matr�ces Kkτs
uu , Kkτs

uθ , Kkτs
θu and Kkτs

θθ are the so-called fundamental nuclei: expanding and assembling them

in an opportune way, several two-dimensional theories can be obtained. Classical theories, such as CLT (Classical

Lamination Theory) and FSDT (First order Shear Deformation Theory) are obtained as particular cases of the refined

models based on CUF. The refined theories are called LD1-LD4, where the last digit indicates the order of expansion

�n the th�ckness d�rect�on for the three d�splacement components and for the temperature. The thermo-mechan�cal

coupling is indicated with (TM).

Results. Some prel�m�nary results are here presented to outl�ne the effect of the thermo-mechan�cal coupl�ng for

the v�brat�on problem. A s�mply supported one-layered �sotrop�c plate �s cons�dered. In Table �, hav�ng assumed the

wave number in the plane (m = n = 1), the fundamental frequency f �n Hz is reported for the CLT, FSDT, LD2

and LD4 theories. The comparison is made between the pure mechanical case, the thermo-mechanical coupling (TM)

and the thermo-mechan�cal coupl�ng w�th the �mposed temperature at the top and bottom of the structure equal to the

external room temperature (TM)*. The importance of refined models for thick plates is confirmed and a difference of

about 1%, �ndependently of the cons�dered th�ckness rat�o and the employed two-d�mens�onal model, can be not�ced

in the case of the coupling effect. For the imposed temperature case, the CLT and FSDT do not give any frequency

because their degrees of freedom are not sufficient to impose such temperature conditions. Once the in-plane vibration

mode (m,n) has been chosen, several thickness vibration modes are obtained which depend on the number of degrees

of freedom. For a thick plate, the modes through the thickness, in terms of displacement and temperature, are given

for the free and imposed cases (LD4 model), see Figure [1]. Further results will be presented at the symposium:

mult�layered plate and shell geometr�es, v�brat�on modes for h�gher values of wave number and d�fferent frequenc�es

from the fundamental one wh�ch represents the other th�ckness v�brat�on modes.

�
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a/h 5 10 50 100
LD4(TM) 173.10 47.158 1.9481 0.4875
LD4(TM)* 172.88 47.094 1.9454 0.4869
LD� ���.�0 ��.��� �.���0 0.����
LD2(TM) 174.86 47.306 1.9484 0.4876
LD2(TM)* 174.15 47.093 1.9392 0.4853
LD� ���.�� ��.0�� �.���� 0.����
FSDT(TM) 175.52 47.517 1.9577 0.4899
FSDT(TM)* - - - -
FSDT 174.10 47.088 1.9392 0.4853
CLT(TM) 189.87 48.607 1.9596 0.4900
CLT(TM)* - - - -
CLT ���.0� ��.��� �.���� 0.����

Table 1: Vibration problem for an isotropic plate. Fundamental frequency f �n Hz for several �D theor�es and
th�ckness rat�os. Wave number m = n = 1.
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Figure 1: Free (top) and imposed (bottom) configurations for an isotropic one-layered plate. Thickness vibration
modes in terms of displacements and temperature amplitudes for a thick plate (a/h=5). Fundamental frequency for
m = n = 1.
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Natural Frequencies and Critical Speeds of in-Plane Moving Rectangular Plates 

Li-Qun Chen, You-Qi Tang 
Department of Mechanics, Shanghai University, Shanghai 200444, China 

    Transverse vibration of an in-plane tensioned plate moving in its plane is a significant problem 
that was first studied by Ulsoy and Mote. Lin investigated natural frequencies and critical speeds for 
the plate with pinned-pinned-free-free boundaries [2]. Some sophisticated numerical approaches, 
such as the modal spectral element method [3], the finite strip method method [4], and the 
differential quadrature method [5] were developed. The present paper demonstrates that the modal 
functions of axially moving beams can be used to simplify the solution procedure. Natural 
frequencies and critical speeds are calculated for the boundaries different from those in [2].  

A thin rectangular plate, with mass per area , Young’s modulus E, Poisson’s ratio , initial tension Nx0
in the x direction only, and length a, width b, and thickness h in the x, y, and z directions respectively, lie 
in plane xy and moves with speed  in direction x. The out-plane free vibration is governed by [1,2] 

2 2 4, 2 , 1 , , 2 , , 0tt xt xx xxxx xxyy yyyyv v v v v v                (1) 
Dimensionless transverse displacement v, coordinates (x y), time t and other parameters are defined by 

3
0

2 2
00

, , , , , ,
12 1

x

xx

Nv t x y Ehv t x y
h a a b NN a

a
b

       (2) 

    Separation of variables in Eq. (1) leads to 
i, , , e , etv x y t x y x y i t                          (3) 

where (x, y) is the mode function and  is the natural frequency. Substitution of Eq. (3) into Eq. (1) yields 
2 2 2 42 i , 1 , , 2 , , 0x xx xxxx xxyy yyyy             (4) 

Assume the solution to Eq. (4) as 

1 1
, n m

m n
x y x y                                (5) 

For the plate with pinned edges at y=0 and y=1, choose m(y) satisfying the boundary conditions as 
. For the plate with clamped edges at y=0 and y=1, choose sinm y m y m(y) as 

cos coshcos cosh sin sinh
sin sinh

m m
m m m m

m m

y x x x m x            (6) 

where cos cosh 1 0m m . Substituting Eq. (5) into Eq. (4), multiplying m(y) on both hands, 
integrating the resulting equation from y=0 to y=1 and applying the orthogonal condition yield 

2 2 4 2
2 42 1 2in n nB B 0n                (7) 

where 1 1 1 12
2 40 0 0 0

d d , dm m m m m m
2 d .B y y B y y The characteristic equation of Eq. (7) is 

4 2 2 2 4 2
2 42 1 2n n nB B 0                 (8) 

Denote the 4 roots of Eq. (8) as nj (j=1,2,3,4). Then the modal function is  
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and the auxiliary equation is 
1 2 3 4 1 3 2 4
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i i
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e e 0

n n n n n n n n

n n n n

n n n n n

n n n n n n n

3           (10) 

For the plate with pinned or clamped edges at x=0 and x=1, nj=  2
nj or nj= nj respectively.  

    Based on Eqs. (8) and (10), the natural frequencies can be calculated numerically. Figure 1 
presents the first 4 natural frequencies under different boundary conditions for the changing 
dimensionless axially moving speed and fixed =1, =1. The solid, dashed, dash-dot and dotted 
lines denotes the natural frequency 11, 12, 21, and 22. The natural frequencies decrease with the 
increasing axially moving speeds. The exact values at which the first natural frequency vanishes are 
the critical speeds and afterwards the system is unstable about the straight equilibrium. 

pinned-pinned-pinned-pinned      pinned-clamped-pinned-clamped 

clamped-pinned-clamped-pinned    clamped- clamped -clamped- clamped 
Figure1. the first 4 natural frequencies changing with the axial speed 

If Eq. (1) has an equilibrium solution, the time-independent equilibrium of the linear equation is
2 2 4( 1) , ( , 2 , , )xx xxxx xxyy yyyyv v v v 0                   (11) 

with the solution 
1 1 2 1 3 2 4 2cos sin cos sinv C x C x C x C x                  (12) 
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where
22 2

2 2
1,2 2 2 4

1 1
2 2

B B 4B                  (13) 

Substitution of Eq. (12) into the boundary conditions at x=0 and x=1 leads to a set of homogeneous 
linear equations, whose non-trivial solution condition can be used to calculate the critical speeds 
numerically. Figure 2 shows the first critical speeds changing with the flexural rigidity under 
different boundary conditions for =0.5 (dashed), 1 (solid) and 2 (dotted). The critical speed 
increases with the increasing flexural rigidity  and the decreasing slenderness ratio 1, which is 
the same as the conclusions in [2] 

cr cr

pinned-pinned-pinned-pinned      pinned-clamped-pinned-clamped 

cr

cr

clamped-pinned-clamped-pinned    clamped- clamped -clamped- clamped 
Figure2. the first critical speeds changing with the stiffness ratio 
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Abstract

Shear correction factors in Timoshenko beam theory have received much attention as
evidenced by a substantial body of technical literature. Most of the recent contributions
have emphasized the use of three-dimensional data to define suitable correction factors.
While all correction factor values put forth to date have some rational basis, there still
remains a lack of unanimity on the ”best” method for affixing the values. In this presen-
tation, we offer some definitive comments that will clarify various issues relating to shear
correction factors.

Our approach relies on having three-dimensional solutions for a prismatic beam for
both static and dynamic problems, and critically examining the results. The solution
technique herein is based on a version of semi-analytical finite elements (SAFE), where
only the cross-section of the prismatic beam undergoes finite element modeling, i.e., in the
(x, y) plane. In our code, both six-node triangles and eight-node are used in which the
element matrices are determined by standard isoparametric formulation. The kinematic
degrees of freedom at the nodes are dependent upon the axial coordinate z and time t.
The governing equations of motion are of the form

K1U,zz +K2U,z +K3U+MÜ = 0 (1)

where U of length 3M is the assemblage of the nodal displacements for the M nodes of
the finite element mesh, i.e.,

UT (z, t) =
�

∪ u(z, t) ∪ v(z, t) ∪ w(z, t)
�

(2)

System matrices K1,K2, K3, and M, as well as the details of this SAFE formulation,
are given in Taweel et al (2000). We note that K1 and K3 are symmetric and K2 is
antisymmetric. While this approach will accommodate inhomogeneous, anisotropic cross-
sections, our attention is concentrated on homogeneous, isotropic beams with an arbitrarily
shaped cross-section.
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In the past last half century, three-dimensional data from elastostatic analyses of
Saint-Venant flexure have been used to define suitable correction factors. Cowper (1966)
and Mason and Herrmann (1967) defined their correction factors by distilling a Timo-
shenko beam theory through integration of the three-dimensional equations of elasticity.
In their transverse shear force-shear angle relation, they integrated the warpage data of
Saint-Venant flexure to define the shear correction factors. Renton (1991) used the en-
ergy/length due to transverse shearing stresses (a constant) to arrive at the shear correction
factors. In his examples, available Saint-Venant solutions for cross-sections with one plane
of structural symmetry, were used. A number of subsequent investigators have followed
this methodology using finite elements for other cross-sectional shapes. We will show by
detailed examination of the displacement field of Saint-Venant flexure, that Cowper (1966)
and Mason and Herrmann (1967) approach, in fact, leads to a compelling explanation as
to how the effect of transverse shear is taken into account and its direct connection to
the shear correction factors. Also, Schramm et al (1994), in using Renton’s approach
for unsymmetric cross-sections, introduced the notion of principal shear axes that do not
coincide with the principal bending axes. We will argue that this concept is not viable.

We will also consider shear correction factors from elastodynamic data. For plates,
Mindlin (1951) is well known for this basis in his shear deformation plate theory (the
elastostatics analogue is due to Reissner (1945). In this approach, the lowest frequency
of infinitely long straight-crested thickness-shear motions is equated to that by his first
order shear deformation plate theory. For beams, however, the dynamic approach has
received considerably less attention than that based on flexure data. Hutchinson (2001)
has determined correction factors for beams of rectangular and circular cross-sections.
One obvious reason for considerably less activity by this approach is an unavailability of
elastodynamic data for cross-sections of arbitrary shapes. With the SAFE approach, this
is not an issue. Using solution form U(z, t) = Uo ei(kz−ωt) in Eq. (1), where k is an
axial wave number and ω denotes the frequency, the following algebraic eigenproblem is
obtained. �

−k2K1 + ikK2 +K3

�
Uo = ω2MUo (3)

As K1 and K3 are symmetric and K2 is antisymmetric, the left-hand side of Eq. (3) is
Hermitian. Therefore, real natural frequencies will emerge from this system. From the
data for the appropriate lowest thickness-shear branch, the shear correction factor can be
established. Also with the lowest branch of the flexural spectrum, the accuracy and range
of application of the correction factors in a Timoshenko beam theory can be assessed.
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The structural vibratory characteristics of structural elements are affected by cracks which are 

found in several locations and depth along the elements. This subject was addressed 

extensively and presented in a state of the art review by Dimarogonas [1].  

Cracks are commonly modeled as mass-less rotational springs that are characterized by their 

depth. This paper addresses the title problem using the dynamic stiffness method [2].  Using 

the dynamic stiffness method it is possible to obtain a condensed reduced order system of 

equations without any loss of accuracy due to the size reduction. The reduced system is derived 

symbolically using four types of building blocks that include a rotational spring representing a 

crack at the left, right, and both ends of the element, and a regular element without cracks. The 

problem at hand is divided to several elements where the boundaries between elements are 

located just next to the crack on one of its sides. There are several possibilities for such division 

and for all of the models the same results are obtained.  

The dynamic stiffness matrices for the three cases that have cracks are derived from the 

differential equations of motion analytically, including the discontinuities introduced by the 

presence of the cracks. The differential equations of Timoshenko beam segment loaded by an 

axial load are solved. The four constants are calculated by applying the boundary values of the 

shapes that represent the equilibrium state of each column in the dynamic stiffness matrix. The 
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values are frequency dependent.  The assembly of the structural dynamic stiffness is performed 

in this paper by steps, i.e. after the addition of each element using the appropriate building 

blocks representing the particular model, a condensation procedure that eliminates the 

common degrees of freedom for the elements is carried out in order to reduce the problem 

size. The condensation is performed analytically and the resulting matrix is maintained at the 

size of 4 by 4 matrix. After all cracked sub-elements were assembled the four end boundary 

restraints and releases, two at each end, are introduced for the completion of the derivation. 

Using the Wittrick-Williams algorithm all the natural frequencies are found. 

The advantages of the proposed procedure are demonstrated in several examples. In these the 

exact characteristics of the procedure are demonstrated, and the results are compared to 

existing results in the open literature. Using the dynamic stiffness approach, including the effect 

of the axial loading, also the exact buckling loads of Timoshenko beams with multiple cracks are 

found.  

The proposed derivation will be used in the future for the identification of cracks in beams. The 

reduced size of the resulting eigenvalue problem with the unknowns limited to the number of 

cracks, their location, and depth will result in relatively small problem of identification. The 

sensitivities of the natural frequencies to changes in these parameters will be derived 

analytically and thus reduce the computational cost significantly. 
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Structural damping has the important role of limiting response to excitation, avoiding excessive 
deflection as well as the associated strain and velocity which cause fatigue and noise, respectively.   
Real structures—and the damping treatments often applied to them to reduce vibration—have
damping which is proportional to both strain (a displacement), strain rate (a velocity) and even 
relative displacement in the case of mechanically-joined structures.  With both displacement- and 
velocity-related damping, then, any accounting for damping must be frequency-dependent.  A 
common and useful way to model proportional damping is to prescribe a “complex” stiffness, E to 
materials of the form:  E( ) = E[1 + i ( )], where E is the elastic modulus,  is  the damping loss 
factor and  is the circular frequency.

Methods for predicting damping in sandwich beams

One of the most common damping treatments used in the transportation industry is constrained-layer 
damping, which is based on the application of a thin visco-elastic material (VEM) to a beam or plate, 
and subsequently adding a “cover sheet”, thereby forming a “sandwich” structure.  For sandwich 
beams with a VEM core, Ross, Unger and Kerwin [1] developed a kinematically-consistent way to 
model this configuration.  Their method allows the user to prescribe different damping loss factors 
for the top and bottom sheet and, more importantly, to the VEM.  Then, the overall damping loss 
factor is simply the imaginary component of the resulting composite elastic modulus: 

)Re(
)Im(
E
E

General methods for estimating and predicting damping in structures

A more general method of accounting for damping in structural components was suggested by 
Johnson, Kienholz and Rogers [2] in 1981, the so-called modal strain energy method (MSEM).  All 
material properties are modeled in a finite element analysis as real and constant so a standard normal 
modes analysis may be used.  Then,  
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where  is the system’s modal loss factor at the r)( r th mode, i  is the material loss factor for material 
i,  is the strain energy in material i when the structure deforms in natural vibration mode r, and 

 is the total strain energy in natural vibration mode r.   They also proposed a way to account for a 
frequency-dependent loss factor.

)( r
SiE
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More recently, Liu and Ewing [3] proposed a method based on the loss factor definition used in the 
experimental power input method (EPIM), which was described by Carfagni and Pierini in 1999 [4].  
That is, the loss factor is defined as the power input per radian divided by the total mechanical 
energy, namely: 
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where DP  is the dissipated power;  is the total mechanical (reversible, vibrational) energy, which is the summation of 
strain energy and kinetic energy, 

TotE

Tot S KE E E ; DE  is the energy dissipated per cycle during period T;
1

2D DP E
T DE ; and  is the circular frequency.   Note that, for a steady-state condition, the energy dissipated 

is the energy input since it sustains the average vibration energy at a uniform level.  In the case of a velocity-based 
measurement process during which the structure is mechanically excited by a shaker at a single point, the loss factor can 
be shown [4] to be equal to:

2

1
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where Yff is the velocity-to-force driving point frequency response function (FRF), Yif is the FRF relating the 
velocity at point i to the driving point force, and mi is the mass representing the ith measurement point.  The 
analytical power input method (APIM) is based on the EPIM, with the difference that the computations of the 
FRFs are done analytically in a finite element analysis [3].   

Beams with constrained layer damping

A beam with constrained layer damping has been studied, resulting in a comparison of the Ross-
Unger-Kerwin (RUK) technique to the APIM and the MSEM.  The results, shown below, reveal a 
number of discrepancies.  At low frequency, the RUK technique over-predicts damping.  Across the 
frequency range, the MSEM has numerous apparent problems.  These are all understandable by one 
with a grasp of the vibration of continuous systems, and will be discussed in the conference 
presentation.
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Figure 1.  Predicted, frequency-dependent damping loss factor for a sandwich beam. 

Uniform Plates with constrained layer damping

A uniform plate with a uniform constrained layer damping treatment was analyzed and tested to 
determine the damping loss factor.  The comparison between the experimental power input method, 
the modal strain energy method, the analytical power input method and the free decay method is 
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shown in Figure 2.  [The free decay method is a method in which a harmonic force is terminated and 
the decay is noted.]  The “undulations” in the loss factors from APIM and EPIM are, at first, 
troubling.  In fact, many researchers have reported this effect, and have remarked on this 
phenomenon.  In particular it will be shown that the failure of the PIM techniques to correctly 
evaluate damping in beams and plates is an artifact of the choice of excitation point.  In particular, 
for techniques which use only a single excitation point, the excitation point is almost always on or 
near a node line for a large number of frequencies—a fact which can be seen by looking at the mode 
shapes for the structure. In fact, many experimentalists have given up on the PIM, when all they 
needed to do was to use a handful of (even randomly-selected) excitation points.  Alternative 
techniques for damping estimation will also be presented, namely the Impulse Response Decay 
Method and the Random Decrement Method, which have recently been studied by Ewing, Dande and 
Vatti [5]. 
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Figure 2.  Predicted, frequency-dependent damping loss factor for a sandwich beam. 
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The field of our interests includes elastodynamics, wave propagation and diffraction
phenomena in structures with obstacles (defects) of different nature (cracks, inclusions, cavities,
surface irregularities and massive objects, etc.). The study is carried out using analytically-
based computer models relying on solutions in terms of path Fourier integrals, Green’s matrices
for the structures and asymptotics for body and traveling waves derived from those integrals.
For obstacles with sharp edges or corner points the singularities at those points are explicitly
derived and used then for regularization of the numerical schemes developed.

In our presentation we focus at the resonance phenomena of a time-averaged oscillation
ue−iωt featured by the time-harmonic wave energy localization near the obstacles in the form
of energy vortices. These phenomena, which are also known as trapped-mode effects, are
usually accompanied by a sharp stopping of the wave energy flow along the waveguide and,
consequently, in deep and narrow gaps in the frequency plots of transmission coefficients. The
trapped modes are tightly connected with the distribution of natural frequencies (resonance
poles) ωn in the complex frequency plane ω: the closer ωn locates to the real axis, the sounder
this effect is. At that, specific forms of energy localization are governed by the eigen-solutions
un associated with the resonance poles ωn, which are actually the spectral points of the related
boundary-value problems. In ideally-elastic structures certain combinations of obstacles may
result in totally real poles yielding very narrow gaps.

On the other hand, recent studies of structures with multiple defects, carried out with
our PhD students M. Golub (cracks) and A. Eremin (rigid inclusions), have shown that the
eddies of wave energy may work not only as blockers but as energy pumps, as well. It has
been demonstrated that accounting for the mutual influence among the obstacles leads to
realignment of the streamline structure in such a way that the energy circulation in the vortex
zones formed around the obstacles becomes coordinated, providing so strong energy sucking
that the reflected field becomes unnoticeable. In other words, the obstacles are invisible for
the guided-wave detection at such frequencies. On the transmission coefficient plots such pass
modes appear as narrow peaks centered at frequencies ωp located closely to the resonance
pole ωn: ωp ≈ Reωn. The number of such pass-frequencies ωp (and correspondingly of the
transmission peaks) is proportional to the number of obstacles N . As N increases the peaks
fill in a small vicinity of Reωn forming a narrow pass band inside a wider gap band.

Historically our interest in these effects goes back to the 1980s when the wave energy
vortices and inverse fluxes were revealed in layered elastic waveguides practically simultane-
ously with the eddies in acoustic harmonic fields [?]. The first seminar presentations of those
results gave rise to hot discussions, so that we were able to publish it properly just in the
1990s [?, ?]. Hence, it was a pleasure to learn about the recent works by the Optics Group,
University of Glasgow (http://www.physics.gla.ac.uk/ kevin/research2.html) having provided
the experimental evidence of the existence of energy vortex zones in harmonic fields.

1
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First, it was found that the vortex zones could occur in wave energy fluxes emitted
by harmonic sources into elastic layered structures that were even without obstacles. They
appeared just due to the interference of excited guided waves, but at certain resonance frequen-
cies the vortices developed in a near-source field were able to accumulate a large amount of
wave energy with much higher energy density than in the streams flowing around them from
the source to infinity. Then we considered energy vortices developed near massive rigid objects
(slabs) oscillating on an elastic layered base. As it proved, they play a key role in the controlling
of energy outflow from under the contact zone up to the forming of so-called high-frequency
slab-base resonance.

This effect is of the same nature as the resonance oscillation of a point mass on spring.
Since the traveling waves carry energy away from the contact zone, it causes a non-zero damping
component of the contact stiffness. Therefore, the unlimited resonance was considered to be
impossible at ω > ω0, where ω0 is the first cut-off frequency. However, with contact areas
of certain size the energy vortices developed under the slab edges shut down completely the
waveguide’s cross-section reducing the damping component to zero. In this case, the base works
as an ideal spring with possible unlimited resonance oscillation for a certain slab mass. If a
system of massive objects is subject to incident surface waves, only the first slab exhibits a
high-amplitude oscillation at the resonance frequency while the objects behind it remain at
rest. Hence, high-frequency resonances could be used for vibroprotection.

Mathematically the high-frequency resonance indicates the existence of a discrete spec-
tral point ωn lying on the continuous spectrum ω > ω0 of the wave problem considered. It
was expected that with massless crack-like obstacles such resonance was impossible because
the mass-spring mechanism did not work in this case. Nevertheless, the tracing of trajectories
of spectral poles ωn in the lower complex half-plane Imω ≤ 0 in the course of crack size and
location varying, the facts of poles’ touching to the real axis Imω = 0 have been revealed [?].
The eigenforms un associated with the real poles ωn display strong localization of oscillation
near the crack. Similar effects have been obtained for a single cavity or inclusion.

With a system of several obstacles the main question was how the resonance properties
inherent to each of them were transformed due to the mutual wave interaction. At first glance,
one can expect that with sufficiently large spacing between neighboring obstacles the spectrum
ωn should be a combination of spectral points of every object taken alone. On the other
hand, in 2D models the amplitudes of traveling waves that ensure the wave interaction between
the obstacles are independent of distance. Finally, from the physical point of view, if the
first obstacle has blocked the signal propagation, the presence of the following ones is of no
importance because the disturbance does not arrive at them. That is, additional obstacles
should not change the frequency of resonance blocking and, consequently, the near-real spectral
poles ωn.

Even the first calculations showed that wave interaction between obstacles realizes both
seemingly alternative possibilities. The positions of the poles ωn significantly vary with varying
horizontal distance between the cracks; however, this occurs in such a way that resonance
blocking frequencies conditioned by each individual crack remain intact [?]. With increasing
distance between the obstacles, the values of Reωn monotonically decrease and the negative
imaginary parts Imωn alternatively decrease and increase within certain limits with the upper
boundary Imωn = 0. Thus, the poles ωn move in the lower half-plane of the complex plane ω

2
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from right to left alternatively deviating from and approaching the real axis up to the points
of touching it at certain discrete values of the distance. The most interesting feature is that
the poles approach the real axis only near the aforementioned frequency bands of blocking by
a single defect and, when a pole leaves the axis, it gives place to the next one that approaches
the axis. As a result, nearly real-valued poles ωn ensuring resonance blocking are always
present in these frequency bands irrespective of the distance between the obstacles. The poles
moving downwards rapidly cease affecting the blocking. The invariance of resonance stopping
frequencies of single obstacles assembled in a group allows one to form a sufficiently wide band
gap by combining individual gaps of several obstacles instead of the use of large quantity of
periodic obstacles.

Those resonance effects may be of interest for the development of wave methods for
defects’ location and identification (NDE and structural health monitoring) as well as for the
assessment of dynamic strength and failure properties of new laminate composite materials
with micro and macro defects. In the latter case, along with infinite waveguide structures, the
dynamic response and behavior of finite-size samples (beams, plates) have also been considered
using the models developed. Furthermore, the phenomenon of abrupt signal screening by
a system of obstacles (interdigital contacts, grooves, etc.) is used in solid electronics and
photonics for designing frequency filters. Similar gap bands are characteristic of acoustic wave
propagation (phonons) in periodic composite and crystal structures (atomic phonon lattice),
and so on.

Together with comparatively complex for simulation 2D and 3D elastic layered struc-
tures, simplified 1D models such as a springly-supported defected string or beam, have been
considered. They were suggested by Prof. Wauer for making clear the resonance effects as well
as the forming of gap bands and pass bands in multidefected structures. This work was started
in 2008 during our visit to ITM, KIT, Karlsruhe supported by the DFG Mercator Visiting Pro-
fessorship Programme and continued then in KubSU, Krasnodar thanks to the support from
the Russian Ministry of Science and Education, project No 2.1.1/1231.
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On self-excited vibrations due to sliding friction between moving bodies
Hartmut Hetzler (hetzler@itm.uni-karlsruhe.de)

Un�vers�tät Karlsruhe (TH), Institut für Techn�sche Mechan�k, Germany

1 Introduction
Self-excited vibrations in systems of moving visko-elastic bod�es are a common phenomenon �n eng�neer�ng appl�cat�ons.
Popular examples reach from squealing vehicle brakes or clutches to insufficiently lubricated bearings. In the case of brake
squeal, for instance, considerable effort has been expended dur�ng the last years on the bas�c mechan�sms and appropr�ate
modell�ng approaches. Today, �t �s commonly accepted that one of the main causes of brake squeal is a flutter type
�nstab�l�ty of the steady sl�d�ng state. Th�s �nstab�l�ty ma�nly ar�ses from non-conservat�ve contr�but�ons of the fr�ct�on,
wh�ch – after l�near�zat�on and d�scret�zat�on – y�eld a non-symmetric stiffness matrix. While this mechanism has been
known s�nce the ���0s [�], �t was not before the beg�nn�ng of this century that the influence of the friction on the system’s
damping had been revealed [2]. Furthermore, the gyroscopic terms due to the transport mot�on g�ve r�se to gyroscop�c-
circulatory perturbation equations, which are known to exhibit a complicated stability behaviour ([3] for instance). Thus,
one may ask whether there m�ght be further fr�ct�onal contr�but�ons to steady state stab�l�ty.

2 Modeling
It �s assumed that the stat�onary mot�on of an elast�c body i may be decomposed �nto a prescr�bed r�g�d body mot�on
�rTi and small mot�ons �wi about th�s transport mot�on, �.e. �ri = �rTi + �wi. For a linearized description, the contact zone
ΓC often may be described with respect to the intermediate configurat�on �rTi after the transport mot�on. Thus, from the
�dent�ty �rTi(x, t) = �rTi(X(x, t), t) follows x = X(x, t), wh�ch relates the spat�al coord�nates x = (x, y, z)⊤ of the
intermediate configuration to the corresponding material cood�nates X = (X, Y, Z)⊤. If the intermediate configuration
and the mater�al reference co�nc�de at t = 0, spat�al and mater�al are usually related by x = X+

� t

0
vT dt, thus ẋ = Ẋ+vT .

Please note that �rα = �rα(x, t) are spatial vector fields and material time derivatives must account for the transport mot�on,
�vα = �̇r + v⊤

Tα
∂

∂x
�rα (α = i, j). For a system of N bod�es, evaluat�on of an analyt�cal pr�nc�ple, l�ke Ham�lton’s Pr�nc�ple

for �nstance, and subtract�on of the steady state y�elds a weak formulat�on of the perturbat�on equat�ons

0 =
N�

i=1

�

Ωi

δ �wi ·
�

Mi[ �̈wi] + Pi[ �̇wi] + Qi[�wi]
�

dv + ∆ {δΠC} − ∆ {δWC} − ∆ {δWnp} , (1)

where ∆{} denotes l�near�zat�on, Mi = M⊤

i �s the mass opera-

Figure 1.

tor of the ith body and Pi = Di + vTGi conta�ns the symmetr�c
damp�ng operator Di = D⊤

i as well as the skew-symmetr�c gyro-
scop�c contr�but�ons Gi = −G⊤

i . Moreover, Qi = Ki + vTNi +
v2

TK
∗

i cons�sts of the symmetr�c st�ffness operator Ki = K⊤

i , the
symmetr�c centr�fugal effects K∗

i = K∗⊤

i and may exhibit skew-
symmetric influences Ni = −N⊤

i from �nternal damp�ng. δWnp collects the v�rtual work of non-potent�al forces, that are
not considered otherwise. In order to express the contribut�ons of the contact Γ(ij)

C between body i and j, the gap vector
�g(ij) = �rj − �ri �s �ntroduced, wh�ch connects a surface po�nt on i to �ts mat�ng contact partner on j. Us�ng the decompo-
sition of the positional field, the gap vector reads �g(ij) = (�rj − �ri) + (�wj − �wi) = �g0 + ∆�g. On each contact partner, a
tangent�al coord�nate frame may be g�ven by the outward surface normal �e

i/j
N . Us�ng th�s, the normal gap gN �s g�ven by

g
(ij)
N = �g(ij) · �e

(i)
N . W�th �v

(ij)
rel = �vj − �vi, the d�rect�on of the sl�d�ng fr�ct�on tract�on reads �e

(i)
F = −�e

(j)
F = �vrel/|�vrel|. For

the sake of brev�ty, the superscr�pt (ij) �s dropped �n the follow�ng and �eN = �e
(i)
N .

Us�ng a penalty approach, the l�near�zed var�at�on of the normal contact potent�al between body i and j reads
∆

�
δΠ(ij)

C

�
=

�

ΓC
δgN kC∆gN da, where δ(∆gN ) = δgN has been used, p = p(∆gN ) ≈ p0 + kC(−∆gN ) �s the

l�near�zed contact pressure and kC = ∂ p
∂∆gN

|0 �s the l�near contact st�ffness. Thus,

∆{δΠC} =
nC�

(ij)

�

Γ
(ij)
C

δ�g ·
�

kC (�eN ⊗ �eN )
�

0
∆�g da =

nC�

(ij)

�

Γ
(ij)
C

δ�g · C
�
∆�g

�
da, (2)
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where ∆�g = �wj − �wi and the contact st�ffness C = C⊤ is symmetric and positive semi-definite. The subscript [. . . ]0
stresses that the bracketed terms refer to the l�near�zat�on po�nt.
The sl�d�ng fr�ct�on stress vectors on the contact�ng bod�es read �t

(α)
F = µp�e

(α)
F (α = i, j), where �t

(j)
F = −�t

(i)
F . Thus, the

v�rtual work of the sl�d�ng fr�ct�on between i-j reads δW
(ij)
C =

�

Γ
(ij)
C

δ(�rj −�ri) ·
�
−�t

(i)
F

�
da = −

�

Γ
(ij)
C

δ�g ·�e
(i)
F µp(gN ) da

from which Taylor expansion yields ∆
�

δW
(ij)
C

�

= −
�

Γ
(ij)
C

δ�g ·
�
µp0∆�e

(i)
F + �e

(i)
F µ∆p

�
da. Furthermore, with v

(ij)
rel,0 =

||v⊤

Tj
∂

∂x
�r0j − v⊤

Ti
∂

∂x
�r0i|| be�ng the relat�ve veloc�ty �n the l�near�zat�on po�nt, Taylor expansion of �e

(i)
F y�elds ∆�e

(i)
F =

1

v
(ij)
rel,0

�
∆�̇g + v⊤

Tj
∂

∂x
�wj − v⊤

Ti
∂

∂x
�wi

�
and w�th ∆p = −kC∆gN = −kC (�eN · ∆�g) one finally obtains

∆{−δWC} =

nC�

(ij)

�

Γ
(ij)
C

δ�g ·

��

µp0

v
(ij)
rel

�

0

∆�̇g +

�

µp0

v
(ij)
rel

�

0

�

v⊤

Tj

∂

∂x
�wj − v⊤

Ti

∂

∂x
�wi

�

−
�

µkC (�eF ⊗ �eN )
�

0
∆�g

�

da

=

nC�

(ij)

�

Γ
(ij)
C

δ�g ·

�

R1

�
∆�̇g

�
+ R2

�
�wi, �wj

�
+ R3

�
∆�g

�

�

da, (3)

where R1 = R⊤

1 is symmetric and positive semi-definite, while R2 �= R⊤

2 , R3 �= R⊤

3 are nonsymmetr�c d�fferent�al
operators. The operators R1 and R2 stem from the chang�ng d�rect�on of the fr�ct�on stresses, wh�le R3 ar�ses from the
change of contact pressure as the bodies deform. For small values of v

(ij)
rel,0 ≪ 0 the operator R1 w�ll become very large.

However, the l�m�t v
(ij)
rel,0 = 0 �s not val�d s�nce �t would �nvolve st�ct�on, wh�ch was precluded. For the second operator

R2 th�s may not be observed: s�nce nom�nator and denom�nator are of the order of magn�tude of the veloc�ty parameters,
�t w�ll not become s�ngular. In general �t �s found that R2 has rather small influence on the system.

3 Example: moving beam sliding through Winkler-type bedding
Above results are exemplified with the classical example of a moving Euler-Bernoulli-beam in frictional guides, cf. fig. �
a), which is widely examined in literature (e.g. [6]). The example comprises a Euler-Bernoulli beam (body 2: length L,

a)

y

x

kc

x a= x b= b)

F

x

y

lin. point beam pad

Figure 2.

he�ght h, w�dth b, dens�ty ̺, bend�ng st�ffness EI) which slides with the transport velocity v through two fr�ct�onal pads
(friction coefficient µ =const), that are modelled as Winkler beddings (bodies 1 and 3, he�ght hp, w�dth b, dens�ty ̺p,
bedd�ng number k, spatial extent a ≤ x ≤ b). The transport motion is given by x = X + vt. The contact contr�but�ons
are derived for the contact between the upper pad (body 1) and the beam (body 2) using the theory stated above. In
this context, the superscript ()+ refers to the upper surface of the beam. The second contact follows analogously. The
displacement of the beam’s neutral fibre is denoted by w(x, t) and w1(x, t) refers to the d�splacement of the fr�ct�on
pad’s surface. D�splacements are measured from the stat�c solut�on. Thus, a po�nt on the fr�ct�on pad has the pos�t�on
�r1 = (x, w10)

⊤

xy + (0, w1)
⊤

xy = �rT1 + �w1, a point on the neutral fibre has �r2 = (x, 0)⊤xy + (0, w)⊤xy = �rT2 + �w2 and a
po�nt on the upper surface of the beam reads �r+

2 = (x, h/2)⊤xy +(−h/2 w′, w)⊤xy = �r+
T2+ �w+

2 (cf. fig. 2 b). The stiffness of
the contact layer �s g�ven by kC . If the displacement fields within the friction pads are assumed to be l�near, the dynam�cs
�s descr�bed by
� L

0

δw
�
̺bh(ẅ + 2vẇ′ + v2w′′) + EIw′′′′

�
dx +

�

i=1,3

� b

a

δwi

�
̺pbhp

6
ẅi + kwi

�

dx + ∆ {δΠC − δWC} = 0. (4)

The upper tangential system in the reference configuration is g�ven by �e
(2)
F = (−1, 0)⊤xy and �e

(2)
N = (0, 1)⊤xy . The l�near�zed

gap vector reads ∆�g(21) = �w1 − �w+
2 = (h/2 w′, w1 − w)⊤xy und thus δ�g(21) = δ(∆�g(21)) = (h/2 δw′, δw1 − δw)⊤xy .
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Hence, the contact contr�but�ons read

∆
�

δΠ
(21)
C

�

=

� b

a

bkC

�
h/2 δw′

δw1 − δw

�⊤ ��
0

1

�

⊗

�
0

1

�� �
h/2 w′

w1 − w

�

dx =

� b

a

bkC (δw1 − δw) (w1 − w) dx and (5)

∆
�

δW
(21)
C

�

=

� b

a

�
h/2 δw′

δw1 − δw

�⊤ �
µp0

v

�
h/2 ẇ′

ẇ1 − ẇ

�

−
µp0

v
v

∂

∂x

�
h/2 w′

w

�

+ µkC

��
−1

0

�

⊗

�
0

1

���
h/2 w′

w1 − w

��

bdx

=

� b

a

δw′
h

2

�

µp0

� h

2v
ẇ′ −

h

2
w′′

� �� �

∆�eF ·�ex

�

− µ kC(w1 − w)
� �� �

∆p

�

+ (δw1 − δw)µp0

� 1

v
(ẇ1 − ẇ) − w′

� �� �

∆�eF ·�ey

�

bdx. (6)

The terms ar�s�ng from the second contact on the lower surface are der�ved analogously. W�th the l�near�zed upper fr�ct�on
tract�on ∆�t+ = µp0∆�eF + �eF0µ∆p = ∆tx�ex + ∆ty�ey , the first addend in (6) is readily found to express the virtual
work of the torque h/2∆tx, wh�le the second �s the v�rt. work of the ∆ty . Moreover, the first and the last underbraced
term are components of ∆�eF , cons�st�ng of the local der�vat�ve together w�th the convective part. Equations (5) and (6)
correspond to results from literature (e.g.[6]); however sl�ght d�screpenc�es ar�se due to the d�fferent types of normal
contact formulat�on.
Finally, the spatial fields may be approximated by a Ritz-type ansatz of the form wk =

�

i ϕki(x)qki(t) = Φkqk. For
p0 = const th�s y�elds the perturbat�on equat�ons of the steady state �n matrix form

Mq̈ + vGq̇ +
µp0

v
DF q̇ + [K + kCKN + µkCCF1 + µp0CF2]q = 0. (7)

As pred�cted above, M = M⊤, DF = D⊤

F , K = K⊤, KN = K⊤

N

unstable

Figure 3.

are symmetric and positive definite, while G = −G⊤ �s skew-
symmetr�c and CF1, CF2 are not symmetr�c. Usually, the entr�es of
CF1 are found to be much larger than those of CF2. Equation (7) is
a gyroscopic-circulatory system, which may exhibit flutter �nstab�l�ty

due to the non-symmetric positional forces (e.g. [7], [3]). Figure 3 schematically outlines the behaviour of the critical
eigenvalues in case of flutter as well as a corresponding stability chart (e.g. [3]). Please note the influence of v on the
stab�l�ty border: for low v the influence of DF grows strongly and stab�l�zes the system, wh�le for h�gher v the the gyro-
scop�c contr�but�ons further destab�l�ze the system. The dashed line denotes the flutter border if damping and gyroscop�c
terms are absent. By cons�derat�on of tr�bolog�cal propert�es, the contact st�ffness kC may be expressed by a constitutive
contact law, cf. [�].

4 Conclusion
Us�ng an abstract approach, the fr�ct�onal contr�but�ons to the l�near�zed perturbat�on equat�ons have been formulated
generally without relying on specific structural models (like beams or plates). The arising terms have been discussed with
respect to symmetry, definiteness and physical meaning. Thus, �t �s found that the structure of the perturbat�on equat�ons
as well as the influence of the contact parameters may be predicted to a great extent. Finally, the findings are demonstrated
w�th a mov�ng beam �n fr�ct�onal gu�des.
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Vibration of cantilevered rectangular plates with edge V-notches or slits 

C. S. Huang, S. C. Liao, and I. C. Lee 
Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan 

INTRODUCTION
Plates in various geometric forms are commonly used in practical engineering. Among all the possible 

shapes of plates, the rectangular plate is of the greatest importance and interest in vibration analysis. There 
have been some vibration analyses of rectangular plates having V-notches or side cracks. Most of the works 
on vibrations of cracked rectangular plates considered simply supported boundary conditions along four 
edges or a pair of edges and used various integral equation techniques to find the natural vibration 
frequencies [1~3]. These solutions cannot be extended to solve problems with other boundary conditions 
because Levy’s form of solution or Navier’s form of solution was involved. Yuan and Dickinson [4] and 
Liew et al. [5] applied the Ritz method and different domain decomposition techniques to analyze the 
vibrations of cracked rectangular plates with various types of boundary conditions. Yuan and Dickinson [4] 
introduced artificial springs at the interconnecting boundaries between the sub-domains, while Liew et al. [5] 
imposed the continuity conditions in an integration sense, but not everywhere along the interconnecting 
boundaries. Huang et al. [6] investigated the vibrations of rectangular plates having V-notches by using the 
Ritz method with the admissible functions including corner functions to appropriately describe the stress 
singularities at the tip of V-notch. They showed numerical results for free rectangular plates. 

The present contribution extends the work of Huang et al. [6] to consider cantilevered rectangular plates 
and further investigates the cases of V-notch angle equal to zero (slit). This work shows the corner functions 
established based on Williams’ solution [7] do not give fast convergent solutions for cracked plates, 
especially for a plate with a large crack. A new set of admissible functions is introduced to remedy the 
shortcomings.  

METHODOLOGY AND RESULTS 
Consider a rectangular cantilever plate with a V-notch as shown in Fig. 1. When the V-notch angle 

equals zero, it becomes side crack. Stress singularities exist at the tip of V-notch when  is less than 180o

[7]. When the Ritz method is applied to find the natural frequencies and mode shapes for such plate, the 
admissible functions for transverse displacement are assumed as the sum of two sets of functions, 

)],(),([),( 2 rWyxWxyxW cp ,   

where the function before the brackets is inserted to satisfy the geometric boundary conditions along x=0; 
),( yxWp  consists of algebraic polynomials which forms a mathematically complete set of functions if an 

infinite number of terms are used; ),(rWc  is used to supplement ),( yxWp  appropriately describing the 

important behaviors of the true solutions of W(x,y). When V-notched plates are under consideration, 
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),(rWc  must have the capability of appropriately describing the stress singularities around the tip of the 
V-notch. When a cracked plate is considered, ),(rWc  must not only be capable of appropriately 

describing the stress singularity behavior around the crack tip, but also to represent the discontinuities of 
displacement and slope across the crack.  

Following the solution procedure given in Williams [7], one can find the asymptotic solutions (i.e., 
corner functions) for a V-notch with free boundary conditions along its two sides. These corner functions are 
applied to construct ),(rWc ,

])1cos()1cos(
]2/)1sin[(
]2/)1sin[(

[),(
1

21
nn

n

nS
cn

nrrW ,

])1sin()1sin(
]2/)1cos[(
]2/)1cos[(

[),(
1

21
nn

n

nA
cn

nrrW ,

where superscripts “A” and “S” denote antisymmetric and symmetric corner functions, respectively, 
)1)(1(1 n , 3)1(2 n , )1)(1(1 n , 3)1(2 n , 2 ,

and n  and n , respectively, are roots of the equations  

sin
3
1)sin( nn  and sin

3
1)sin( nn .

Poisson’s ratio ( ) equal to 0.3 was used for all numerical results. The results with 0  shown in 
Table 1 were obtained by using such ),(rWc  and regular polynomials for the admissible functions.   

When applying these corner functions to analyze a side-cracked plate ( 0 ), one finds that the 

convergence of numerical solutions is not fast enough to obtain accurate results before ill-conditioned 
matrixes occur. Consequently, the following set of functions is proposed for ),(rWc ,

2
12sinand

2
12cos{ 2/)12(2/)12( lrlr nn nl ,...,2,1,0|  and ,...}3,2,1n .

Using such set of functions considerably accelerates the convergence of the numerical solutions. The results 
with 0  given in Table 1 were obtained using such set of functions and regular polynomials and are 

exact to at least three significant figures.  
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Table 1 Frequency parameters for cantilevered square plates with a horizontal V-notch or slit 

Dha /2
c/b d/a

1 2 3 4 5 

 0 3.471 8.508 21.29 27.20 30.96 

0.1 3.471 8.440 21.23 26.50 30.34 

0.3 3.471 7.704 20.51 23.04 24.70 0°

0.5 3.471 6.026 17.75 19.00 21.72 

0.1 3.474 8.439 21.26 26.51 30.34 

0.3 3.492 7.698 20.74 23.06 24.82 5°

0.5 3.519 6.044 18.30 19.56 21.75 

0.1 3.489 8.437 21.37 26.54 30.32 

0.3 3.607 7.689 21.82 23.31 25.42 

0.5 

30° 

0.5 3.800 6.172 20.85 22.30 22.41 

0.1 3.471 8.462 21.26 26.90 30.58 

0.3 3.471 7.952 20.26 22.29 28.35 0°

0.5 3.471 6.465 14.08 21.52 26.86 

0.1 3.474 8.466 21.28 26.90 30.60 

0.3 3.492 7.990 20.33 22.36 28.51 5°

0.5 3.518 6.550 14.37 21.63 27.33 

0.1 3.488 8.485 21.35 26.88 30.69 

0.3 3.604 8.176 20.73 22.75 29.25 

0.75 

30° 

0.5 3.778 7.220 15.98 22.16 29.15 
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Vibration of a Solid Cylinder Fixed on One End
James R. Hutchinson

Civil and Environmental Engineering Department
University of California, Davis CA 95616

Introduction
The problem considered in this paper is that of a linearly elastic solid circular cylinder which is free along its sides and 
on one end but is fully fixed at the other end.  The solution for the natural frequencies and mode shapes is accomplished 
by the series superposition method.  This problem was treated by Leissa and So [1, 2] in 1995 using the Ritz Method.  
In those papers they considered both the free-free (both ends free) and the fixed-free cases.  I wrote comments on those 
two papers [3, 4] in which I used the series superposition method of my 1980 paper [5] to find accurate frequencies for 
comparison with the free-free case.  Most of frequency results from the two methods coincided completely.  Where we had 
disagreements my frequencies were generally lower than those of Leissa and So, but usually only by one or two in the last 
significant figure.  The fixed–free case is of particular interest because of the singularity that exists at the junction of the 
free and fixed surfaces.

Series Superposition Solution
In this method, solution forms that are solutions of the governing differential equations are combined to satisfy identically 
some of the boundary conditions.  The remaining boundary conditions are satisfied by orthogonalization.    All symbols 
used in this paper are dimensionless.  The radial displacement u, the tangential displacement v, and the axial displacement 
w are made dimensionless by dividing by the outer radius.  All stress quantities are made dimensionless by dividing by 
the shear modulus G.  The wave numbers α, β and δ are made dimensionless by multiplying by the outer radius.  The time 
dependence is removed by assuming that all displacements and stresses vary sinusoidally in phase at the same frequency.  
The frequency ω is made dimensionless by multiplying by the radius and dividing by the shear wave velocity.  The distance 
h is the height (or length) of the cylinder and is made dimensionless by dividing by the outer radius.  The solution forms  
are shown in Table 1 of my 1980 paper.  With the exception of the case  when n = 0, where n is the circumferential wave 
number, these forms are combined in four series.  Two of the series are Bessel series and two are trigonometric series.  
The four series are constructed to identically satisfy the following five boundary conditions, u(r,0) = 0, v(r,0) = 0, trz(r,h)
= 0, tqz(r,h) = 0 and trz(1,z) = 0.  The remaining boundary conditions,  w(r,0) = 0, sz(r,h) = 0 , sr(1,z) = 0, trq(1,z) = 0 are 
satisfied by orthogonality.  The series representing w(r,0) and sz(r,h) are multiplied by rJn(αjr) where αj = zeroes of Jn´(αj),
integrated over the radius between zero and 1 and equated to zero.  The series representing sr(1,z) and trq(1,z) are multiplied 
by sin(αjz) where αj = (2j-1)p/2h with j = 1, 2, 3 ···, integrated over z between zero and h and equated to zero.  This leads 
to system of simultaneous equations, with a zero right hand side, of the order 2Nr + 2Nz , where Nr and Nz are the number 
of terms in the radial and axial directions respectively.  The unknowns in this system of equations are the coefficients of 
the four series Ai, Bi, Ci, and Di.The only parameters in the equations are Poisson’s Ratio ν the height h, the circumferential 
wavenumber n and the frequency ω.  A value of Poisson’s Ratio, height and circumferential wave number is chosen and the 
frequencies which make the determinant of the coefficients equal to zero is sought.  On finding the frequencies the relative 
values of Ai, Bi, Ci, and Di are determined and the series are summed to find the modal displacements and stresses.  When  
n = 0 the problem has two solutions: one is the axisymmetric case, where v, trq and tqz are zero, the other is the pure shear 
case, where only v, trq and tqz are non-zero.  The solution process for the axisymmetric case follows the same process as 
above except that the boundary condition on trq(1,z) is no longer relevant so the order of the characteristic matrix reduces 
to 2Nr + Nz.  For the pure shear case there is an exact solution and the method of series superposition is not needed, and, 
hence, not treated in this paper.

Results
The first consideration is convergence of the solution as more terms are chosen.  Figures 1, 2, 3, 4 and 5 are for the 
axisymmetric problem with a Length to Diameter ratio of 1 (h = 2)  and Poisson’s Ratio of 0.3.   These Figures all use an 
equal number of terms in each series.  Figure 1 shows the convergence of the fundamental frequency as more terms are 
chosen in the series.  Figures 2, 3 and 4 show how well the boundary conditions on w at z = 0, sz at z = h and sr at r = 1 are 
satisfied.  Figure 5 shows the stress distribution on the fixed boundary.  Both displacements and stresses in these Figures 
have been normalized to maximum displacement of 1 (i.e. w(0,h) = 1).  In Figures 2, 3 and 4 the solid lines are for 10 terms 
in each series and the dashed lines are for 20 terms in each series.  Figure 5 is the solution using 200 terms in each series.

Leissa and So (2) in their Table V give the axisymmetric frequency for L/D = 1 and ν = 0.3 as 1.286.  Their answer thus 
lies between the two horizontal dotted lines shown in Figure 1.  Figure 1 shows that my answer to the same number of 
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significant figures is 1.285.  My results agree completely with the results in Leissa and So’s Table V for 39% of the data and 
are lower by 1 in the last significant figure for 38% of the data.  With 8 terms in each series, 4 place accuracy is achieved.  
With 14 terms, 5 place accuracy is achieved, and with 90 terms, 6 places accuracy is achieved.  The frequency to six 

significant figures for this example is 
1.28506.  Figures 2, 3 and 4 show 
that the zero boundary conditions are 
reasonably approximated with this 
solution.  They further show that over 
most of the boundary they converge 
to zero as more terms are chosen.  The 
peaks at the end points do not converge 
to zero as fast as in the center portion; 
however, with one exception they all 
converge. The one exception is sr at 
z = 0 which grows as more terms are 
chosen.  For example with 10 100 and 
200 terms the radial stresses at z = 0 are 1.4, 2.8, and 3.4 respectively.  As expected modal stresses do not converge as fast 
as modal displacements.  Figure 5 shows both the axial and shear stress along the fixed boundary.  The axial stress shows a 
peak at the singular point.  This peak grows as the number of terms is increased.  For example with 10, 100 and 200 terms 
the axial stresses at this point are 3.3, 6.4 and 7.9 respectively.  The shear stress at the singular point was set identically to 
zero, but Figure 5 shows that it gets to zero as a step function.  One can conclude that at  the singular point (1,0) there is a 
line load with both horizontal and vertical force components, and that the shear stress has a finite value on the fixed face 
with a zero value on its adjacent free face.

Figures 6 through 11 show the frequencies as a function of the length to diameter ratio.  These are for n equal to 0, 1, 2, 3, 
4, and 5.  All are for Poisson’s Ratio equal to 0.3 and show the lowest ten frequencies.  In addition to the series  solutions 
Figure 6 shows the first five frequencies for the elementary rod (dotted lines) and the rod with Love’s modification (dashed 
lines).  It can be seen that for the first frequency the elementary solution is actually a better match to the series solution 
than Love’s modification.  This is not true for the higher frequencies.  For L/D = 5, Love’s modification matches the series 
solution for the four lowest frequencies, whereas the elementary rod solution only shows a match for the first two.  In 
Figure 7 the Timoshenko beam solution is shown as dashed lines and the Euler-Bernoulli solution as dotted lines.
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A Timoshenko shear coefficient of (6 + 12ν + 6ν2)/(7 + 12ν + 4ν2) was used.  Figure 7 shows that the Timoshenko beam 
gives a good match for the lowest frequency at L/D above 0.1, the second above 0.5, the third above 1.5, the fourth  above 
2.5 and the fifth above 3.2.  The Euler-Bernoulli solution only matches the lowest frequency above an L/D of 3.  In Figures 
6 through 11 it can be seen that there are many places where the curves come very close together, however, close inspection 
shows that they never cross.  The only way these curves can cross is if Poisson’s Ratio is zero.

In this type of problem it is important to not only consider the frequencies but also the mode shapes.  It lets one see how 
well the boundary conditions are met as in Figures 2, 3 and 4, but it also gives some insight into the physics of the problem.  
A sampling of the mode shapes is given below.  These are for the axisymmetric modes with L/D equal to 1.  It can be seen 
that the first mode greatly resembles the first rod mode, whereas the higher modes have no relationship to rod modes.  
This outcome is in agreement with Figure 5 where only the fundamental frequency matched the elementary solution 

for L/D equal to 1.  The first mode shape can also help explain why the Love modification is actually not as accurate as 
the elementary rod solution in this case.  Both allow the radial displacement from the Poisson’s ratio effect.  The Love 
modification includes the radial inertia thereby lowering the frequency; however, the radial displacement is constrained 
at z = 0.  This constraint will raise the frequency, thus for the very short rod the elementary solution represents a better 
compromise.

Conclusions
The series superposition method works very well for this type of problem.  It produces highly accurate solutions for both 
the frequencies and mode shapes.  The frequencies found using this method concur reasonably well with the frequencies 
found by Leissa and So [1, 2].  Comparisons with elementary solutions for both the rod and beam clearly show the range 
of applicability of these theories.  The method also leads to a description of the singularity.

References

1.  A. W. Leissa and J. So “Accurate vibration frequencies of circular cylinders from three-dimensional analysis.” J. 
Accoust. Soc. Am.  98, 2136-2141 (1995)

2.  A. W. Leissa and J. So “Comparisons of vibration frequencies for rods and beams from one-dimensional and three-
dimensional analyses.” J. Accoust. Soc. Am.  98, 2122-2135 (1995)

3.  J. R. Hutchinson  Comments on “Accurate vibration frequencies of circular cylinders from three-dimensional analysis.” 
[J. Accoust. Soc. Am.  98, 2136-2141 (1995)], J. Accoust. Soc. Am.  100, 1894-1895 (1996)

4.  J. R. Hutchinson  Comments on “Comparisons of vibration frequencies for rods and beams from one-dimensional and 
three-dimensional analyses.” [J. Accoust. Soc. Am.  98, 2122-2135 (1995)], J. Accoust. Soc. Am.  100, 1890-1891 (1996)

5.  J. R. Hutchinson  “Vibrations of solid cylinders” J. Appl. Mech., 47 901-907 (1980)

3

4

5

6

7

0 1 2 3 4 5
Length / Diameter

4

5

6

7

8

0 1 2 3 4 5
Length / Diameter

5

6

8

9

10

0 1 2 3 4 5
Length / Diameter

Figure 11. ω vs. L/D for n = 5Figure 10. ω vs. L/D for n = 4Figure 9. ω vs. L/D for n = 3

Mode 1 Mode 5Mode 4Mode 3Mode 2



30 Seventh International Symposium on the Vibrations of Continuous Systems, July, 2009

Embedding negative structures to model holes and cut-outs

S. Ilanko

Department of Engineering
The University of Waikato

Te Whare Wananga o Waikato
Gate 1 Knighton Road

Private Bag 3105, Hamilton 3240
New Zealand

ilanko@waikato.ac.nz

It has now been established that geometric boundary conditions and continuity conditions can
be modelled by using either positive or negative stiffness or inertia type penalty term [1-5].
The experience of working with negative stiffness and inertial parameters has led to the
question: what if both stiffness and mass were to be taken as negative? Changing the sign of
all stiffness and inertial terms of a structure is simply equivalent to multiplying both sides of
an eigenvalue equation by minus one, which does not change its frequencies or modes.
Basically, a negative structure in such a sense has the same vibratory properties as that of its
positive counterpart, although the structure itself may not have a physical meaning.

However, an interesting question emerges about the behaviour of a structure formed by
attaching such a negative structure to a larger positive structure: would it be possible to effect
a hole or a cut-out in a plate by embedding a “negative plate” to a plate without the hole? The
idea is that the negative plate to be attached must have the same shape as that of the hole and
the same magnitude of stiffness and mass distribution but with opposite sign (see Figure 1).
The negative plate unit would be bonded to the larger (uncut) plate by using distributed
penalty stiffness over the area of bonding to prevent any relative motion between the negative
part and the positive part.

To see if this concept works, a cantilever beam of length L, flexural rigidity EI, and mass per
unit length m was made into a free-free beam of length L/2, by attaching another cantilever
beam of length L/2, flexural rigidity –EI and mass per unit length –m. The two beams were
connected by means of a uniform distribution of elastic springs of high stiffness k per unit

Figure 1
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length along the entire length of the negative beam, and a Rayleigh-Ritz analysis was carried
out to determine the natural frequencies and modes (see Figure 2). Positive and negative
values were used for k, and the average of the two results was taken to minimise any error
due to violation of the constraint condition along the bonded length.

The result was interesting. Using a series of 7 terms each for the two cantilever beams and a
non-dimensional stiffness coefficient α  = 1011, which may be regarded as a penalty
parameter, the first three non-zero natural frequencies of the free-free beam were determined.
These are given in Table 1 together with those calculated using a straight-forward Rayleigh-
Ritz approach with simple polynomials. Interestingly, while the first natural frequency is
slightly worse than that obtained using simple polynomials for a free-free beam, the second
one is slightly better and the third is worse. It is not clear why the trend changes but, unlike in
typical penalty applications where the penalty terms are used to enforce geometric boundary
conditions, in this case, they are indirectly being used to relax the conditions at the centre of a
clamped beam to make to the free end of a smaller beam. However, the results show that
embedding a negative structure to model a cut-out may be possible. While this may seem
encouraging, it has to be stated that the use of more terms for the displacement or the use of a
negative beam of very short or very long length causes numerical problems. In addition, the
first two natural frequencies are not exactly zero but are either small values or complex
numbers. This may be due to the fact that the set of functions used are not from a complete
set that would allow perfectly free conditions to be modelled. For the final free-free beam, all
admissible functions used, when extended to the original clamped support point, have a zero
displacement and a zero slope. Another potential contributing factor is that with penalty terms
it is not possible to obtain a complete cancellation of the positive structure by the negative
structure in practical applications because the penalty values must be finite. Further
investigations are being conducted to identify the source(s) of the problem and to see if these
could be addressed by using other types of admissible functions.

Figure 2
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7 terms per beam
with α = ± 1011

Simple polynomial 7
terms

Exact

ω1 4.732 4.730 4.730

ω2 7.874 7.971 7.853

ω3 11.665 11.367 10.996

Table 1 First three non-zero natural frequencies of a free-free beam
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IMPLEMENTATION AND EVALUATION OF EXACT DYNAMIC STIFFNESS 
METHOD FOR FREE VIBRATION OF NON-UNIFORM BEAMS
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When exact dynamic stiffnesses are used for solving free vibration problems of skeletal structures,
solution of the governing differential equations results in  the transcendental eigenproblem

0DK =)(λ (1)

where 2
ωλ = , ω is the circular frequency, )(λK is the global dynamic stiffness matrix and D is the

joint displacement amplitude vector, becoming the mode vector at the natural frequencies. The Wittrick-
Williams (WW) algorithm [1] gives the total number of eigenvalues below a trial value *

λ as

)}({)( **
0 λλ KsJJ += (2)

Here }{Ks  is the sign count of K , i.e. the number of negative leading diagonal elements of the upper 

triangular matrix ΔK  obtained from K  by ordinary Gaussian elimination, and 0J  is the total number 

of member fixed-end eigenvalues lying below *
λ . A Newton-based recursive second order convergence 

method [2] combines the WW algorithm with inverse iteration, to compute isolated eigenvalues and the 
corresponding modes accurately and efficiently.

The axial and flexural vibrations of a non-uniform Bernoulli-Euler beam are governed,
respectively, by the second- and fourth-order linear ordinary differential equations 
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Here, )(xEA and )( xEI  are the axial and flexural rigidities, and )( xm  is the distributed mass per unit 
length. The collocation software COLSYS [3] is used to obtain the displacement amplitudes

)(xu j )2,1( =j  and )(xv j )4,3,2,1( =j  for appropriate boundary conditions, from which the columns 
of the dynamic stiffness matrix K can be formed. An analogous procedure yields the derivatives of K
needed in the convergence method [2].

A key requirement is to avoid the stiffness singularities that occur at fixed-end member
eigenvalues.  Here the beam is divided into sufficient elements to ensure that the lowest fixed-end
eigenvalue of each exceeds a known upper bound uλ on the eigenvalue being sought.  Working from 
one end, the length l  of each element is chosen such that 
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i.e. so that uλ  is a lower bound on the lowest fixed-end eigenvalue of a uniform element of length l
having the most extreme section properties occurring within the element.

The solution procedure is similar to that of [2], with the following extensions.
(1) Axial and flexural natural frequencies are found separately.
(2) The beam stiffness matrix and its derivative are computed by solving the governing equations using

a numerical solver, rather than by using closed form formulae.
(3) Different sets of mesh points are automatically and adaptively generated for each natural frequency,

rather than using a fixed geometry with occasional mesh points.
(4) 0J  is guaranteed to vanish.
(5) The non-uniform beam has no coincident eigenvalues.  (This can be deduced physically.)
(6) The examples in this paper are specifically for the chain of collinear non-uniform elements required 

to assemble a single non-uniform beam.  The theory is readily extended to frames of any topology 
and with any number of uniform and non-uniform beams. 

Axial and flexural natural frequencies are compared with exact results kω obtained, respectively,

using the Sturm-Liouville solvers SLEDGE [4] and SLEUTH [5] (with error tolerance 810− ), and with
analytical results where available [6]. Table 1 gives results for a beam of length L , clamped at 0=x
and free at Lx = , with rectangular cross-section of constant breadth b  and varying height )( xh , where

)1()( 0 L
xhxh β−= , )()( xbhxm ρ= , )()( xEbhxEA = ,

12
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3 xEbhxEI = ( )Lx ≤≤0 (5)

for two values of the taper slope parameter β . The axial mode functions )( xu  were also compared with 
exact modes )(xuk at the points pi nLix = ( )pni ,,1,0 = . Figure 1 shows the relative errors
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Table 1. Selected natural frequencies of cantilevered linearly tapered beam.
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1 1.794010905 3.823784848 2.203290325 4.630723862
2 4.802060761 18.31726091 5.153187899 14.93079267
3 7.908961712 47.26482701 8.185995112 32.83312114
4 11.03509458 90.45047766 11.25893456 58.91706749
5 14.16798651 148.0017449 14.35406566 93.38808978

10 29.85977557 651.3863523 29.95772393 393.1830235
20 61.26819673 2736.661945 61.31743639 1633.125164
30 92.68170352 6260.030017 92.71445167 3727.806332
40 124.0964352 11221.50150 124.1209456 6677.371650
50 155.5116496 17621.07843 155.5312279 10481.85021
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Figure 1. Relative errors for axial and flexural natural frequencies.

It is seen that the specified error tolerance of 810−=ε  was essentially achieved in all cases, and 
solution times were comparable to those of SLEDGE or SLEUTH. It is therefore concluded that the
proposed method is a successful extension of the exact dynamic stiffness method to non-uniform
Bernoulli-Euler beams with uncoupled axial and flexural behaviour. Exactness, efficiency and 
reliability are retained by the use of a state-of-the-art ODE solver.   The method is readily extended to 
the vibration of Timoshenko beams, Euler buckling of non-uniform beams, as well as to analogous 
problems of shells of revolution and to more general Sturm-Liouville problems.
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Vibrations of Twisted Cantilever Plates

Arthur Leissa
Fort Collins, Colorado, USA

Turbomachinery blades are used extensively in gas turbines and steam turbines. A typical 
blade with an attached shroud is shown in Fig. 1. The blade has considerable twist along its length. It 
has curvature (camber) in the direction transverse (chordwise) to its length, but negligible curvature 
in its longitudinal (spanwise) direction. Typical cross-sections are airfoil shapes, varying in thickness 
along the chord (Fig. 2). Free vibration frequencies and mode shapes of rotating blades are essential 
to analyze the behavior of turbine, compressor and fan blades in their operating environments.

Fig. 1. Shrouded fan blade

A review article [1] published 38 years ago summarized approximately 100 publications 
which dealt with the vibrations of turbomachinery blades. An update five years later [2] described 
57 additional ones. The early analyses were based upon one-dimensional beam theories which, to 
various degrees, included the complications of variable thickness, pretwist, shear deformation, rotary 
inertia, Coriolis effects, thermal gradients, torsional warping, bending warping and elastic root sup-
ports. Numerous two-dimensional analyses were also carried out later [1, 2], mainly using finite ele-
ments, but also shallow shell theory. Ultimately, some three-dimensional investigations were made, 
almost entirely by finite elements. Published experimental data was minimal due to its proprietary 
nature.

However, where direct comparisons of computationally obtained frequencies were available, 
considerable differences were found. A relatively simple test model for the computational methods 
is a pretwisted rectangular plate (Fig. 3). The fundamental free vibration mode for this configuration 
is simple, spanwise bending. Some analysts determined an increase in its frequency with increasing 
pretwist angle (W). Others said it decreases. The second frequency is usually for a torsional mode; it 
definitely increases with increasing W. But some said it increased greatly, others said only slightly. If 
a computer program cannot solve this simple problem accurately, it cannot be relied upon to analyze 
complicated turbomachinery blades.

Fig. 2. Blade cross-sections
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 Because of this questionable reliability, a two-year study of this problem on available com-
puter programs was undertaken jointly by NASA and the U.S.Air Force. A set of 20 precision-ma-
chined twisted plates were manufactured, with different aspect ratios, thickness ratios and pretwist 
angles. Experimental frequency and mode shape data were determined for each configuration at two 
separate, government laboratories. Simultaneous with this, industry, government and university re-
searchers were asked to obtain computational results from some of the best available one-dimension-
al beam analyses and two- and three-dimensional finite element and shell analysis codes. All results 
were obtained under static, non-rotating conditions. Altogether, 16 laboratories were involved. Ex-
tensive numerical results were obtained by 19 different programs. Experimental and computational 
results were summarized and compared in three journal articles [3-5] and in a NASA report [6].

Considerably different results were obtained from the various computer programs. Figure 4 
is a plot of the first bending mode frequencies for moderately thin (b/h = 20) twisted plates of square 
aspect ratio (a/b = 1) for five pretwist angles (0, 15, 30, 45, 60 degrees). Figure 5 shows the fre-
quencies of the first torsion mode for the same twisted plates. In each plot the experimental results 
are shown as a dotted line. In the presentation, similar results for the other configurations and other 
modes will be shown. The various analytical methods used to generate the computer programs will 
be briefly described.
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Fig. 3. Twisted cantilever plate

Fig. 4.  Variation of first bending mode 
frequency with pretwist angle

a/b = 1,  b/h =20

Fig. 5.  Variation of first torsion mode 
frequency with pretwist angle.

a/b = 1,  b/h = 20
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



   

 

  

             
                   λ λ ξ λ ξ λ 




∑∑ ∑ ∑ ∑ 

    

   
     




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   ρω=      = 
   = 



   ρω= 
      
 

















 

















 × 

 


     =     = 



              
  



              

             
            










                 


 
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A Discussion on the Physics and Truth of Nanoscales for 
Vibration of Nanobeams based Nonlocal Elastic Stress Field Theory 
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Department of Building and Construction, City University of Hong Kong, Hong Kong, P.R. China 

Abstract

Two critical but overlooked issues in the physics of nonlocal elastic stress field theory for nanobeams are 
discussed: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in 
many, but not consistently for all, cases of study, ie. increasing static deflection, decreasing natural frequency 
and decreasing buckling load, in virtually all previously published works in this subject (a total of 51 papers 
known since 2003) although intuition in physics tells otherwise? and (ii) the intriguing conclusion that 
nanoscale effects are missing in the solutions in many exemplary cases of study for bending of nanobeams.  
Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, 
the exact equilibrium conditions, domain governing differential equation and boundary conditions for 
vibration of nanobeams are derived for the first time.  These new equations and conditions involve essential 
higher-order terms which are missing in virtually all nonlocal models and analyses in previously published 
works in statics and dynamics of nonlocal nano-structures.  Such negligence of higher-order terms in these 
works results in misleading nanoscale effects which predicts completely incorrect, reverse trends with respect 
to what the conclusion of this paper tells.  Effectively, for the first time this paper not only discovers the truth 
of nanoscale, as far as nonlocal elastic stress modelling for nanostructures is concerned, on equilibrium 
conditions, governing differential equation and boundary conditions but also reveals further the true basic 
vibration responses for nanobeams with various boundary conditions.  It also concludes that the widely 
accepted equilibrium conditions of nonlocal nanostructures currently are in fact not in equilibrium, but they 
can be made perfect should the nonlocal bending moment be replaced by an equivalent nonlocal bending 
moment.  The conclusions above are illustrated by other approaches in nanostructural models such as strain 
gradient theory, modified couple stress models and experiments. 

1. Introduction 

Since the discovery of carbon nanotubes (CNTs) in the early 1990s, many continuum modelling 
approaches based on elastic, linear or nonlinear beam and shell models were developed for the analysis of 
static and dynamic responses and the stability and vibration of CNTs [1,2].  As size-dependent effects 
become significantly more prominent at the nano-scale, such classical continuum models becomes invalid 
because they do not exhibit intrinsic size-dependence features and do not allow inclusions and property 
inhomogeneities that are fundamental and significant in atomic modeling.  Therefore, the nonlocal field 
theories first extensively developed by Eringen in the early 1970’s were applied to study CNTs [3].  The 
nonlocal field theories indicate that the stress at a point in a domain is dependent on the strain at every other 
point in the domain.  According to Eringen [4], the nonlocal constitutive equation with kernel function could 
be reduced to a second-order ordinary differential equation for convenient analysis of static and dynamic 
responses of CNTs, such as bending, vibration, buckling and wave propagation.  Works applying this theory 
were published [5-8] by directly extending the classical models without rigorous verification.  These models 
can be regarded as the partial nonlocal stress models that neglected the very important higher-order nonlocal 
effects and, hence, the nanobeams do not satisfy the very fundamental, static equilibrium condition.  
Consequently, these partial nonlocal models induced rather inexplicable solutions. 

Applying the nonlocal theory and an exact variational principal approach, this paper derives the correct 
equilibrium conditions, domain governing differential equation and boundary conditions for vibration of 
nanobeams.  Some vibration examples for nanobeams with various loading and boundary conditions are 
solved to illustrate the true effects of nanoscale based on this exact nonlocal elastic stress field theory. 

2. Derivation of New Governing Differential Equations 

In accordance with the nonlocal stress theory [4], the simplified nonlocal constitutive equation for a 
one-dimensional Euler-Bernoulli nanobeam is 
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which can be non-dimensionalized using the following dimensionless parameters 
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where xx  is the normal stress, xx  the normal strain,  Young’s module,  the nanoscale coefficient, 
 the length of nanobeam,  the deflection amplitude within a vibration cycle, and 

E 0e a
L w x  and z  the 
longitudinal and transverse coordinates.   

Using an exact variational approach, the energy  stored in a deformed structure and the kinetic energy 
 during free vibration are 

U
T

2

0 0

1and
2

xx L

xx xx
V

dwU d dV T A dx
dt

 (3,4) 

where  is the density per unit length.  The variational principal requires that 
0I U T  (5) 

which yields a higher-order governing differential equation as 
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where n  indicates n -order differentiation with respect to x  and eqM  is defined as an dimensionless 
equivalent nonlocal bending moment.  For simply harmonic motion, let 

, i tw x t W x e  (7) 
Substituting this equation into the higher-order governing differential equation (6a) yields 
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which is an eigenvalue equation where  the dimensionless angular frequency. 

3. Example 

For a nanobeam simply supported at 0,1x , the boundary conditions are 
(0) 0 , (0) 0 , (1) 0 , (1) 0W M W M  (10) 

For nontrivial solution of the eigenvalue equation (8), we may set 
( ) sin    1, 2,3,kW x c k x k  (11) 

where  is the -mode amplitude of vibration.  Substituting Eq. (11) into Eq. (8) yields kc k

2 2 1 2 1
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1 2 3n n n

n
k k n  (12) 

Denoting 22
c cL A EI k  as the classical -mode dimensionless natural frequency where k

c  is the dimensional natural frequency for a classical Euler-Bernoulli beam simply supported at both ends, 
the ratio of dimensionless frequency of a nanobeam to that of a classical thin beam is 

2 1 2 42 1 2 4

1

1 2 3 1 3n nn

nc

R n k k k  (13) 

where  defined in Eq. (2) is a dimensionless nanoscale parameter indicating the strength of nanoscale 
effect.  In Eq. (13), the classical natural frequency can be recovered when 0  which indicates vanishing 
nanoscale influence.  It also shows that the nonlocal effect increases the natural frequecncy of nanobeam and 
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the result is in complete contradiction to virtually all previous published works [5,6,8].  As an example, 
Reddy [8] presented the ratio of natural frequency as 

[8]
[8] 2 2

1
1c

R
k

 (14) 

in which equivalent notations have been standardized and the expression rearranged.  For example, 
 is used in Eq. (13) and the result is shown in Fig. 1 to demonstrate the relationship between 2n R  and 

 for various modes .  It is obvious that  for increasing k 1R  is contradictory to [8R ] 1  for 
increasing .  In addition, the nonlocal effect for higher vibration modes is more significant. 

4. Conclusions 

Through an exact nonlocal stress field 
approach and a rigorous variational 
principle formulation, this paper has 
successfully derived new equilibrium 
conditions which include higher-order 
nonlocal terms.  The domain governing 
higher-order differential equations and 
higher-order boundary conditions have also 
been established.  An example of a simply 
supported nanobeam is presented.  It 
concludes that increasing nanoscale results 
in higher nanobeam stiffness and 
consequently higher natural frequency.  
The conclusion contradicts all previous 
published results.  It is also shown that the 
nonlocal effect for higher vibration modes 
is more significant.  In addition, the 
classical natural frequency is recovered in 
the limit of vanishing nonlocal nanoscale. 
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1. Introduction   Experimental results are presented on chaotic vibrations of cylindrical 
shell-panels subjected to periodic lateral excitation. Influences of the curvature of the shell-panel 
and the in-plane compressive force are examined on the chaotic responses. The panel is clamped 
along the cylindrical curved edges and simply supported along the other two. The cylindrical-panels 
are compressed by an in-plane elastic constraint at the clamped edges. Chaotic responses are 
examined with the Poincaré projections and the Lyapunov exponents. Contribution of vibration 
modes to the chaotic responses of the plate is inspected with the Karhunen-Loève transformation.

2. Test Panel and Test Procedure   As shown in Fig.1, a cylindrical panel made of a 
phosphor-bronze sheet with thickness h=0.24 mm, square form of length a=140 mm is clamped 
along the curved edges by rigid blocks. The surfaces of the rigid blocks are cut to circular surface 
with the radius of curvature R. The other edges are simply supported by adhesive flexible films. The 
panel has an initial deflection inherently. The panel is initially compressed in the meridian direction 
with elastic plates at the clamped edges. In the experiment, chaotic responses of three cylindrical 
shell-panels with different curvatures are examined. Effect of the initial in-plane compressive force 
on the chaotic response is also investigated. The restoring force and the linear natural frequencies of 
the cylindrical shell-panels are measured. The shell-panels are excited laterally with an 
electromagnetic exciter. The shell-panels are subjected to gravitational acceleration and periodic 
acceleration adcos2 f t, where f is the exciting frequency and ad is the peak amplitude of 
acceleration. Dynamic responses of the shell-panels at multiple positions are measured with laser 
displacement sensors for the data analyses. Chaotic responses are inspected with the frequency 
response curves, the Fourier spectra, the Poincaré projections and the maximum Lyapunov 
exponents. The contribution of vibration mode to the chaos is discussed with the K-L 
transformation.

3. Results and Discussion   The experimental results are arranged with the following 
non-dimensional notations.

[ , ] = [x, y] / a, w =W / h, nc = Nc / Ncr , [ps , pd ] = [g,ad ] a
4
/ d, qs =Qsa

2
/ Dh,

= a
2
/ (Rh), [ , mn ] = [ f , fmn ](2 /

0
), =

0
t                                                    (1)

In the above notations, 
0
= a

2
D / (Rh)  is the coefficient corresponding to lateral vibration of 

the shell-panel. Notation D = Eh
3
/ {12(1

2
}  is the bending rigidity, where E is Young's modulus 

and  is Poisson's ratio. In Eq. (1),  and  are the non-dimensional coordinates, w is the lateral 
displacement normalized by the shell thickness h. The symbol nc is the non-dimensional stress 
resultant of the compressive in-plane force, normalized by the buckling resultant Ncr. Notations ps

and pd are the non-dimensional load intensities related to the accelerations of gravity g  and of the 
periodic peak amplitude ad, respectively. In the experiment, ps is fixed as ps = 0.37 10

3
. The 

restoring force of the shell-panel is obtained with the relation between static deflection and the 
static concentrated force Qs. Notation qs is the non-dimensional force. The symbol  is the 
nondimensional curvature of the shell-panel. Notations  and are the nondimensional excitation 
frequency and the time, respectively. 

  Figure 2(a) shows the results of the characteristics of restoring force of the plate (  = 0) and the 
shell-panel (  = 12) under the pre-buckling force nc = 0.88. The static deflection including the 
initial deflection shows twice that of the panel thickness opposite to the gravitational direction 
(negative z-direction). The static deflection w at the point = 0.6 and = 0.4 is presented under the 
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concentrated force qs loaded at the center = 0.5 and = 0.5. When the force increases from the 
static equilibrium position to the negative z direction, the deflections show the characteristics of a 
hardening spring. As the force is loaded to the positive z direction, the spring characteristics change 
to the softening-and-hardening type. The gradient of the curve of plate (  = 0) is almost zero from 
w=1 to w=2. The shell-panel (  = 12) shows small deflection compared to that of the plate (  = 0) 
in the positive z-direction. Figure 2(b) shows the characteristics of the restoring force of the 
shell-panels (  = 12 and  = 20) under the post-buckling conditions nc = 1.6. When the compressive 
force is increased from nc = 0.88 (Fig. 2(a)) to nc = 1.6 (Fig. 2(b)) in the panel (  = 12), the 
deflection w increases in the positive z-direction. For the panel with larger curvature  = 20, the 
gradient of the spring characteristics around the static equilibrium is increased compared to that of 
the panel  = 12. Table 1 shows the linear natural frequencies mn where m and n denote the 
half-wave numbers of the vibration modes along the x-axis and the y-axis, respectively. In the table, 
many sets of natural frequencies satisfy the relation of internal resonance. For example, the lowest 
natural frequency 11=29.6 of the shell-panel  = 12 under nc = 1.6 is close to half of the natural 
frequency 12 =57.8 of the vibration mode with one nodal line along the x-axis. 

   Fig. 3(a) shows the nonlinear response curves of the plate  = 0 under the amplitude of periodic 
force pd = 0.38 10

3
 and the inital compressive force nc = 0.88.  The amplitude of response at the 

position = 0.6 and = 0.4 is shown with the root mean square value. The resonance response is 
denoted by the symbol (m, n; p) with the mode of vibration (m, n) and the type of resonance p. For 
example, p = 1 and p = 1/2 represent the principal resonance and the sub-harmonic resonance of 1/2 
order, respectively. Internal resonance is denoted by the symbol C[(m, n; p), (i, j; q)]. The large 
amplitude response (1, 1; 1) is generated from the principal resonance of the lowest mode of 
vibration. The nonlinear response exhibits the characteristics of a softening-and-hardening spring. 
The dominant chaotic responses are generated in four regions of the excitation frequency involving 
internal resonance, which are denoted by the symbol C[(m, n; p), (i, j; q)].  These chaotic responses 
are mainly generated from ultra-sub harmonic resonance of 2/3 order, sub-harmonic resonance of 
1/2 or 1/4 order of the fundamental mode of vibration. Higher modes of vibration with one nodal 
line are also induced. Figure 3(b) presents the frequency response curve of the shell-panel  = 12 
under pd = 0.38 10

3
 and nc = 0.88. Compared to the results of plate, the dominant regions of 

chaotic response are decreased to two. The chaotic responses are generated by internal resonance 
involving the sub-harmonic resonance of the fundamental mode of vibration. When the in-plane 
compressive force is increased to nc = 1.6, chaotic responses are generated in three frequency 
regions as shown in Fig. 3(c). In the figure, C[(1,1;2/3),(1,1;2)+(2,1:2)] implies chaotic response 
generated from the internal resonance of the ultra-sub harmonic resonance (1,1;2/3) and the 
combination resonance (1,1;2) and (2,1;2) where the combination resonance involves 
super-harmonic resonances of second order. In the other two regions, chaotic responses are 
generated from internal resonance. Figure 3(d) shows the response curves of the shell panel  = 20 
under pd = 0.75 10

3
 and nc = 1.6. Although the amplitude of periodic force is twice as large as that 

of the plate  = 0 and the panel  = 12, chaotic response cannot be observed. The foregoing results 
are confirmed by the following inspections. 

Figure 4 shows the time progress, the Fourier spectrum and the Poincaré projection of the typical 
chaotic response C[(1,1;1/2),(1,2;1)] of the shell-panel  = 12, under the exciting frequency =55.6,  
pd = 0.38 10

3
 and nc = 1.6. The time progress of the response w is presented by the number of 

excitation period e. Irregular amplitude modulation of chaotic response is observed. In Fig. 4(b), 
broad band spectrum is observed. Dominant peaks of the spectrum correspond to the sub-harmonic 
resonance of order 1/2 with the lowest mode of vibration and to the principal resonance of the mode 
(1,2). Therefore, the chaotic response is dominated by the internal resonance condition 2 11 12.  In 
Fig. 4(c), the Poincaré projection shows the distinct figure in the space of deflection and velocity.  
To confirm the response is chaos, the maximum Lyapunov exponents of the chaotic responses are 
calculated. Furthermore, the Karhunen-Loève transformation estimates the contribution of vibration 
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modes in the chaotic response. These results are summarized in Table 2.  The maximum Lyapunov 
exponents of the responses take positive values within max=0.3 and max=1.0, then the responses are 
confirmed as the chaos. In the most of the chaotic responses, the fundamental vibration mode 
contributes predominantly. Higher modes of vibration also contribute to the chaos with the ratio 
from 6% to 40%. According to the shell curvature and to the in-plane compressive force, the 
vibration modes induced in the chaos depend on the internal resonance condition. 

4. Conclusion   Experimental results are presented on chaotic vibrations of a shell-panel clamped at 
opposite edges. As the shell curvature is decreased or in-plane compressive force is increased, 
chaotic responses are easily induced from the internal resonance..
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Curvature Compressive
force nc

Type of resonance
(The maximum
Lyapunov exponent)
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(m, n)

Contribution
ratio [%]
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( max=1.0) (1,2) 10
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(2,1;2)]   ( max=0.8) (2,1) 10

C[(1,1;1/2),(1,2;1)] (1,1) 66
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Introduction 

Advanced composites are traditionally used in the aerospace industries, and are expanding their 
applications to the fields of automobile, ocean and other engineering. Relative mechanical 
advantages are measured by two parameters, the specific modulus and specific strength that are 
high in composite materials. Another important advantage of the composite is the feasibility to 
produce the optimum or nearly optimum performance by designing the lay-up in the laminates. 
This class of optimization problem is called the stacking sequence problem or the lay-up design 
problem. 

  The present study deals with this design problem, but unlike in previous studies it uses the three 
dimensional elasticity theory. Comparison is made among sets of results obtained by 3D, FSDT 
(First-order Shear Deformation Theory) and CPT (Classical Plate Theory) for the optimum stacking 
sequence and corresponding natural frequency. The optimum solutions are obtained by the 
layerwise optimization method. 

Outline of the Analysis 

Figure 1 presents a very thick composite composed of a number of layers with the thickness h 
and a rectangular planform axb. The principal material axes 1 and 2 are taken along the fiber 
direction and the direction perpendicular to the fiber, and the thickness axis is given by the 3 axis. 
With these axis notations, the stress and strain relations are given by 

( ) ( )
1 11 12 13 1

2 22 23 2

3 33 3.

k kQ Q Q
Q Q

sym Q
,

( ) ( )
23 44 23

31 55 31

12 66 12

0 0
0

.

k kQ
Q

sym Q
           …(1) 

where
11 32 23 1 12 21 31 23 1 13 31 21 32 1

22 31 13 2 23 32 31 12 2 33 21 12 2

44 23 55 31 66 12 21 13 32 12 23 31 13 31 32 23 21 12

(1 ) / , ( ) / , ( ) /
(1 ) / , ( ) / , (1 ) /

, , , 1

Q E Q E Q E
Q E Q E Q E
Q G Q G Q G

         

…(2)
with 1E , 2E  and 12G , 23G , 31G being the normal and shear elastic modulus, respectively, and 12 , 23 ,

31 , 21 , 32 , 13  being Poison’s ratios. 

k x
x

z,3
yh

a
b

thk Layer

Figure 1. Coordinate system of the rectangular parallelepiped composed of fibrous layers. 
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  The maximum displacements of x, y and z directions in the free vibration state are denoted by in
u (x, y, z), v(x, y, z) and w(x, y, z), respectively. The strain-displacement relations are given by  

/ , / , /
/ / , / / , / /

x y z

yz zx xy

u x v y w z
w y v z u z w x v x u y             …(3) 

After some algebraic manipulation, the maximum strain energy is written by 
( )

max
1

1
2 k

L
kT

kV
k

U Q dV    

 with / , / , / , / / , / / , / / Tu x v y w z w y v z u z w x v x u y  …(4) 
where [Q] is a 6x6 matrix with elements given in (2). By denoting a radian frequency by , the 
maximum kinetic energy is given by 

2
max

1

1
2 k

L
t

k kV
k

T u v w u v w dV                       …(5) 

where k is a mass per unit volume in the k-th layer. After introducing non-dimensional quantities, 
the displacement functions are defined by   

0 0 0 0 0 0

0 0 0

( , , ) ( ) ( ) ( ), ( , , ) ( ) ( ) ( )

( , , ) ( ) ( ) ( )

I J K L M N

ijk i j k lmn l m n
i j k l m n

p q r

pqr p q r
p q r

u A X Y Z v B X Y Z

w C X Y Z
       …(6) 

where , , are non-dimensional coordinates, , ,i j kX Y Z are admissible functions, and , ,ijk lmn pqrA B C

are unknown coefficients. These functions are substituted into the functional max maxF T U and the 
functional is minimized with respect to unknown coefficients as  

0 0,1,2, , ; 0,1,2, , ;
i j k l mn pqr

F F F i I j J
A B A               …(7) 

The frequency equation can be derived after this Ritz procedure as 

0

.
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pqrp pqqr r

E E E A
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Csym E
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Similarly for other elements       …(8) 
with 1/ 22 3

0 0 12 21/ , /12 1Ta h D D E h  being a frequency parameter and (=a/h) being a 
thickness parameter. The optimum stacking sequences are determined to make the fundamental 
frequency maximum by using the layerwise optimization method [1], one of the practical and 
efficient approximate design methods developed by the present author.  

Numerical Results and Discussions 

Based on the three dimensional theory, a computation program was developed to calculate the 
natural frequencies and mode shapes of a laminated composite plate. The elastic constants of the 
composite in this study are for Graphite/epoxy material (E1=138GPa, E2=8.96GPa, E3=E2,
G12=7.1GPa, G31= G12, G23= E2/2(1+ 23), 12=0.30, 13= 23= 32= 12, 21= 31= 12) that has a large 
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degree of orthotropy (E2/ E1=15.4). The boundary conditions are considered for eight typical 
combinations of clamped, simply supported and free edges. The thickness ratio is taken for 
(=a/h)=100(thin), 10(thick) and 1(cube, extremely thick). In addition to the 3D theory, the 

classical thin plate theory (CPT) and the first-order shear deformation theory (FSDT) are also used 
for studying the effects of using different plate and 3D theories.  

Table 1 presents a comparative study of the optimum solutions obtained by using three different 
theories. Generally speaking, relatively good agreement is found among those results for the 
present range of thickness parameters and boundary conditions. It is shown that the use of different 
plate theories does not significantly affect the prediction of the optimum stacking sequences to 
maximize the fundamental frequencies, although slight discrepancy exists as the thickness is 
increased.   

References 
1. Y. Narita, Maximum frequency design of laminated plates with mixed boundary conditions, International

Journal of Solids and Structures, Vol.43, (2006), pp.4342-4356 
2. K. Murayama, Y. Narita and K. Sasaki, The shear deformable effect on optimum lay-ups of laminated  
  plates, Key Engineering Materials, vol.334-335, (2007), pp.97-100 

Table.1 Comparison of the maximum fundamental frequency parameters and optimum lay-ups 
obtained by the present 3D theory, FSDT and CPT for symmetric 8-layered square plates (a/b=1). 

1.opt Opt.Lay-ups 1.opt Opt.Lay-ups 1.opt Opt.Lay-ups

CCCC
3D 11.24 [90/90/90/90]s 67.70 [0/0/0/0]s 93.40 [-5/90/20/0]s

FSDT 11.18 [90/0/0/90]s 71.52 [0/90/90/0]s 93.33 [0/90/90/0]s
CPT 93.67 [0/90/90/90]s

SSSS
3D 8.088 [40/65/30/-50]s 43.85 [-45/45/45/45]s 56.02 [45/-40/-45/-50]s

FSDT 8.780 [-75/15/-50/40]s 44.85 [-45/45/45/-45]s 55.72 [-45/45/45/45]s
CPT 56.32 [45/-45/-45/-45]s

CSFF
3D 4.894 [25/20/5/5]s 14.95 [15/15/-50/5]s 15.52 [10/-10/-20/-35]s

FSDT 4.814 [25/-40/20/10]s 15.01 [15/15/-50/10]s 16.21 [15/15/-45/-50]s
CPT 16.40 [20/-45/20/25]s
CFFF
3D 4.364 [0/0/0/0]s 13.19 [0/0/0/0]s 13.73 [-5/0/-5/5]s

FSDT 4.206 [0/0/0/0]s 13.18 [0/0/0/0]s 13.81 [0/0/0/5]s
CPT 13.75 [0/0/0/0]s
SSFF
3D 2.098 [-45/-45/45/-45]s 9.368 [-45/45/-45/45]s 11.40 [-45/55/-80/-25]s

FSDT 2.216 [-45/45/-45/-45]s 9.442 [-45/45/-45/-45]s 11.19 [-45/45/-45/50]s
CPT 11.29 [-45/45/-45/45]s

CCFF
3D 5.432 [50/55/50/55]s 17.11 [30/75/-35/60]s 19.69 [45/-45/50/-5]s

FSDT 5.485 [30/75/45/45]s 17.29 [30/75/-40/40]s 18.95 [40/-45/50/80]s
CPT 19.03 [45/-45/45/-35]s

SSCC
3D 10.70 [50/-45/55/-45]s 53.34 [0/0/0/0]s 71.90 [45/-45/-45/40]s

FSDT 10.93 [40/-40/-85/-10]s 56.09 [45/-45/-45/45]s 71.47 [-45/45/45/45]s
CPT 72.01 [-45/45/45/45]s

SSSF
3D 6.258 [0/0/90/0]s 36.15 [0/0/0/0]s 40.05 [0/0/5/15]s

FSDT 6.432 [0/90/0/0]s 36.12 [0/0/0/0]s 39.79 [0/0/0/0]s
CPT 39.84 [0/0/0/0]s

1 10 100
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Dynamics of Circular Cylindrical Shells under Seismic Loads 
 

Francesco Pellicano 
Dept. of Mechanical and Civil Engineering 

Univ. of Modena and Reggio Emilia 
 
 
The present paper is focused on the dynamic analysis of circular cylindrical shells under seismic excitation: 
the excitation direction is the cylinder axis, the shell is clamped at the base and connected to a rigid body 
on the top and the base provides the seismic excitation which is supposed sinusoidal. The goal is to 
investigate the shell response when a resonant forcing is applied: the first axisymmetric mode is excited 
around the resonance at relatively low frequency and low excitation amplitude. A violent resonant 
phenomenon is experimentally observed as well as an interesting saturation phenomenon close to the 
previously mentioned resonance. A theoretical model is developed to reproduce the experimental evidence 
and provide an explanation of the complex dynamics observed experimentally. 
The literature about vibration of shells is extremely wide and the reader can refer to Ref. [1] or more 
recently to Refs. [2-4] for a comprehensive review of models and results presented in literature. 
 
a) 

 

b) 

 
 

Figure 1. Setup. 
 
The goal of the research is to investigate experimentally and numerically dynamic instabilities of circular 
cylindrical shells subjected to seismic excitation. The shell is vertically mounted on a shaking table (see 
Fig.1a) by means of clamping to the base (see Fig. 1b); an aluminium disk is clamped to the top of the shell. 
The base excitation furnishes energy in the axial direction and excites the shell through the inertia of the 
top disk. The axial loads primarily excite the axisymmetric modes and secondarily give a parametric 
excitation to shell like modes (see Fig. 2). 

Figure 3 shows some results obtained by exciting the shell with  13g acceleration and decreasing the 
excitation frequency. Figure 3a shows clearly that the excitation level is not really constant; this is due to 
the shell-table interaction that made fine control of the table impossible during the experiment. Figure 3b 
shows that, close to 330Hz, the shell response rapidly grows to huge amplitudes, then it grows again at 
about 325 Hz and remains flat up to 295 Hz. The top disk behaves similarly in terms of maximum amplitude. 
The phenomenon is extremely violent and sudden and is accompanied by a strong noise. 
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Figure 2. Experimental mode shapes. a) beam like mode; b) first axisymmetric mode; c,d) shell modes. 

 
a) b) 

c) d) 

 

Figure 3. a) max amplitude of vibration (channel 1); b) max, min and peak to peak of vibration (channel 2); 
c) max amplitude of vibration (channel 3); d) time history from channel 2 (shell displacement, excitation 

freq 330.75 Hz) 
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A numerical model has been developed in order to explain the phenomenon. The model is based on the 
nonlinear Sanders-Koiter theory. The governing equations are solved by expanding the displacement fields 
using a mixed expansion based on harmonic functions and Chebyshev polynomials. Using Lagrange 
equations, a set of nonlinear ordinary differential equations is obtained and solved numerically. Details are 
omitted for the sake of brevity; see Ref. [5] for the application of the approach to linear problems.  

Figure 4 shows the maximum amplitude of vibration simulated numerically: compared with Figure 3b it 
is clear that the numerical model captures an instability phenomenon, which is similar to the experimental 
one; however, the amplitude is larger than in the experiments and the instability zone is narrower (319-325 
Hz numerical) (295-330 Hz experiments). Discrepancies are quantitatively relevant, they are probably due 
to several issues: i) geometric imperfections are not considered in the numerical model and these can 
change the linear frequencies of shell modes and modify the energy transfer from axisymmeric to 
asymmetric modes and enlarge the instability region; ii) the base excitation is constant for the numerical 
simulation, this is not true in experiments; iii) the shell-table interaction is not considered in the numerical 
model. The numerical method furnishes some interesting information about the instability mechanism: 
indeed, the modelling based on modal shapes reveals that the instability involves shell modes having from 
4 to 10 nodal diameters (from 800 to 1250Hz natural frequency range); the mode having 9 nodal diameters 
(1050Hz natural frequency) is excited with the highest amplitude, central zone of Fig. 4. The onset of the 
instability (from 328 to 325 Hz of Fig. 4) is mainly dominated by the mode having 6 nodal diameters (800Hz 
natural frequency).  

Such an embryonic numerical approach confirms the complexity of the phenomenon, which displays 
several high frequency resonant modes excited through internal energy transfer from the low frequency 
axisymmetric mode, which is the only one directly excited.  

Further research will be needed for a full understanding of instability onset type and the energy transfer 
mechanism: shell imperfections as well as system-shaker interactions could be a first step for improving the 
model. 

 
Figure 4. Shell response: numerical simulations. 
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                                                                           INTRODUCTION 

The problem of unsteady flows in aerodynamic cascades arouses considerable interest  mainly because 
of the effect of non-stationarity on the optimal design, efficiency and reliability of turbomachine operation. The 
energy transfer in a turbine stage is accompanied by the interaction of aerodynamic, inertial and elastic 
forces acting on the blades, which can cause excessive blade vibration, leading to structural fatigue failures. 
Taking into account the structural and mechanical damping, the mutual interaction of these forces determines 
the aeroelastic behaviour of the blades and represents an important problem not only for aircraft compressor 
and fan blade rows, but also for the last stages of steam and gas turbines that work in highly loaded off-
design conditions. 
    The prediction of the unsteady pressure loads and aeroelastic behaviour of blades may involve the 
computation of shock waves, shock/boundary layer interaction and boundary layer separation although it 
cannot be used with inviscid methods. In order to overcome this limitation, complete Reynolds-averaged 
Navier-Stokes (RANS) equations are used to model complex and off-design cases of turbomachinery flows.
     The unsteady prediction models for 3D viscous flutter  and unsteady rotor blade forces in the stage have 
been discussed in literature over the last ten years (Sayma et al., 1998; Weber et al., 1998; Vasanthakumar 
et al., 2001; Chassaing and Gerolymus, 2001; Cinnella et al., 2004, Rzadkowski et al. 2006). 

The aim of this paper is to present the mathematical model and the numerical analysis of the coupled 
fluid-structure solution for the 3-D viscous flow through the turbine stage while taking into account the blade 
oscillations, but without separating the outer excitation and unsteady effects caused by blade motion.

  Here the 3D Reynolds-averaged Navier-Stokes (RANS) solver, coupled with a modified Baldwin and 
Lomax’s algebraic eddy viscous turbulence model, has been applied to calculate three-dimensional unsteady 
viscous flow through mutually moving steam turbine stator and rotor blades while the rotor blades are 
vibrating.  

 The structural analysis used the modal approach and a 3D finite element model of the rotor blade. 
 To validate the developed numerical viscous code a comparison of the numerical calculations results with 

the measured data for 11
th
  International Standard Configuration was performed. Moreover, the numerical 

results were also compared with the results of other authors (Fransson et al, 1999; Cinnella et al, 2004). 
These comparisons have shown sufficient quantative and qualitative agreement for local unsteady 
performances (pressure amplitude and phase distribution). 

 The numerical analyses of aeroelastic characteristics of the steam turbine last stage in a nominal regime 
and the first stage compressor rotor blade of S0-3 aircraft engine are presented below. 

COUPLED FLUID-STRUCTURE PROBLEM FORMULATION 

     In this study the partially integrated method was used to solve the coupled aeroelasticity problem for 
turbine and compressor stages. It involved separate solutions for fluid and structural equations, but the 
acquired data were exchanged at each time step, so that the solution from one domain was used as 
boundary condition for the other domain. In other words, at each time step a new rotor blade position was 
calculated using the aerodynamic forces obtained from a previous time step and this new position was used 
as the new fluid-structure boundary when computing the aerodynamic forces in the next time step. 

The 3D transonic flow of viscous gas flow through an axial turbine stage was considered in the physical 
domain, including the nozzle cascade (NC) and the rotor wheel (RW), which was rotating at a constant 
angular velocity.  

Normally, in an arbitrary configuration neither the NC nor the RW have an equal number of blades. 
 Figure 1 shows the calculated domain scheme in the tangential plane. 
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Figure 1. The calculated domain of turbine stage in tangential plane. 

The calculated domain was divided into two subdomains (NC) and (RW), with an overlapping area. In 
each subdomain the cascade geometry and gas flow were described in absolute or relative coordinate 
systems rigidly connected with the NC and RW, stationary and rotating respectively. 

The spatial viscous transonic flow, including generally strong discontinuities in the form of shock waves 
and wakes behind the exit edges of blades, is described in the relative Cartesian coordinate system rotating 

with constant angular velocity ω , by non-stationary Reynolds-averaged Navier-Stokes (RANS) equations. 

These equations have been presented in the form of integral conservation laws of mass, impulse and energy 
(Gnesin et al., 2004): 
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where U - is the symbolic vector of conservative variables; GFE ,,  and QSR ,,  are inviscid and viscous 

flux vectors respectively; H  is the source term caused by an uninertial coordinate system. 

The system of equations (1) is completed with the perfect gas law equation 
ρ−γ

=ε
p

1

1
, where γ is the 

adiabatic exponent (specific heat ratio). The application of Reynolds-averaged equations required modelling 
of the Reynolds stress using closure relations based on empirical information. In this study a Baldwin and 

Lomax  algebraic turbulence model was applied. At the solid wall, a no-slip condition is imposed wυυ


==== , 

where wυ


is the displacement velocity of the wall.  

The dynamic model of the oscillating blade using the modal approach can be reduced to a set of 

decoupled differential equations with regard to the modal coefficients of natural modes:  
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here ih  –mechanical damping i th -mode coefficient; iωωωω  – natural i th -mode frequency; iλλλλ  – modal force 

relative to  i th -mode displacement, calculated at every iteration by instant pressure distribution on the blade 

surface, p − blade surface pressure. 

Having defined the modal coefficients iq  from the system of differential equations (2), blade 

displacement  and velocity are obtained using modal superposition method. 

NUMERICAL RESULTS 

Due to the lack of experimental results, the numerical code developed to calculate the unsteady forces 
acting on the rotor blade in the stage was verified using the flutter calculation of turbine rotor blades. This 
was applied to the 11

th
 Standard Configuration (Fransson et al, 1999). Three selected experiments were 
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proposed as test cases: a subsonic case ( )69.0
2

====M  for code calibration, a transonic off-design case with 

a high incidence inlet flow angle 18 deg ( )99.0
2

====M and a separation bubble on the suction surface, and a 

supersonic off-design case ( )42.1
2

====M with incidence flow angle 33 deg. The details of these cases, 

including full blade geometry, are given by (Fransson et al, 1999). Viscous computations were performed 

using O-grids with 390× 42 cells, and an average value of +
y for the first cell near the wall of approximately 

1.0. This code can also be used to the analyse flutter in the compressor stage. 
In literature unsteady forces acting on rotor blades were calculated using the unviscous code of real 

turbine stages, in the control stage (Rzadkowski and Soliski 2007)), stages with steam extractions 
(Rzadkowski and Soliski 2007)), the last steam turbine stage (Gnesin et al. 2004, Rzadkowski el al. 2006b, 
Rzadkowski and Soliski 2007) and an aircraft engine (Rzadkowski  et al. 2008). The computational results 
of the viscous code presented here were carried out for the last stage of a steam turbine with a rotor blade 
length of 0.765 m, and the stator to rotor blades number ratio of 64 : 96 (2:3).  

One of the important aspects of stator-rotor interaction is the effect of blade response when taking into 
account the excitation caused by both non-uniform flow and excitation caused by blade oscillations. 
The amplitude-frequency spectrum includes high frequency harmonics (3200 Hz, 6400 Hz) corresponding to 
pitch non-uniformity, and low frequency harmonics corresponding to non-uniformity along the entire stage 
circumference.

Here the 3D transonic flow of an inviscid non-heat conductive gas through the axial first compressor 
stage of an S0-3 aircraft engine was considered in the physical domain, including the nozzle cascade (S0), 
the rotor wheel (RW) rotating with constant angular velocity and the nozzle cascade (S1). 

The blade vibration is defined by taking into account the first five natural mode shapes of the rotating 
blade.  

The unsteady modal force includes high-frequency harmonics (
1strev z×ν =256×35=8960Hz and 

0strev z×ν =256×42=10752 Hz, where revν  is rotation frequency, 
0stz  =42 and 

1stz =35 are the number of 

stator S1 and stator S0 blades) corresponding to the rotor moving past stator S0 and the S1 blade pitch. 
The amplitudes of harmonics are equal to 1-3 % of the averaged value for the Fy circumferential force 

component, 1.4-2.8 % for the Fz axial force, and 6.6÷3.2 % for the aerodynamic moment. 
The maximum values of the amplitude of the unsteady component for axial and circumferential loads 

occur in the periphery layer and decrease in the root, while maximum amplitude for aerodynamic moment 
occur in the mid section. 

Apart from amplitudes with frequencies (ν1=8960 Hz and ν2=10752 Hz), we observe amplitudes of 
unsteady loads with  frequencies ν =17920 Hz (2 x 8960 Hz)  and ν =21504 Hz (2 x 10752 Hz).  
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Abstract

The use of phase-locked-loops (PLL) is wide spread in electronics. It is the basis e.g. of FM-
radios and other applications. However, in mechanical systems in general a PLL is only applied if
the system also contains electric parts like in some ultrasonic motors [1]. In the present paper the
goal is to apply such a PLL to track the resonance frequency of a vibrating beam. These frequency
changes may occur due to changing masses or due to a changing longitudinal force in the beam

1 Introduction
The use of phase-locked-loops is widespread in electronics. Such systems are used for example in
FM radios to generate and reconstruct the original signal by tracking the frequency of the carrier
wave. The principle is that the PLL consists of a voltage controled oscillator (VCO) which has
an output frequency which is proportional to its input voltage. This input voltage is the output of
a controller which adjusts the phase of the VCO’s output to a second signal. This second signal
may be the signal of a sensor which measures the output of a mechanical system. The vibration
of the mechanical part in return is excited by the VCO and an amplifier. In such a configuration
both input signals of the controller do have the same frequency, but the phase shift between both
signals is a function of the frequency. If there is a mechanical system in between, e.g. in form of a
one dof oscillator, and the displacement is measured, then the phase difference may increase from
zero (far below resonance) to 180 degrees (far above resonance).

In a cooperation between the Institute of Applied Mechanics of the University of Karlsruhe
and the Institute of Production Technology, the goal was to develop an adaptive strut for a machine
with parallel kinematics. Within this strut, the longitudinal force was first measured by the vibrat-
ing string principle. The changing frequency of the string was obtained by counting the maxima
of the free vibration.

A second possibility, which is the topic of this presentation is to use a beam with piezoceramic
patches to excite and sense the resonance vibration of the beam. The resonance frequencies of the
beam change due to the changing longitudinal force. In other applications like bio sensors the
resonance frequency may change if the mass along the beam changes, e.g. in microbeams where
added molecules may stick to the beam, see figure 1.

2 Principle of a PLL
The principle of a phase locked loop is that a voltage-controlled oscillator (VCO) is driven by a
controller which has the phase difference of two signals as its input signal. The output frequency
of the VCO is proportional to the input voltage. The phase difference in general is detected by
multiplying the two input signals of the phase detector and integrating the product. The phase of
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Figure 1: Principle of a phase locked loop (PLL) for a beam with changing mass
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Figure 2: Sketch of the phase of the output signal with and without additional mass as a function of the
excitation frequency

the mechanical system for a given excitation frequency with and without an additional mass e.g.
are given in figure 2. In order to have the same phase of the mechanical system, the controller
has to lower the excitation frequency of the beam with additional mass and this frequency change
means that the input voltage of the VCO has to be changed, which can be measured very easily.

3 Phase relation between electric input of the beam and
input signal of the phase detector
In order to track the resonance frequency of a beam, the phase difference between input and
output of the mechanical part is important. Therefore, in this presentation the beam is modeled by
Bernoulli-Euler theory and by assuming that the differential equation is given by the equation of
motion for a beam with axial load and external damping. Damping may be important, because it
affects the phase shift between excitation and output. The excitation of the beam may be modeled
based on pin-force-models or on Bernoulli-Euler-models [2]. To sense the vibration, it is important
to specify if the output voltage of a piezoelectric sensor is used or if the charge of the sensor is
measured. In the first case, the output voltage has to be calculated based on the fact that between
the sensor electrodes no charge is flowing while, in the second case, the electrodes of the sensor
may be taken to be short circuited and the total charge between the electrodes corresponds to the
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integral of the local electric displacement.
In order to do the analysis, a time harmonic solution is assumed in such a way that all quantities

like voltage, displacement, stress, strain and charge are harmonic functions of time with given
circular frequency of the excitation.

4 Results
At the moment results are not yet available. They will be presented at the conference. For several
vibration modes, the frequency-phase plots will be given as well as the relation between axial
force and phase for a fixed vibration frequency. For the application in a strut of a parallel machine,
higher modes are of special interest in order to get a high dynamics of the measurement system.

References
[1] W. Seemann, Smart Motors in Germany. In: Smart Materials, Structures and MEMS, Editors

Aatre, K.V., Varadan, K.V., Varadan, V.V., SPIE-Vol. 3321, 1996, 472-483.

[2] W. Seemann, Exact Pin-Force Models for Piezoceramic Excitation. In: ZAMM, Vol. 78,
1998, S727-S728.

[3] P. V. Brennan, Phase-locked loops: principles and practice. Mcmillan, 1996.



60 Seventh International Symposium on the Vibrations of Continuous Systems, July, 2009

Two Classical Problems on Stabilization
of Statically Unstable Systems by Vibration 

Alexander P. Seyranian 
Institute of Mechanics, Moscow State Lomonosov University 

Michurynski pr. 1, Moscow 119192, Russia 
seyran@imec.msu.ru

Abstract. Two classical problems of stabilization of statically unstable systems by vibration are
considered. First problem is the well known problem of stabilization of an inverted pendulum by high
frequency excitation of the suspension point. The second problem is stabilization of an elastic rod
compressed by an axial force, greater than the critical Euler's value, by longitudinal vibration (Chelomei’s
problem). Stabilization regions are found both analytically and numerically. It is shown that, in contrast 
to high-frequency stabilization of an inverted pendulum with a vibrating suspension point, the rod is
stabilized at excitation frequencies of the order of the natural frequency of transverse oscillations of the
free rod belonging to a certain region. 
1. Stabilization of an inverted pendulum. Stabilization of the inverted vertical equilibrium position of a
pendulum by high-frequency excitation of the suspension point was studied by many authors, see e.g., 
papers [1-3]. The difference between present paper and previous studies is that we assume existence of
viscous damping forces, consider arbitrary periodic excitation function, and use the method of stability
study of periodic systems based on analysis of the Floquet multipliers.

Oscillations of a physical pendulum with the vibrating suspension point about upper vertical 
(statically unstable) position is described by the equation 

0sin)( ttttt zgmrcI .        (1)
Here  and are the moment of inertia and mass of the pendulum,I m is the angle measured from the 
vertical axis, c is the damping coefficient, r is the distance between suspension point and the center of
gravity, is the acceleration due to gravity, z is the vertical displacement of the suspension point 
following the law 

g
)( taz , where is the excitation frequency, and )( is an arbitrary 2 -

periodic function. The amplitude a and damping coefficient c are supposed to be small. For the sake of 
simplicity we use notation tt and assume that the mean value of the periodic function ( )  is 
equal to zero. 
      Using non-dimensional time and parameters, linearized equation (1) takes the form of Hill’s
equation with damping

, .     (2)0)]([ 2

The coefficients of this equation explicitly depend on the 2 - periodic function ( ) and three non-
dimensional parameters ,, . The amplitude and damping parameters and are assumed to be 
small with respect to 1.
      At 0 , 0 the upper vertical position of the pendulum 0 is unstable. Let us study
possibility of stabilization of this position by high-frequency excitation of the suspension point. In this
case we are close to the point 0, 0, 0. To find the stability region we use the method based 
on calculation of derivatives of the monodromy matrix and analysis of Floquet multipliers. We show that 
the stability region for an arbitrary periodic function ( ) in the vicinity of the point  in 
the first approximation is given by the inequality

)0,0,0(0p
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It can be shown that for most of the periodic functions the constant 0F . In the formula for stabilization 
region the terms of higher order have the form of rather complicated multiple integrals. Using these
relations we derive formulas for the stabilization frequency of the pendulum.
        With introduction of the damping coefficient as 0 /( )c I 0 for the function ( ) cos  we 

obtain a formula for the stabilization frequency in the form

18432
2389

432
712

32
0

0

 . (4)

Thus, at rather high excitation frequency the upper vertical position of the pendulum becomes stable, and
small damping increases the critical stabilization frequency. The first term in the right hand side of (4) 
agrees with that of known in the literature, see e.g. [1-3].
2. The Chelomei problem. Let us consider a straight elastic rod of constant cross section, loaded by a
periodic axial force 0( ) ( )tP t P P t applied at its end. The equation of transverse oscillations of
the rod is

4 2 2

4 2 22u u u uEJ P t m m
x x t t

0,       (5)

where x is the coordinate along the rod axis; t  is the time; is the rod deflection function; m  is 
the mass per unit length; EJ is the flexural rigidity; 

( , )u x t
is the damping coefficient; tP and  are the

excitation amplitude and frequency of the longitudinal vibration, respectively. We consider the case in 
which both ends of the rod are simply supported. Then the solution can be found in the form of a series in 
eigenfunctions ( , ) (j ) sin( / )u x t t j x l . Substituting this series into Eq. (5), multiplying by

sin( / )k x l , and integrating the result over the interval [0, l], we arrive at an equation with respect to the

functions tk . With notation kk /  and new time variable t  this equation takes the form
22

0
2 2 1 0, 1,2,...,tk k k k

k k
k k

Pd d P k
d d P P

     (6) 

where 222 // lmEJkk  is the -th eigenfrequency of transverse free oscillations of the unloaded

rod, and is the k -th critical Euler’s force. The trivial equilibrium of the rod 
is asymptotically stable if the functions asymptotically vanish

k
222 / lEJkPk

0),( txu 0)(tk  as t ,
., and it is unstable if at least one of the functions ,...2,1k ( )k t exhibits unlimited growth as t .

        In his famous paper [4], Chelomei stated the problem of stabilization of an elastic rod loaded by a 
periodic longitudinal force exceeding in average the Euler's critical value , i.e., of a statically
unstable rod, by means of longitudinal vibration bringing it to the straight position. Chelomei’s results [4]
were included with slight correction into the well-known monograph by Bogolyubov and Mitropol'skii
[3]. In the present paper an obvious discrepancy in [4,5] is recognized concerning high-frequency
stabilization formula: in derivations it was assumed that 

10 PP

1/ 1 , while the critical stabilization
frequency turns out to be of the order of the natural frequency. Besides, Chelomei [4] did not find a
limitation on the stabilization frequency from below. The absence of this lower boundary leads to the 
paradoxical conclusion that the rod can be stabilized by applying an arbitrarily slow longitudinal
vibration!
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 Fig. 1. Stabilization region.
For analysis of the rod stabilization, we use the results of investigation of the stability regions for the Hill 
equation with damping. Applying these results to Eq. (6) with 1k , assuming 11/0 10 PP
and small excitation amplitude 1/ 1PPt  with ( ) cos , we arrive at the two-sided inequality
determining the stabilization frequency:

22 2
2 2

1
1

72 2
2 2 8

4 .        (7) 

Here the term is proportional to 2
1 . Thus, the stabilization region boundaries depend on three small 

parameters, namely, ,  and 1 . Fig. 1 shows the dependence of the lower and upper boundaries of 
the stabilization frequency on the parameters , calculated according to Eq. (7) at the damping
coefficient 05.01 . Stabilization region found analytically in (7) agrees with the numerical results. 
Conclusion. We considered two mechanical problems on stabilization of statically unstable systems by 
vibration. The difference between these problems is that, at small excitation amplitude, the pendulum in
the upper vertical position is stabilized by an excitation  frequency greater than the critical value and high
as compared with the natural frequency of the pendulum, whereas the elastic rod is stabilized by
excitation frequencies of the order of the natural frequency of transverse oscillations of the free rod 
belonging to a certain interval. 
Acknowledgment. The author thanks Andrei A. Seyranian for his valuable assistance. This work was
supported by INTAS, grant no. 06-1000013-9019.
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Introduction.  Iijima [1] reported a new type of finite carbon structure composed of needle-like
tubes which were produced in the soot by an arc-discharge evaporation technique and possessed
amazing physical properties.  Several synthetic methods were developed afterwards for preparing
carbon nanotubes in the form of nanoscale whiskers that were seen to be light weight and stiff as
graphite along the graphene layers.  Because of this nanometric scale, such carbon fibers have a wide
range of application in strengthening the current and future composite materials [2, 3].  To design
with such materials, one requires a thorough understanding of the morphologies, length, thickness and
number of concentric shells.  Also desired is the clear understanding of the stiffness, strength,
toughness, vibrational characteristics, etc.

Li and Chou [4,5] provided a concise review of the recent advances in carbon nanotubes and
their  composites  along  with  the  structural  mechanics  approach  for  the  analysis.   Harris  [6,7]  also
reviewed the recent work on carbon nanotube composites and assessed successes in exploiting the full
potential of the enhanced mechanical and electronic properties.  Nanotubes are modeled as fullerenes
(space frame like structures) of which the surfaces are essentially arrangements of hexagons around
the circumference [8].  The arrangement pattern is chiral in which hexagons are arranged helically
around the circumference.  The chiral angles of 0 and 30  represent the two special cases known as
“zigzag” and “armchair” respectively. The tubes are noted to be either as single-walled carbon
nanotube (SWNT) or multi-walled carbon nanotube (MWNT) and generally are less perfect than their
idealized versions.  Within the last ten years, the buckling and vibrations of nanotubes, both single-
walled and multi-walled, using conventional beam and shell theories were studied by some
researchers [9-12].

This study aims at the understanding of the vibrational characteristics of the carbon nanotubes
using the mechanical and material properties available in the literature.  This will be achieved through
thorough analysis of the free and transient vibration analyses.  In addition, the performance of the
numerical methods for the analyses of free and forced linear vibrations of single- and multi-walled
nanotubes is being examined in detail.  In the free vibration case, the natural frequencies and
associated mode shapes are calculated and discussed briefly for the singled-walled nanotubes
(SWNTs) with clamped-free and clamped-clamped conditions at the two ends.  In the forced vibration
analysis, Newmark’s direct integration method is being used to obtain the transient response under
different loading conditions.  Subsequently the fast Fourier transform (fft) is performed on the
transient response data to examine the contributions of individual natural modes to the overall
response.  This exercise produces the peaks at the dominant natural frequencies which are
successfully compared with the same from the eigen-value/eigen-vector analysis of the model.

Modeling Procedure, Results and Discussions.  Researchers have described a single-walled
carbon nanotube (SWNT) as graphene sheet rolled into a tube with hexagonal cells around the
circumference.  In the case of graphene sheet, the carbon atoms are arranged in a hexagonal 2D array
wherein each atom is shared by three hexagons. The atoms have covalent bonds between each other
to keep them connected.  These covalent bonds are considered as the connecting elements between
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the carbon atoms; are characterized by their lengths and angles in a three dimensional space; and form
hexagons on the wall of the tube [4]. Therefore, it is seen to be appropriate that a nanotube be
simulated by a fullerene of carbon atoms, which act as joints of the connecting space frame elements
with extensional, bending and torsional stiffness properties. Connecting frame elements are assumed
to be circular in cross section and identical.  Owing to the fact that the electrons of carbon atoms are
of negligible mass as compared to the mass of the nuclei and that the radius of the nuclei (2.75×10-5

Å) is  small  as  well,  it  is  assumed that  mass is  concentrated at  the joints  with the atom. Though the
present study is in its very early stage, a number of different types of single-walled carbon nanotubes
have been modeled.  Special programming is needed to define the nodal points, i.e. the locations of
the carbon atoms, and then the orientations of space frame members representing sides of the
hexagons are calculated one by one.  Finally, the matrix equation of motion is obtained after
assembling the stiffness and mass matrices which are calculated using the geometric and material
properties as presented in the following table.

Table.  Properties of the space frame elements

Cross sectional area, A 1.68794 Å2

Length of bond, L 1.42 Å
Polar moment of inertia, J 0.45346 Å4

Moment of inertia, I 0.22682 Å4

Young's modulus of elasticity, E 5.488×10-8 N/ Å2

Shear modulus of rigidity, G 8.711×10-9 N/ Å2

Mass of each carbon atom, cm 1.9943×10-26 Kg

Frequencies and the natural mode shapes of a clamped-free zig-zag nanotube are calculated
and presented in this paper.  The first eight values of the non-dimensional natural frequency
parameter )/( EImc are found to be: 648.15, 3157.02, 3610.58, 5960.00, 8287.80, 8874.57,

11549.37 and  14473.04, all multiplied by 0610 and their mode shapes are shown in the following
figure.  There are seven bending modes denoted by (B) in this group and one extensional mode which
is the fourth denoted by (E).  The deformed shapes are plotted in full lines on top of the undeformed
geometry, shown by dotted lines.  Subsequently, the tube is subjected to two impulsive loads one at a
time in the horizontal and vertical directions respectively at the free end and transient responses are
obtained by the Newmark’s direct integration method.  The fft of the horizontal transient response of
a point shows as expected peaks at frequencies associated with the bending modes only and there is
no peak for the fourth mode which is the extensional in this response’s frequency spectrum.  On the
contrary the fft of the response due to the vertical load reveals peaks at the fourth modes and others
way out of the range of the first eight modes.  To check this, eigen analysis is carried out again for
many modes and modes 11 and 31, also shown in the figure, are the second and third extensional
ones.  Frequency  of modes 11 and 31 are 061041.17802  and 061060.41704 respectively.  In
this particular case, the circumferential modes don’t seem to be noticeable to a significant extent.  In
the case of the clamped-clamped armchair nanotube, the effects of the circumferential modes are
found to be considerably significant, as the longitudinal modes are constrained.  Again, the results
and observations presented in this paper are quite preliminary and more elaborate results are expected
to be presented at the conference.  Research work will be extended further to accommodate the
vibration analyses of multi-walled nanotunbes (MWNTs).
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Figure.  Bending and axial modes of a cantilevered nanotube.
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Simulation of Pyroshocks 
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1. Introduction 
Pyroshocks are transient motions of structural elements due to explosive loading induced by the 

detonation of ordnance devices incorporated into or attached to the structure. In space programs the 
simulation of pyroshocks is a fixed part of the test requirement for instruments and equipment of space 
vehicles. Therefore, by the use of various test devices such as hammer pendulums, the excitation of a 
pyroshock has to be reproduced which, so far, has led to rather empirical knowledge. In the current work, a 
test set up containing a hammer pendulum and a rod or a plate is modeled in order to get a better 
predictability of pyroshock simulations. Numerical and analytical calculations are used for the simulation of 
in-plane wave propagation due to impact loading. Furthermore, the results obtained are compared with data 
received from conducted experiments. 

2. The Shock Response Spectrum (SRS) 
The properties of a pyroshock are usually given by the customer (using e.g. NASA standards) 

defining a frequency spectrum of the acceleration signal by the Shock Response Spectrum (SRS), the 
maximum acceleration and the duration of the shock signal. For calculating the SRS, an acceleration time 
signal is imagined to excite a damped one mass oscillator with a certain eigenfrequency. The resulting 
maximum acceleration amplitude in combination with the corresponding eigenfrequency leads to one point in 
the SRS diagram. The aim is to produce pyroshocks that show an SRS within a tolerance prescribed by the 
customer (Fig. 1).   

Fig. 1 Example of an SRS with tolerance lines  Fig. 2 Test Setup (aluminum plate with  
pendulum hammer) 

3. Test Setup 
Figure 2 shows a standard pyroshock test set up. An aluminum plate (1m x 1m x 3cm ) is supported 

on soft pads in order to allow the free boundaries at the edges. The plate is excited by a pendulum hammer 
including a load cell. Velocity and acceleration data due to the impact are measured at the edges by using a 
laser-vibrometer or at arbitrary points of the plate by accelerometers using special fixing devices.  

4. 1-D modeling and experimental results 

Fig. 3 One dimensional mechanical model 
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A one dimensional model of in-plane wave propagation excited from a hit of a sphere has been examined 
first (Fig. 3). The force due to the impact is calculated with the help of Hertzian contact theory while the 
resulting wave propagation can be described according to d’Alembert as described in [1].  

Fig. 4 Comparison of acceleration time signals (left) and SRS obtained (right) at x L

Experiments conducted have been compared with both numerical, i.e. finite element, as well as the 
analytical results. Fig. 4 shows a very good agreement between measured and calculated accelerations at 
the end of the bar, while the SRS of all signals also coincide see Fig. 4. 

5. 2-D modeling and experimental results
A more difficult task is to compute the in-plane acceleration of a certain point in a free rectangular 

disk due to impact loading. Therefore, an initial boundary value problem can be formulated in the x-y-plane 
of the disk with the coupled linear field equations 

        (1) 

where , ,u x y t  and , ,v x y t  are the displacement fields in x  and y  directions and , ,E  describe 
Poisson’s ratio, Young’s modulus and the mass density respectively. F  denotes the impact force measured 
(Fig. 5). The boundary conditions are given by 

 (2) 

where , ,a b h  are half of the length and width of the disk as well as its thickness respectively. The 
eigenmodes of the disk are calculated analytically according to [2]. Using these as shape functions in a 
Galerkin procedure for calculating the excited vibrations leads to a simple decoupled system of time 
dependent differential equations based on (1) and (2) which can be solved by applying the initial conditions. 
The acceleration signal obtained at any arbitrary point of the disk can then be used to compute the 
corresponding SRS.  

For comparison, again a FE model was prepared using shell elements. The use of the measured 
force data (Fig. 5) as excitation leads to the desired time signal (see Fig. 6) within a reasonable amount of 
time. Due to the high wave speed and the large dimensions of the system ( 0.5a b m ) a high performance 
is needed. In Figures 6 and 7 a comparison of the results obtained from measurements, FEM and analytical 
solution is shown. Further experiments with different impact velocities of the hammer pendulum have been 
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conducted. Additionally, the accelerations at several different points on the edge of the disk were measured. 
The results of those experiments have shown comparable coincidences to the results in this paper. 

Fig. 5 Impact force measured

       Fig. 6 Comparison of velocities at ,  0x a y obtained  Fig. 7 Comparison SRS at ,  0x a y  obtained 
               experimentally, by FEM and analytically         experimentally, by FEM and analytically 

6. Conclusions
A 1-D and a 2-D model for the simulation of pyroshocks are investigated respectively in order to 

obtain Shock Response Spectra. The in-plane wave propagation due to the impact between a rigid body and 
an unsupported beam or disk respectively can be described with the help of the Galerkin procedure as well 
as using the FEM. In both cases, all approaches show very good coincidence with respect to experimental 
results. In future, alternative excitation methods such as piezo actuators or electrodynamic shakers are to be 
investigated in order to achieve a better controllability and higher energy amount of the impact. 
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Dynamics of a 1-dimensional Wave Guide with Point-wise Defects

Jörg Wauer, Natalia Glushkova and Evgeny Glushkov
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Introduction

The first of the co-authors is very interested in the dynamics of circular ring structures with defects
because he expects locally concentrated resonance phenomena. Since the vibrations of such a ring
structure can be considered as waves propagating forward and backward and superposing to standing
waves, i.e., vibrations, he basically is very interested to study the dynamics of non-homogeneous 1-
dimensional wave guides and the appearing resonance effects, also known as trapped modes, wave
blocking, etc. The work of Glushkov and Glushkova (see [1] and the references listed there, for
instance) obviously provides a good basis to discuss the problem relying on a specific wave approach
in semi-analytical form. Since the ring is governed by coupled wave equations, it seems to be the way
to succeed is first to study the simplest preliminary problem, i.e., the dynamics of a straight infinite
string with point-wise defects at one, two or more locations.

Formulation

Consider a straight infinite string −∞ < x < ∞ lying on a spring foundation (Fig. 1). Dynamic
processes in the string are caused by a given incident force p(x, t). The load gives rise to the transverse

Figure 1: Layout of the 1-dimensional wave guide

string displacement w(x, t) that obeys the governing partial differential equation

ρAw,tt + cw − Sw,xx = p(x, t) (1)

with the homogeneous initial conditions w(x, 0) = w,t(x, 0) = 0. Here ρ is string density, A is its
cross-section area, c is the spring constant of the foundation, and S is axial pre-stress of the string,
assumed to be constant.

It is assumed that this waveguide structure may have a set of defects modeled by the point-wise
variation of the spring constant, c and/or the cross-section mass ρA:

c(x) = c0[1 +
N

j=1
εjδ(x− xj)], ρA(x) = ρ0A0[1 +

N

j=1
αjδ(x− xj)]. (2)

N is a number of defects, xj are points of defects’ location. εj and αj are dimensionless defects’
characteristics; formally they vary in the limits

−1 < εj , αj <∞;

with εj = 0 (or αj = 0) there is no any spring (or cross-section) defect at the point xj .
For simplicity, the incident force is assumed to be a point load applied at the origin:

p(x, t) = p0δ(x)f(t), (3)

f(t) is a time-shape function of the load. In the numerical examples below we will usually take it in
the form of n-cycle sine burst:

f(t) =


sinωct, 0 ≤ t ≤ nT,
0, t > nT

(4)
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where T = 2π/ωc is the sine period. With n = 1/2 this function describes also a half-period shock
pulse of duration T/2 = π/ωc. The frequency spectrum of this time-function is

F (ω) = − ωc
ω2 − ω2

c

(1− e2iωnT ). (5)

The Fourier transform

Ft[w(x, t)] ≡
 ∞

−∞
w(x, t)eiωtdt

Df
= w(x, ω) (6)

converts eq. (1) into the frequency domain equation

Sw,xx + (ω2ρA− c)w = −p0F (ω)δ(x) (7)

with respect to the frequency spectrum (or time-harmonic complex amplitude) w(x, ω) (it was assumed
w(x, t) ≡ 0 for t ≤ 0).

Using the inverse Fourier transform F−1
t the transient solution w(x, t) may be represented in terms

of its frequency spectrum w(x, ω):

w(x, t) = F−1
t [w(x, ω)] ≡ 1

2π

 ∞

−∞
w(x, ω)e−iωtdω ≡ 1

π
Re

 ∞

0

w(x, ω)e−iωtdω. (8)

In view of the general δ-function property

f(x)δ(x− a) = f(a)δ(x− a),

the δ-constituents in the equation coefficients induced by the defects (see (2)) may be replaced by the
terms wj(ω2ρ0A0αj − c0εj)δ(x − xj) with unknown constant factors wj = w(xj). After transferring
those terms into the right-hand side we arrive at the equation

Sw,xx + (ω2ρ0A0 − c0)w = −p0F (ω)δ(x) +
N

j=1
wj(c0εj − ω2ρ0A0αj)δ(x− xj) (9)

To reduce the number of input parameters it is worth carrying out further calculations in a di-
mensionless form. After some calculation, we obtain the dimensionless equation

w̄ + k2
0w̄ = −p̄δ(x̄) +

N

j=1
w̄j(c̄2εj − ω̄2αj)δ(x̄− x̄j) (10)

with

k2
0 = ω̄2 − c̄2 =

h2ρ0A0

S
ω2 − h2

S
c0, p̄ =

p0F (ω)h
St0

, w̄j =
wj
ht0

where h is a reference length and t0 = h


ρ0A0/S a unit of time.
In fact, w̄(x̄, ω̄) is proportional to p̄, which enters into the right-hand side of the initial equation as

a constant factor. Thus, the load independent dynamic response of a string with defects (frequency-
response characteristic) is the solution of equation

w̄ + k2
0w̄ = δ(x̄) +

N

j=1
w̄j(c̄2εj − ω̄2αj)δ(x̄− x̄j) (11)

which is a special case of (10) with p̄ ≡ 1.
In the following, the overline above the dimensionless quantities are generally omitted.

Solution

The function g within
g


+ k2

0g = δ(x) (12)

is a fundamental solution to eq. (11). From the variety of partial solutions to eq. (12) we conventionally
choose that satisfying zero and wave radiation conditions at infinity:

g(x) =
eik0|x|

2ik0
(13)
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where with real ω

k0 =




√
ω2 − c2, ω > c

i
√

c2 − ω2, |ω| ≤ c

−√ω2 − c2, ω < −c

. (14)

The first of these inequalities provides propagation of undamped harmonic waves ei(k0|x|−ωt) from the
source to infinity (Sommerfeld’s radiation condition), while the second one implies zero behaviour at
infinity (g → 0 as |x| → ∞, |ω| < c). The third condition for ω < −c follows from the general property
g(ω̃) = g∗(ω) where ω̃ = −ω1 + iω2 is the point symmetric to a point ω = ω1 + iω2 with respect to
the imaginary axis Reω = 0 of the complex ω-plane. Any harmonic solution (frequency spectrum)
w(ω)e−iωt must obey this property to assure the corresponding transient solution w(t) expressed in
terms of the inverse Fourier transform (8) to be a real function. More precisely, it assures identity
between the integrals in eq. (8).

To meet the condition (14), it is enough to fix the branches of square-root functions in k0 =√
ω − c

√
ω + c so that

√
1 = 1 and the cuts drawn in the complex ω-plane from the branch points ±c

to infinity beneath the integration contour Lω in the inverse Fourier transform F−1
t .

Then, a general solution to eq. (11) may be written in the form

w(x, ω) = g(x) +
N

j=1
wj(c2εj − ω2αj)g(x− xj). (15)

The generalized vector of unknown coefficients w = [w1, w2, ..., wN ]T are obtained from the linear
algebraic system

Aw = g (16)
which results from the substitution w of form (15) into the N conditions w(xj) = wj , j = 1, 2, ..., N .
The matrix and the right-hand side of this system are

A = 2ik0I −B, I is unitary matrix, B = [bij ]Ni,j=1, bij = djeij ,

dj = c2εj − ω2αj , eij = eik0|xi−xj |, g = [e1, e2, ..., eN ]T , ei = eik0|xi|.

Evaluation and Results

Essentially it is sufficient to discuss the dynamics in the frequency domain since all essential conclusions
regarding resonance effects, etc. can be drawn. In detail, all results obtained up to now will be
presented at the symposium. To give an idea, one result for the straight infinite string on elastic

Figure 2: Wave transmission through systems of 1, 2 and 5 defects.

foundation with defects at one, two or five locations is shown in Fig. 2 where the transmission
coefficient κ+ = |w(x+, ω)|2/|g(x+, ω)|2, ω > c for a specific defect situation is drawn. x+ > xN is
any point at the right-hand side of defects and this ratio shows how much the squared amplitude of
the string oscillation behind the defects becomes less than the oscillation of the defect-free string.

References
1. Glushkov, E., and Glushkova, N., Trapped Mode, Pass-band and Gap-band Effects in Elastic Wave

Guide Structures with Single and Multiple Obstacles, in: Proc. Int. Symp. on Vibrations of Continuous
Systems, July 2009, Zakopane, Poland.



75Seventh International Symposium on the Vibrations of Continuous Systems, July, 2009
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Abstract 
In this paper, the method of superposition is employed to obtain an accurate analytical solution for free flexural vibration 
of a cantilever piezoelectric plate carrying a rigid mass.         

1. Introduction 
A class of vibrational energy harvesting devices operating in the {3-1} mode consists of a laminated structure with two 
identical piezoelectric layers separated by a shim material (bimorph).  A large rigid mass is often attached to the free end 
of the piezoelectric structure to obtain a desired natural frequency for maximizing the electrical output for a base 
excitation frequency.   The rigid mass is usually made of heavy material such as tungsten.  The common shapes are 
block, L-shaped, U-shaped, etc. Figure shows a piezoelectric cantilever carrying a block rigid mass.  

 Many of the bimorph cantilever type energy 
harvesting devices are modeled as beams in the 
literature ([1]-[4]). This may be acceptable for 
certain piezoelectric cantilevers having large 
length to width ratios.  However, often the aspect 
ratios of practical piezoelectric cantilevers are in 
the vicinity of unity.  The assumption of 
cylindrical bending of such plate structures often 
over-predicts the natural frequency as the bending 
in the width direction is ignored. As a result, the 
theoretical predictions of the dynamic behaviors 
of the electro-mechanical system based on beam 
bending theories may not be accurate.      

In this paper, the equation of transverse bending 
vibration of the piezoelectric structure and 
boundary conditions are derived in accordance 
with the classical plate theory. Small amplitude vibrations are assumed for both the structure and the mass.  To obtain an 
analytical solution for free vibration of a piezoelectric plate subjected to the boundary and interface conditions, 
Gorman’s method of superposition [5] is employed. A superposition strategy is developed to handle the solid-rigid 
interface conditions. Numerical results show that the proposed method is convergent and accurate.     

2. Equations of Motion of the Piezoelectric Plate and the Rigid Mass    

According to duToit et al. [3], the equation of motion for the piezoelectric structure may be obtained from the following 
Hamilton’s principle 

0
2

1

t

t
nce dtWWUVT

(1) 

where T is the kinetic energy of the piezoelectric structure; V is the potential energy of the  piezoelectric structure 
associated with lateral bending; U is the Rayleigh dissipation function; We is the electric energy (considered as the 
resistance load to the mechanical system); and Wex is the work done by all external forces.  Implementation of the 
classical plate theory and the electrical potential field yields the following equation of transverse bending vibration and 
the electrical charge balance equations for the electromechanical system mounted on a vibrating base   
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Figure 1 Sketch and dimensioning of a bimorph piezoelectric structure 
and a rigid mass: (a) front view, (b) top view   
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 where w is plate lateral displacement; bw  is the lateral base motion; 2211 DDD ; 1112 / DD

6,2,1,,
12
1 3)2(33)1( jihchhcD sijsijij sp hhe )1(

31 ; phabc /330 ; ),( yxRab  is a unit step function defined in 

the rectangular region, yyax 0,0 ; q is the charge; v is the voltage across each piezoelectric layer; )1(
31e  is the 

electro-mechanical coupling coefficient; 33  is the Dielectric constant; hp is the thickness of each piezoelectric layer;  hs

is the thickness of the shim core.   

The rigid mass attached to the cantilever piezoelectric structure for harvesting ambient mechanical energy is significantly 
stiffer than the piezoelectric structure.  The mass itself can be regarded as a rigid body.  Because the in-plane rigidity of 
the piezoelectric structure is significantly higher than its flexural rigidity, only the lateral displacement along the zG–axis, 
the rotation about the yG–axis, and rotation about the xG–axis need to be considered.   The equations of (small amplitude) 
motion of the rigid mass subjected to the distributed lateral reaction and the distributed bending moment along the 
interface may be written as  

b

x

b

xay

b

xax

b

xGoab dyaVdyMIdybyVIdyVazwm
0

0
000

,)
2

(, (4) 

where m is the mass of the rigid mass; Ix and Iy are the mass moments of inertia of the rigid mass about the xG and yG
axes, respectively; G refers to the mass centre of the rigid mass; a0 is the axial coordinate of the mass centre of the rigid 
mass with respect to the interface; za is the lateral displacement of the rigid mass at the midpoint of the interface; a and 

a are the angles of rotations of the rigid mass about the xG and yG axes, respectively.  

Within the context of the classical plate theory, the interactions between the piezoelectric structure and the rigid mass 
along the interface are the distributed lateral force and the distributed bending moment. When deriving the equation of 
the motion for the piezoelectric structure, these forces may be considered as the external forces and be incorporated into 
the partial differential equation. However, such distributed lateral force and bending moment act on the boundary edge x
= a, they can also be handled as the boundary constraints to the piezoelectric structure. The latter approach is adopted in 
this paper.  Along the clamped edge (x = 0), the relative lateral displacement and the slope taken normal to the edge are 
zero.  Along the two free edges (y = 0, b), the bending moment and the lateral edge reaction are zero. Finally, there are 
two corner conditions at the extremities of the structure-mass interface, which need to be checked as the displacements at 
the two locations are not prescribed.  

The conditions across the structure-mass interface include the balance of forces and the continuity of displacements.  
Since the force and moment balance is already implemented into the equations of motion for the rigid mass, one only 
needs to ensure the following continuity of the lateral displacement and the slope taken normal to the interface 
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The boundary conditions for a piezoelectric plate are similar to those for a regular plate.  For a bimorph piezoelectric 
plate in the {3-1} mode, the bending moment and the lateral edge reaction are given below   
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3. Free Vibration of Cantilever Plate Carrying a Rigid Mass  
It is useful to study first the free vibration of an undamped piezoelectric structure without considering the 
electromechanical coupling. Dropping the terms associated with damping, electromechanical coupling and base motion, 
the governing equation for free vibration is reduced to  
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where  = x /a,  = y/b,  = b/a, and Dabn /2 .

In the case of free vibration, the three governing equations for the rigid mass are 
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The cantilever piezoelectric structure carrying a proof mass has three ordinary edges (one clamped and two free) and one 
interface edge.  Boundary conditions for the ordinary edges are well-defined.   For the interface edge, it is assumed that 
the proof mass width is equal or greater than the plate width. This covers all piezoelectric designs available in the 
literature. Otherwise, one needs to deal with partial boundary conditions.  Along the interface, we assume that the 
bonding (welding) is strong enough to withstand the force and moments transferred from the plate to the mass.  As a 
result, continuity in the displacement and slopes across the structure-mass is satisfied.  The following interface 
conditions are everywhere satisfied 

To obtain an analytical solution for free lateral vibration of a cantilever plate carrying a rigid mass, four building blocks 
shown in Figure 2 are employed.  The first three building blocks are designed to handle the clamped and free edges in 
the cantilever plate.  The fourth building block is designed to handle the interface conditions between the plate and mass.  
It is noted that, because of the continuous displacement requirement across the interface, the solution for the plate-mass 
structure does not reduce itself to that for the cantilever plate even if the mass of the rigid mass becomes zero.  However, 
the differences may be very small for certain modes, symmetric with respect to the plate major centerline because of the 
small straightening edge effect.     

Each of the four building blocks has a 
driving edge and three non-driving edges. 
For a non-driving edge, the boundary 
conditions are either simple support 
(represented by a dashed line beside an 
edge) or slip-shear (represented by a pair 
of small circles at the middle of an edge).  
For a driving edge corresponding to a free 
edge in the original cantilever plate, the 
conditions are zero lateral edge reaction 
and prescribed slope of plate taken normal 
to the edge.  For a driving edge 
corresponding to the clamped edge in the 
original cantilever plate, the boundary 
conditions are zero lateral displacement and prescribed bending moment.  For the interface edge in the original plate, the 
conditions are the prescribed slope for continuous slope requirement and prescribed lateral edge reaction for vertical 
force balance.  For each of the four building blocks employed, a Levy type solution can be obtained as there are two 
opposite edges with combinations of simply supported and slip-shear boundary conditions.  

4. Conclusions 
An analytical solution for free flexural vibration of a piezoelectric cantilever carrying a rigid mass is obtained using 
Gorman’s method of superposition.    Comparisons with the previously published results indicate that the procedure 
presented in this paper is accurate and convergent for free vibration. The procedure is also extended to deal with the 
mechanical and electrical responses of the piezoelectric system due to harmonic base motion. The simulation results are 
found to be in excellent agreement with the experimental data.         
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Eberhard W. Brommundt 
Professor Emeritus 

Institut für Dynamik und Schwingungen  
Technische Universität Braunschweig, Germany 

      After an apprenticeship as a mechanic with German Railways I got an education as a mech-
nical engineer at the Mannheim Polytechnic. Working in the group of strength and vibrations in the 
department of steam turbine design of Brown, Boveri & Cie, Mannheim, I realized insufficient 
knowledge of Mathematics and Mechanics. Thus, I studied these fields at Technical University 
Darmstadt and got a diploma in mathematics. 

As research assistant at the Institute of Mechanics and Vibrations of TU Darmstadt I worked 
mainly on linear and nonlinear vibrations, got my PhD and Habilitation in these fields. I became a 
docent of mechanics, and spent one year as Visiting Assistant Professor at the Department of Aero-
space Engineering and Mechanics, University of Minneapolis, Minnesota. 

From 1970 till 2000 I worked as professor of mechanics of the Institute of Technical Me-
chanics  in the Department of Mechanical Engineering of Technical University Braunschweig. Re-
search topics: Basic and applied problems from dynamics, linear and nonlinear oscillations, stability 
of motion, mechanisms of self-excitation. The areas of application comprise, e.g., rotor dynamics, 
rail-wheel dynamics, stability of fluid centrifugals, drill-string dynamics. 

As Professor Emeritus I still like to ponder about intricate technical problems, although the 
rate of efficiency is low, and detecting the own flaws and errors is rather tedious, gardening does 
not really help, cycling a bit more.              
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Biosketch of Erasmo Carrera

After earning two degrees (Aeronautics, 1986 and Aerospace Engineering, 1988) in the

Politecnico di Torino, Carrera received his PhD in Aerospace Engineering in 1991, at the

Politecnico di Milano – Politecnico di Torino – Universit di Pisa. He began working as

a Researcher at the Dep of Aerospace of Politecnico di Torino in 1992 holding courses

on Missiles and Aerospace Struc Design, Plates and Shells, FEM and since 2000 is asso-

ciate Prof of Aerospace Structures and Aeroelasticity. He visited twice the Institute fuer

Statik und Dynamik, Universitaet Stuttgart, the first time as a PhD student (6 months

in 1991) and then as visiting Scientist under GKKS Grant (18 months in 1995-96). In the

Summer of ’96 he was Visiting Prof at ESM Dept of Virginia Tech. In the 2004 he has

also been visiting prof for two mounths at SUPMECA, Paris. His main research topics

are: composite materials, FEM, plates and shells, postbuckling and stability, smart struc-

tures, thermal stress, aeroelasticity, multibody dynamics, non classical lifting systems and

Multifield Problems. On these topics dr Carrera has bring significant contributions. In

particular he has proposed the Carrera Unified Formulations to developed hierarchical

plate/shell theories and Finite Elements for multilayered structures analysis as well as

the generalization of classical and advanced variational methods for multifield problems.

Carrera has been responsible of various research contracts with EU and national and

international agencies/industries. He has been appointed for various Academic responsi-

bility. Presently Carrera is deputy director of his Dep. He his an author of more than one

hundred articles, many of which have been published in international journals. He serves

as a referee for many journals such as J of Appl Mech, AIAA J, J Sound Vibr, Int J Sol

and Str, Int J Num Meth Eng, and as contributing editor for Mech of Adv Mat and Str.

He has served the Ed. Board of many int. conferences.
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Li-Qun Chen 

Graduating with the B. Sc. degree in Mechanical Engineering from Anshan University of Science 
and Technology (Anshan, Liaoning, China) in 1984. I worked there as a teaching assistant until 
1986. I taught mechanics for students majoring in engineering and did some researcher on 
analytical dynamics. From 1986 to 1989, I was a graduate student in Northeastern University 
(Shangyang, Liaonin, China). My thesis is on chaotic behaviors of a few typical nonlinear 
oscillators. After receiving the M. Sc. Degree, I returned AUST where I was promoted to Instructor 
in 1990 and Associate Professor in 1992.    

Leaving AUST in 1995, I investigated controlling chaos in Shanghai Jiao Tong University until I 
was awarded the Ph. D. degree in Mechanics in 1997.  

From 1997 to 1999, I was a postdoctoral fellow in Shanghai Institute of Applied Mathematics and 
Mechanics, working on chaotic vibration of viscoelastic structures and its control.  

I joined Department of Mechanics, Shanghai University as Professor in 1999 and hold the position 
until now. My main research interests are control and synchronization of chaos, dynamics and 
control of spacecraft, and vibration of continuous systems especially transverse vibration of axially 
moving materials and vibration of continua under nonlinear boundary conditions.  

On leave of Shanghai University, I once served as Research Associate, Visiting Scholar, Research 
Fellow or Visiting Professor in University of Toronto (2 times), University of California at San 
Diego, and City University of Hong Kong (3 times). 

I am married to Qi Hong, have a daughter who is a university student now. My personal hobbies 
include reading, traveling, badminton, and cooking.  
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Piotr Cupia

I graduated in 1987 in the field of applied and computational mechanics. Still as a 
student I began work at the Institute of Physics of the Cracow University of Technology. After 
three years I moved to the Institute of Mechanics and Machine Design (now the Institute of 
Applied Mechanics). In 1997 I obtained my PhD from the Cracow University of Technology in 
the field of the application of damping polymers in the vibration suppression of composite 
structures.

Recently, my main research activities have concentrated on the vibration analysis and 
control of electromechanical systems, particularly of piezoelectric- and smart structures. In 
2008 I published a monograph “Coupled electromechanical problems for piezoelectric 
distributed-parameter systems”. This research should allow me to obtain soon the title of 
“habilitated doctor” (similar to the DSc degree) (the habilitation colloquium is scheduled to 
take place in June).

In 1991 I spent three months at Universite de Technologie de Compiegne (France), 
within the European Union program TEMPUS, working on experimental modal analysis of 
large structures. During the years 1998-2001 I spent three years at the European 
Organization for Nuclear Research (CERN) in Geneva. For one year, starting in October 
2000, I was awarded an appointment as scientific associate at CERN, a position granted to 
“researchers with established position in their field”. At CERN I worked on the finite element 
analysis and dynamic measurements in connection with the Large Hadron Collider (LHC) 
and the four particle physics experiments to start there soon.

In 1990 I was secretary of the IX International Conference on Non-Linear Oscillations 
(ICNO’90) held in Cracow. Since 2007 I have been acting on the editorial board of Journal of 
Sound and Vibration. I am glad that the 7th International Symposium on Vibrations of 
Continuous Systems takes place in Zakopane, and that I can act as local arrangements 
chairman.

In my free time I enjoy listening to various kinds of music and reading history books. 
I have always liked the mountains a lot, hiking in the summer and skiing in winter. I am 
married to Gabriela and have one son who is four and a half years old.
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Stuart M. Dickinson

Professor Emeritus
The University of Western Ontario

London, Ontario, Canada

The above served an engineering apprenticeship with Ford Motor Company, Dagenham, UK, before
attending the University of Nottingham, where he obtained both his B.Sc. and Ph.D. in Mechanical
Engineering. After spending three years as a lecturer at the University of Liverpool, he immigrated to
Canada in 1969 to take up a faculty position at The University of Western Ontario, becoming Professor
Emeritus upon his early retirement in 1997. Whilst at Western, he had the opportunity of spending
sabbatical leaves at the Institute of Sound and Vibration Research, Southampton, UK, the University of
Canterbury, Christchurch, New Zealand, and Monash University, Melbourne, Australia.

His research interests have mainly been in the vibration of beams, plates and shells, with brief
excursions into acoustics. He enjoyed working with one or two graduate students at a time and found
their contributions to his research invaluable. Most of the research was of a theoretical or numerical
nature, primarily employing “classical” approaches, although some experimental work was conducted
and, in the early years, some work was done on the development of finite element methods.

His recreational interests, shared with his wife Rosemary, include curling, badminton and dinghy sailing.
He also plays the euphonium, though not very well, and participates in a concert band program run at
the university.
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Stanley B. Dong
University of California at Los Angeles

My entire college education occurred at the University of California at Berkeley, where
I began in 1953 and completed in 1962 in the Department of Civil Engineering. I was
quite fortunate to have Karl Pister as my advisor upon entering in my freshmen year.
He remained my advisor throughout and was my doctoral dissertation supervisor, which
dealt with various aspects of anisotropic mechanics with a primary emphasis on laminated
anisotropic shells and plates.

After receiving my degree in 1962, I worked at Aerojet-General Corporation in Sacra-
mento, California, with primary duties concerned with the analysis of filament-wound
pressure vessels to be used as rocket motor cases in Polaris/Poseidon missiles. I was ex-
tremely fortunate to have some very distinguished co-workers, Leonard Herrmann and
Edward Wilson. Our interactions (or more accurately, their tutelage) enabled me to learn
to code in FORTRAN, and it was at Aerojet-General that I was able to develop my first
finite element code for the analysis of laminated composite shells of revolution under ax-
isymmetric loading. To mention that we worked on an IBM 7094 with 32K memory is a
stark reminder of the digital Neanderthal period.

In 1965, I joined the faculty at UCLA in the then Engineering College, where I have
since remained. This College (with only one department) was a brainchild of our late
founding Dean L.M.K. Boelter, who was known for the unified curriculum. In 1970, the En-
gineering College was re-organized as the School of Engineering and Applied Science with
seven departments based on technical disciplines rather than the conventional monikers
of civil, mechanical, electrical, etc. In 1982, because of the confusion between these dis-
cipline names with the conventional departmental names, the School of Engineering and
Applied Science regrouped itself into conventional departments. I was first affiliated with
the Mechanics and Structures Dept., where I served as its Chair from 1973-76, and then
with Civil and Environmental Engineering Dept., where I served another stretch as Chair
from 1989-92. In 1994, the UC System offered an unusual and lucrative early retirement
plan, which I (and about 10% of the entire UC faculty) opted for, and thus earning my
present title as Professor Emeritus. My days in retirement have enabled me to pursue
various topics at leisure.
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Moshe Eisenberger 

Faculty of Civil and Environmental Engineering 

Technion – Israel Institute of Technology 

Technion City, 32000, Israel 

e-mail: cvrmosh@technion.ac.il 

 

I got my B.Sc. at the Technion, Haifa, Israel (1977), and Stanford, California, USA (M.Sc., 1978, 
and Ph.D., 1980), all in Civil Engineering. Following the completion of my studies I received a 
tenure track appointment at the Technion. Since then I am at the same department with 
sabbatical leaves in Carnegie Mellon, USA, (1987-9, 1993-4) and City University of Hong Kong 
(2006). 

My professional interests have shifted within the broad discipline of computational mechanics: 
in the early 80’s, at the beginning of the PC era I was mostly involved in structural analysis and 
computer methods for frames and finite elements calculations. Then I became more interested 
in stability and vibration analysis of continuous systems, starting with rods and beams with 
variable cross section, and moving to plates and shells with variable thickness, made of 
isotropic, composite, and functionally graded materials. All the analyses were made using the 
dynamic stiffness method and thus produced exact results, which have since served as 
benchmark values for comparison by other researches that developed various computational 
methods. 

I am married to Dorit and have two children, Gilad and Yarden, and all have been with me in 
some of the previous ISVCS meetings. For many years I have been biking (mostly road), and 
hiking and climbing mountains. Two years ago I had a biking accident, my own mistake, and 
broke my collar bone into 4 pieces. A relatively large titanium fixing repaired it completely – 
and very shortly after the surgery I was back on my bikes. The human body design – relatively 
weak collar bone that will protect the shoulder from damage in case of injury, worked perfectly 
in my case! 
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Mark S. Ewing 
University of Kansas 

 I grew up interested in science and mathematics, largely due to my fascination 
with the spacecraft I used to watch as they were launched from nearby Cape 
Canaveral.  I was “energized” for science when I attended a National Science 
Foundation summer school at Rollins College in the summer of 1966.  The next year, 
I was energized for engineering when I attended the JETS summer program at the 
University of Illinois.  In 1972, I received my BS in Engineering Mechanics from the 
U.S. Air Force Academy, then began a 20-year career in the Air Force.  I served for 
four years in turbine engine stress and durability analysis where I was an “early” 
user of finite element analysis for hot, rotating turbomachinery.  I then served a two-
year assignment in turbine engine maintenance and support, which was less 
technical, but eye-opening.  During these early years—and in my spare time—I 
earned an MS in Mechanical Engineering from Ohio State University.    

With an MS in hand, I returned to the Air Force Academy to serve on the 
faculty as an Assistant Professor.  After two years, I returned to Ohio State to 
complete a PhD.  As a student of Art Leissa’s, I focused on the combined bending, 
torsion and axial vibrations of beams, thereby establishing my interest in the 
vibrations of continuous systems.

After returning to and teaching at the Air Force Academy for six years, I was 
assigned to the Air Force Flight Dynamics Lab, where I worked on two interesting 
projects.  The first was the development of a structural design algorithm capable of, 
among other things, “maximizing” the separation of two natural frequencies in a 
built-up structure.  The utility of this endeavor was to allow the design of aircraft 
wings for which the bending and torsional natural frequencies are sufficiently 
separated (in frequency) to avoid flutter.  The other interesting project was the 
analysis of the effect of convected aerodynamic loads on a missile.

I am now on the Aerospace Engineering faculty at the University of Kansas.  
My current research interests are in structural dynamics and structural acoustics, 
the latter of which is a topic of increasing interest to aircraft manufacturers.   In 
recent years, I have focused on the ability to analyze, design and measure structural 
damping for built-up fuselage structures.  All of the test articles I’ve used to validate 
my work through experimentation are simple structural elements, namely beams and 
plates.

I have a great love of the outdoors, and of the mountains in particular.  When 
Art Leissa asked me to help organize the first International Symposium on Vibrations 
of Continuous Systems, and he toId me he wanted to meet in the mountains, I was 
really excited.   I look forward to attending the Symposium this year after missing the 
last three. 
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Evgeny Glushkov 
Institute for Mathematics, Mechanics and Informatics

Kuban State University, Krasnodar, Russia 

After the graduation from the Mechanics and Mathematics Department of the Rostov State 
University (RSU) in 1975, I continued my research in the Wave Processes group of the Institute 
for Mechanics and Applied Mathematics, RSU, having defended my Kand. Sc. (PhD) thesis in 
1978. At that time the group dealt mostly with the problems coming from geophysics and vibro-
seismic prospecting. In 1982 I was suggested to relocate 300 km south for establishing and 
leading similar wave dynamics group at the Kuban State University, Krasnodar. Hence, we 
(together with Dr. Sc. Natalia Glushkova, with whom we have been working jointly as a family 
team) are disciples of the so-called South-Russian school of mechanics and applied mathematics. 
In accordance with its spirit we have been elaborating computer models basing on a thorough 
preliminary analytical study that involves such tools as integral transforms, complex variables, 
asymptotic analysis, residual technique, etc.  

In the 1980s we were focused on the development of analytically-based methods for the dynamic 
contact problem solution and Green's matrix calculation in the cases of elastic multilayered, 
functionally-gradient and arbitrarily anisotropic media; on the calculation of wave energy fluxes 
emitted by harmonic sources into elastic structures; on obtaining the orders and eigenforms of 
3D stress singularities at the top of polyhedral corners, wedge-shaped cracks and contact areas. 
Those results have been summarised in the second, Dr. Sc. (Habilitate) dissertation defended in 
the Leningrad State University in 1988.

In spite of the financial collapse of 1990s, we managed to keep researching owing to the 
development of international cooperation. Since that time we have established close links with 
our colleagues in Europe and the USA, took part in international projects and won research and 
visiting grants. Among them, we have appreciably benefited from the collaboration with the 
colleagues from Chalmers University of Technology, Sweden (NDE modelling), 
Forschungzentrum Karlsruhe, Germany (3D stress singularity), Kaiserslautern and Karlsruhe 
Universities (piezo-electrically based devises and smart structures),  and others.  

In general, our interests touch upon the development and computer implementation of 
mathematical models for dynamic systems and structures, as well as in search for new nice 
effects and phenomena. We also like very much when our numerical results coincide with 
experimental measurements and, even more, when they explain the latter. 

Currently we deal with smart structures and damaged composite materials (anisotropic 
laminates), with the diffraction problems relating to NDE and SHM, with cylindrical laminate 
borehole waveguides in porous-elastic stratum, with resonance trapped-mode, gap-band and 
pass-band effects. 

Along with research I like history and historical literature. Since Natalia and I have met during a 
mountain hike over Caucasus, we like hiking with rucksacks and tent. Every year we try to spend 
several summer weeks in hiking or in the wild tent camp still existing on the Black Sea beach not 
far from our city. While travelling I enjoy photographing and have already collected a bulk of 
pictures, when Natalia is keen on collecting mushrooms, berries and medicinal herbs. 
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Peter Hagedorn
Technische Universität Darmstadt 

I received most of my education in Sao Paulo, Brazil, where I obtained a degree in 
mechanical engineering and later a doctor's degree (in 1966) at the Escola Politecnica 
da Universidade de Sao Paulo. Later I did my 'Habilitation' (similar to a D.Sc. degree) 
at Karlsruhe in Germany. My main professional interests are vibrations and stability 
of discrete and continuous systems (such as beams, plates and cables), and vibration 
control. While my early work was more analytical (e.g. the converse of the Lagrange-
Dirichlet theorem, differential games, etc.), during the last 30 years I have worked 
more and more also with problems related to industrial applications, including 
experimental work, the emphasis however usually being on producing practical 
mathematical models.  

Recently I have been working with piezoelectric ultrasonic travelling wave motors, 
wind excited vibrations of overhead transmission lines (including cfd calculations), 
and with the dynamics and active noise control in disk brakes. I am the author of 
several books on linear and nonlinear vibrations as well as a three volume German 
textbook on elementary statics, strength of materials and dynamics. I have also 
organized several workshops dealing with the question of how we should teach 
engineering mechanics to our students today.  

I have been a visiting professor and research fellow at Stanford, Berkeley, Paris, Irbid 
(Jordan), Rio de Janeiro and Christchurch (New Zealand). At the University of 
Canterbury at Christchurch, New Zealand, I also hold the position of an Adjunct 
Professor, and we usually spend about a month there every year (also seeing the 
family and enjoying the grandchildren). My personal hobbies are travelling, reading, 
photography and hiking (mainly day hikes).  
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Hartmut Hetzler

Institut für Technische Mechanik, Universität Karlsruhe (TH), Karlsruhe, Germany

Karlsruhe Institute of Technology

I was born on 11 January, 1977 in Heidelberg (Germany). After finishing high-school (Gym-

nasium) in 1996 and passing 10 months of compulsory military service, I studied mechanical

engineering from 10/1997 to 03/2003, focusing on applied mechanics and control. I received

my diploma (Dipl.-Ing.) in 03/2003.

From 03/2003 to 03/2008 I was research assistant at the Institute of Engineering Mechanics

with Professor Seemann. In January 2008 I received the doctor’s degree with my dissertation

on self-excited vibrations due to friction in systems of moving elastic bodies with application to

brake squeal (”Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel

des Bremsenquietschens”).

After a short period as post-doc, I got a so called ”shared KIT-Industry Fellowship”, which

means that I am holding a position that is co-financed by Robert Bosch GmbH and the KIT

(Karlsruhe Institute of Technolgy, i.e. the fusion of Karlsruhe University and the Research

Center Karlsruhe). Within this cooperation, I’m partially working at the Central Research of

Bosch as well as at the Institute of Engineering Mechanics. Furthermore, I’m supervising two

PhD-students, one at each place.

The working field of the group is ”Multibody Systems with Tribological Contacts”, where the

focus is set on modelling and simulation of multifield-problems arising from lubricated contacts

in multi-body environments.
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Daniel Hochlenert 

Dynamics and Vibrations Group, Technische Universität Darmstadt 

I was born on March 21st 1978 in Frankfurt am Main, Germany.  

In 1997 I finished high-school (Abitur) and did civilian service for 13 months. In October 1998 I 
started the studies of industrial engineering / mechanical engineering at Darmstadt University of 
Technology.

After finishing my preliminary diploma in 2001 I switched to the studies of applied mechanics 
with the main focus on dynamics. I continued my studies in the fall semester 2001 and the 
spring semester 2002 at the University of California at Berkeley. 

In Juli 2003 I started as a Ph.D. student at Darmstadt University of Technology in the group of 
Professor Hagedorn. In October 2006 I finished my dissertation with the title „Self-excited 
vibration in disk brakes: mathematical modeling and active suppression of disk brake squeal“. 

My hobbies are cycling (road and mountain bike), skat and cooking.  
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Chiung-Shiann Huang 
National Chiao Tung University 

Chiung-Shiann Huang’s current position is a Professor in the Department of 
Civil Engineering, National Chiao Tung University, Taiwan. He received his Ph. D in 
1991 at the Department of Engineering Mechanics at the Ohio State University. After 
that, he spent nine months as a postdoctoral research associate in the Department of 
Civil Engineering at the Ohio State University. The doctoral and postdoctoral research 
dealt with the use of singular corner stress functions to permit accurate solutions for 
free vibration frequencies of thin plates having sharp corners. 

In 1992, he went back Taiwan and joined the research staff at the National 
Center for Research on Earthquake Engineering (NCREE). In addition to continue his 
serious interests on computational mechanics, he began to study the system 
identification of structures from monitoring earthquake responses of structures and the 
responses from various tests in field, such as ambient vibration test and forced 
vibration test.  

After having stayed in NCREE for nine years, he joined the faculty of the Civil 
Engineering Department at National Chiao Tung University in 2000. His current main 
interests are vibrations of plates with stress singularities and system identification for 
structures using time series, neural network, and wavelet transform.  
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James R. Hutchinson

Jim was born in San Francisco Ca.  He graduated from Stanford University with a BS in Mechanical 
Engineering in 1954.  Upon graduation he went to work for Westinghouse’s Atomic Power Division 
in Pittsburgh Pa.  While working at Westinghouse he earned his masters in Mathematics in 1958.  
He then went to work for Lockheed Missiles and Space Division in Palo Alto Ca.  While working 
at Lockheed he went back to Stanford as a part time student, earning his Ph.D. in Engineering 
Mechanics in 1963.  He stayed on at Lockheed for another year before taking an academic position 
at the University of California, Davis.  He was at Davis until his retirement January 1 1993.

His interest in vibrations began while he was working at Lockheed.  His primary responsibility at 
Lockheed was in missile vibrations.  When he arrived at Davis he was asked to teach the graduate 
course in Mechanical Vibrations.  Many of his students were from Agricultural Engineering.  They 
were interested in shaking fruit and nuts from trees.  Of course, the solution methods were the 
same whether the vibrating body was a missile or a tree, and a number of cooperative projects took 
place on the study of tree vibrations.  His early interest in continuum vibration also had its roots in 
missile applications.

Jim loves to sing and was very active in the Davis Comic Opera Company that mainly produced 
the works of Gilbert and Sullivan. He is still singing with the University Chorus.  Last Spring he 
had the privilege of singing Brahms’ “Ein Deutsches Requiem” and this Spring Mendelssohn’s 
“Elijah”.  Jim is also a home-brewer and has dabbled in photography,  stained glass, auto mechanics,  
and lately web design.

He does volunteer work with Citizens Who Care (a local non-profit agency dedicated to helping the 
elderly), and is presently president of the board of directors of that organization He has become an 
avid golfer but still enjoys doing some research on topics of his own choosing.

Jim and his wife Pat moved into a retirement community last year.  Jim enjoys the lack of yard 
work and Pat enjoys not having to cook dinner.  So, it is working out great.
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Sinniah Ilanko 
The University of Waikato 

Te Whare Wananga o Waikato 

e-mail:   < Ilanko@Waikato.ac.nz> 
www URLs: < http://sci.waikato.ac.nz/staff/engg/ilanko>

<http://www.geocities.com/ilanko/vibration.htm >
  <http://www.geocities.com/ilanko/eng.html > 

Ilanko was born in the north of Sri Lanka (Jaffna) in1957, and according to the common 
Tamil practice, he does not have/use a family name. Ilanko is his given name and Sinniah 
is his late father’s given name. 

He graduated from the University of Manchester (U.K) with a BSc in civil engineering 
and also obtained an MSc from the same university under the supervision of Dr S.C. 
Tillman. His move to England at an early age was the result of his late brother 
Senthinathan’s foresight on the Sri Lankan political situation. After working as an 
assistant lecturer at the University of Peradeniya in Sri Lanka for about two years, he 
commenced doctoral studies at the University of Western Ontario under the supervision 
of Professor S.M. Dickinson. Soon after completing his PhD, he worked as a postdoctoral 
fellow at the UWO for about six months until he joined the University of Canterbury in 
1986. He continued his academic career at Canterbury for nearly 20 years, in various 
positions, as lecturer, senior lecturer and associate professor until he joined the University 
of Waikato in 2006. He has also served as the Head of Mechanical Engineering 
Department at Canterbury for a year (2001-2202) and worked as a visiting professor at 
the Annamalai University (India) and Technical University of Hamburg-Harburg during 
his study leaves. In 1997, he was awarded the Erskine Fellowship and visited several 
universities in Australia, Canada, Singapore and the U.K. 

His research areas include vibration and stability of continuous systems, numerical 
modelling and adaptive mechanisms. Since January 2009, he is serving as the Subject 
Editor for Journal of Sound and Vibration, for analytical methods for linear vibration.

He is also interested in computer-aided learning and has developed and used several 
interactive lectures and tutorials for teaching Mechanics of Materials and Vibration, as 
well as computer tutorials and games for learning/teaching Tamil language. He maintains 
a “vibration resources homepage” (see the second URL above), which at present contains 
some interactive simulation programs for calculating natural frequencies and modes of 
some structural elements.  

He is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka. 
Ilanko’s birth family is scattered across the globe (Australia, Canada, New Zealand, the 
U.K. and the U.S.A.) because of the civil war in Sri Lanka. 
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David Kennedy
Reader in Structural Engineering

Cardiff School of Engineering, Cardiff University, United Kingdom

David Kennedy obtained a First Class Honours degree at the University of Cambridge in 1978 and a 
PhD in the area of efficient transcendental eigenvalue computation from the University of Wales, 
Cardiff in 1994.

From 1978 to 1983 he was employed as an Analyst/Programmer for the computer services company 
Scicon Ltd, where he worked on the development of the Mathematical Programming software 
SCICONIC/VM.  In 1981 he was awarded a 2-year BP Venture Research Fellowship in Non-linear
Optimization, supervised by the late Professor Martin Beale.

In 1983 he was appointed as a Research Associate in the University of Wales Institute of Science 
and Technology, which was merged into Cardiff University in 1988.  Working under the supervision 
of Professor Fred Williams and funded under a collaborative agreement with NASA, he co-
ordinated the development of the space frame analysis software BUNVIS-RG which was released
by NASA to US users in 1986/87.  Further collaboration with NASA and British Aerospace (now 
BAE Systems) led to the development and successive releases, starting in 1990/91, of VICONOPT, 
a buckling and vibration analysis and optimum design program for prismatic plate assemblies.  Both 
of these programs use analysis methods based on the Wittrick-Williams algorithm.

He was appointed to a Lectureship  in the Cardiff School of Engineering in 1991, promoted to Senior
Lecturer in 2000 and to Reader in 2005. He has continued to manage the collaborative development 
of VICONOPT, successfully co-supervising 10 PhD students and holding Research Council grants 
on parallel computing, aerospace panel optimization, local postbuckling and mode finding.  He has 
visited NASA Langley Research Center several times, most recently for 4 weeks in 2004.  In 2007 
he was awarded a Royal Society Industry Fellowship for a 6-month secondment to Airbus UK.

As Deputy Director of the Cardiff Advanced Chinese Engineering (ACE) Centre, Dr Kennedy has 
assisted in the development of research agreements with leading Chinese universities, including 
Tsinghua University, Dalian University of Technology and Shanghai Jiao Tong University.

Dr Kennedy is the author of 125 publications of which approximately 50% are in refereed journals 
of international standing.

He lives with his wife Helen and 3 cats, and enjoys choral singing, organ playing and hill walking.
Having been a keen cross-country and road runner at student level, he has now trying to emulate this 
success as a veteran (50+) and has competed 3 times in the Cardiff Half Marathon. 
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Alexander Lacher 

Born 30th of December 1981 in Berlin, Germany 
2002-2007 Studies of Physical Engineering Science at TU Berlin 
Scholarship of the “German National Academic Foundation” 
2006-2007 academic year at University of Maryland (UMD), College Park, MD, USA with a 
FULBRIGHT scholarship 
Research Assistant at UMD, research on a bio-inspired directional microphone and a wireless 
fiber sensor system for pressure and strain measurements on rotor blades (NASA-project) 
2007 Diploma thesis on anisotropic yield criteria (Diplom-Ingenieur) 
Since 2007 Research and Teaching Assistant at TU Berlin, Chair of Mechatronics and 
Machine Dynamics (Prof. Dr.-Ing. Utz von Wagner), Dissertation on response of continuous 
structures under transient excitation 
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Arthur W. Leissa

	 After earning two degrees in mechanical engineering, with a strong interest in machine 
design, I decided to seek better understanding of stress and deformation of bodies, so I got my 
Ph.D. in engineering mechanics (from Ohio State University in 1958). My dissertation research 
was in the theory of elasticity. I then stayed on there as a faculty member.

	 Working part-time for two aircraft companies (Boeing and North American Aviation) 
made me very interested in vibrations. In 1965 1 approached NASA to support me with research 
funds to collect the literature of the world in plate and shell vibrations, and summarize it in two 
monographs. They did, and the two books were published in 1969 and 1973. Plate vibrations 
involved approximately 500 references while shell vibrations had about 1000. The two books 
were out of print for a long time. But in 1993 they were reprinted by The Acoustical Society of 
America and are currently available from them.

	 After gaining considerable knowledge in writing the two books, I continued to do 
extensive research on vibrations of continuous systems, including laminated composites, 
turbomachinery blades, and three-dimensional problems. Approximately 150 published papers, 
and most of the 40 dissertations I supervised, were in this field.

	 I always intended to update the “Vibration of Plates” monograph. Indeed, more than 
20 years ago I had a graduate student collect the more recent literature. This consisted of 1500 
additional references dealing with free vibrations. But I never could find the time needed to 
undertake the writing.

	 In June of 2001 I formally retired from Ohio State University after having been on its 
faculty for 45 years. In July, 2002 Trudi and I moved to Fort Collins, Colorado, approximately 
60 miles north of Denver, and close to the mountains. I am now an Adjunct Professor in the 
Department of Mechanical Engineering of Colorado State University. Having no serious 
responsibilities there, I still collaborate somewhat with others on research.

	 My serious interest in the mountains began as a boy, reading books about Mallory and 
Irvine on Everest, and others. In 1961 when I could first afford it (with a family) I began climbing 
mountains, which I pursued strongly for decades. Now being 77, 1 can no longer climb them, but 
I still enjoy greatly being in the mountains --- hiking, skiing and snowshoeing. They restore one’s 
vitality and one’s peace.

	 In 1995 Mark Ewing, who was in Colorado then, agreed to help me organize the first 
International Symposium in Vibrations of Continuous Systems, held in 1997 in Estes Park, 
Colorado. It was well-received, and so it has continued every two years, in marvelous mountain 
locations worldwide. I look forward to being in Zakopane and the Tatra Mountains.
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









 

   
   
     

 

    
     

   
  
  
   



                 



 


 


            


 



 


 


              


   







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Biographical Sketch of Chee W. Lim 

I graduated with a B.Eng. degree in Mechanical Engineering (Aeronautics) from University of 
Technology, Malaysia in 1989.  I was conferred a M.Eng. degree in Mechanical Engineering from 
National University of Singapore in 1992 for the research in hydrodynamic stability of potential and 
boundary layer flows over periodically supported compliant surfaces.  The research was an attempt 
to model and understand the mechanism and responses of flows over the skin of a dolphin and the 
ability of a flexible skin to stabilize boundary layer flows.  Subsequently, I pursued research in 
vibration of isotropic and laminated plates and shells and was awarded a PhD degree in Mechanical 
Engineering from Nanyang Technological University, Singapore in 1995. 

I continued research as a postdoctoral fellow at Department of Civil Engineering, The University of 
Queensland, Australia from 1995 to 1997, and as a research fellow at Department of Mechanical 
Engineering, The University of Hong Kong from 1998 to early 2000.  I joined Department of 
Building and Construction, City University of Hong Kong as an assistant professor in 2000 and was 
promoted to associate professorship in 2003. 

My main research interests are in developing new models and applications of plate and shell 
structures including flow-structures interaction in advanced engineering fields such as smart 
piezoelectric structures, micro-electro-mechanical systems (MEMS) and nanomechanics.  Recently, 
I have much interest in a new subject symplectic elasticity which has been applied in 
multidisciplinary areas including quantum mechanics, electromagnetism, control theory and applied 
mechanics. 

I am married to Moi P. Choo, have a daughter Qin Y. Lim, fourteen, and a son Ying H. Lim, now 
ten.
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Ken-ichi Nagai
Gunma University

 Ken is a professor of the Department of Mechanical System Engineering in Graduate School of 
Engineering, Gunma University.
 He was born in Fukushima north-east of Japan. He graduated from the national college of 
technology in Fukushima. During the student, he received deep impression from the book
"Mechanics" by Den Hartog. At the time, he wanted to devote himself to research and education. 
He received his B. Eng. in 1970 from Ibaraki University. He obtained M. Eng. and Dr. Eng. in 
1972 and 1976 from Tohoku University, respectively.

 Since 1976, he has been taking an academic position in Gunma University. From 1990 to 1991, he 
was a visiting fellow at Cornell University in U. S. A., Technische Hochshule Darmstadt in 
Germany and Polish Academy of Sciences in Poland.
 He is a Fellow of the Japan Society of Mechanical Engineers and was the chairman of the Division 
of Dynamics, Measurement and Control in JSME in 2007. He organized JSME Dynamics and
Design Conference 2008. More than 350 papers were presented. He organized the Technical
Section on Nonlinear Vibration under the division. He has been a consultant to ministry, local
government and automobile industry.

 He is now devoted in the research filed of nonlinear vibration, dynamic stability and chaotic
oscillations of structure such as beam, arch, plate and shell.
 Recently, he published the book of "Dynamic system Analysis-Energy Approaches from Structural 
Vibration to Chaos-".

 His personal interests include hiking and drinking a little. He feels spiritual happiness as 
walking in fields and facing to new phenomena of chaotic vibration.
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   I am Yoshi (Yoshihiro) Narita of Hokkaido University, Sapporo, Japan. I moved to HU five 
years ago from Hokkaido Institute of Technology, where I had spent twenty-four years. I enjoy 
the best surroundings of HU, and I can work with graduate students who are capable of doing 
excellent research. Our laboratory has only one professor (me), because my colleague was 
promoted this spring to a full professor in another laboratory, and I still have about twenty 
students including five senior undergraduate students for graduation theses and fifteen Japanese 
(eleven) and foreign (four) graduate students. 

Right after I come back from this symposium, I will be the chairman of domestic annual 
conference D&D2009 for Division of Dynamics, Measurement and Control, JSME. The venue 
of conference is on HU campus and the conference continues six days (3rd-8th August). The 
number of presentations is about five hundreds, including the accompanying First Japan-Korea 
symposium.  

I started my research on vibration of continuous systems when I was a graduate student 
under adviser Prof.Irie of HU in 1976, and had a chance to study one year in 1978-1979 under 
Prof.Leissa at the Ohio State University. I have kept the same topic more than thirty years. 
Somehow, I like the research in the area of dynamics of continuous systems. Recently, I 
combine the vibration and buckling of plates and shells with optimization. 

On a personal note, I have a wife and three children (a male HU graduate student of 24 year 
old, a female second-year student of Keio University and a high-school freshman of 16 year 
old). They used to come with me in early ISVCS’s, but my children are now busy with their 
own schedules. I am happy to bring my wife this time.   

   I am also happy that I could join all the ISVCS’s, including ISVCS-I(Estes Park, USA), 
II(Grindelwald, Switzerland), III(Grand Teton, USA), IV(Keswick, UK), V(Berchtesgarden, 
Germany) and VI (Squaw Valley, USA). These visits are full of good memories. In the present 
ISVCS, I look forward to meeting old and new friends in the research community of applied 
mechanics. 

Let’s enjoy!           
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Biography
of Francesco Pellicano 

Francesco Pellicano was born in Rome, Italy on 1966. He received a M.S. degree in Aeronautical Engineering in 

1992 and Ph.D. in Theoretical and Applied Mechanics in 1996, both at the University of Rome “La Sapienza”, Dept. of 

Mechanics and Aeronautics. 

He was Researcher at the University of Modena and Reggio Emilia, Faculty of Engineering, Dept. of Mechanical and 

Civil Engineering, 1996-2003.  

He is currently Associate Professor at the same University since January 2004. 

He was involved in investigations concerning: nonlinear vibrations of structures; nonlinear normal modes; axially 

moving systems; nonlinear vibration of shells with fluid structure interaction; gears modeling; non-smooth dynamics; 

Chaos; Nonlinear Time Series Analysis; Forecasting Methods in Oceanography. 

He cooperated with Prof. Vestroni, Prof. Sestieri and Prof. Mastroddi of the University of Rome “La Sapienza” and 

with with: Prof. Païdoussis (Mc Gill Univ. Canada); Prof. Vakakis (Univ. of Illinois at Urbana Champaign; recently 

National Technical Univ. of Athens, Greece); Prof. Amabili (Univ. of Parma, Italy). 

The teaching activity regards: Vibrations of Discrete and Continuous Systems; Signal Processing; Machine Theory 

and Machinery. 

He was coordinator of an international NATO CLG-Grant project on Nonlinear Dynamics of Shells with Fluid 

Structure Interaction and was the local coordinator of an Italian project on Shells Vibrations. 

His research activity regards also industrial problems, he cooperated for research and consultancies with several 

companies about: vehicle stability; experimental vibrations; clutch instabilities and failures. 

He was reviewer for the following international journals: SIAM Journal of Applied Mathematics, Nonlinear Dynamics, 

ASME Journal of Vibration and Acoustics, J. of Solids and Structures; J. of Sound and Vibration, Computer Methods in 

applied Mechanics and Engineering, Int. J. of Systems Science; and reviewer for the foundations: FCAR (Fonds pour la 

Formation de Chercheurs et l' Aide à la Recherche) Québec, CANADA; Natural Science and Engineering Research 

Council of Canada. 

He is Associate Editor of the journal: Mathematical Problems in Engineering, Hindawi, and takes part to the

international advisory editorial board of the journal: Communications in Nonlinear Science and Numerical Simulation, 

Elsevier.

He published a Book, 35 Journal papers and more than 60 conference papers. 

1
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Professor ROMULAD  RZADKOWSKI 
   

Brief statement of scientific career including academic qualifications, post held, research 
activities, etc:

Master of Sciences in Engineering 1978 Technical University of Gda sk,
Master of Sciences in Mathematics 1983, University of Gda sk
Phd in Engineering  1988 Polish Academy of Sciences, Institute of Fluid Flow 
Machinery,
DSc in Engineering 1998 Polish Academy of Sciences, Institute of Fluid Flow 
Machinery,
Associate Professor since 1998
Professor  Since   2004 

Field of specialization in brief: 

Dynamics of Turbomachnery, Life Estimation of Turbine Blades, Unsteady 
Aerodynamics, Flutter

Books:

Rz dkowski R.: Numerical Analysis of Free and Forced Vibration of Tuned and Mistuned 
Bladed Discs, Zeszyty Naukowe IMP PAN 483/1438/97, 1997 

Rz dkowski R.: Dynamics of Steam Turbine Blading, Part Two –Bladed  Disc Maszyny 
Przep ywowe, Tom 22, Ossolineum, Wroc aw, 1998.

    Rz dkowki R.: Flutter of Turbine Rotor Blades in Inviscid Flow, Wydawnictwo Akademii 
     Marynarki Wojennej, Gdynia 2004. 

  Rz dkowki R., Soko owski J.: Free Vibrations of the Bladed Discs on the Shaft, 
Wydawnictwo Akademii Marynarki Wojennej, Gdynia 2005 (in Polish). 

Rzadkowski R., Soli ski M.: Niestacjonarne si y aerodynamiczne dzia aj ce na wirnik 
turbiny parowej, Maszyny Przep ywowe, Tom 29,  IMP PAN Gda sk, 2007.

Main Papers –  Journal 79, Conferences  94, Report for Industry 13,  Reports tech 131. 
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Wolfgang Seemann
Institut für Technische Mechanik, Universität Karlsruhe (TH), Karlsruhe, Germany 
Karlsruhe Institute of Technology

I was born on 31 March, 1961 in Keltern (Germany, Baden-Württemberg). After school I studied 
mechanical engineering at the University of Karlsruhe between 1980 and 1985. After civil 
service (1985-1987) I began as a PhD-student working at the Institute of Applied Mechanics at 
the University of Karlsruhe. The PhD was finished in 1991 with a thesis on ’Wave propagation 
in rotating or prestressed cylinders’. In 1992 I joined the group of Peter Hagedorn at Darmstadt 
University of Technology to work in a post-doc position until 1998 when I got a professorship 
on machine dynamics in Kaiserslautern. In 2003 I got an offer to go back to the University of 
Karlsruhe on the chair of Applied Mechanics.

My previous and current research interests lie in ultrasonic motors, nonlinear vibration, 
multibody dynamics, vibration of continuous systems, active materials, nonlinear phenomena 
in piezoelectric materials, humanoid robots, dynamics of human motion, mechatronic systems, 
road-vehicle interaction, rotor dynamics and wave propagation. 

Besides I am responsible for the French-German cooperation of our university. 
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CURRICULUM VITAE 

Alexander P. Seyranian 
Institute of Mechanics, Moscow State Lomonosov University 
Michuynski pr. 1, Moscow 119192, Russia 
Phone: (7495) 939-2039  Fax: (7495) 939-0165
E-mail: seyran@imec.msu.ru Homepage: http://seyranian.imec.msu.ru

A.P.Seyranian was born in Moscow, and spent his childhood in Armenia. In 1971 he graduated from 
the Moscow Physical-Technical Institute. In 1971-1973 he worked in the Central Aero-Hydrodynamic 
Institute of USSR as a research engineer. In 1977 he got Ph.D. degree from the Academy of Sciences 
of the USSR with the thesis "Structural optimization under several constraints". In 1977-1991 
A.P.Seyranian was a Member of Scientific Staff at the Institute of Problems in Mechanics of the 
Academy of Sciences in Moscow. In 1988 he got D.Sc. degree with the thesis "Sensitivity analysis and 
optimization for problems of stability and vibrations of elastic systems" from the Academy of Sciences 
of the USSR in Moscow. In 1991-1992 he visited Denmark as a Guest Professor and gave a lecture 
course "Vibrations and Stability of Systems Depending on Parameters" at the Technical University of 
Denmark (Lyngby) and Aalborg University. Since 1993 A.P.Seyranian is a Leading Researcher and 
Professor of the Institute of Mechanics, Moscow State Lomonosov University. In 1995 he was elected 
a Member of The New York Academy of Sciences. In 1998 he was elected a Member of Editorial 
Board of the International Journal "Theoretical and Applied Mechanics" published in Yugoslavia. In 
2001 A.P.Seyranian was Coordinator and Lecturer of the course “Stability of Structures. Modern 
Problems and Unconventional Solutions”, held in International Centre for Mechanical Sciences in 
Udine (Italy), and Editor of the book “Modern problems of Structural Stability”, 2002, Springer Wien. 
In 2002 he got the prize of Elsevier Publishers for the best paper published in Journal of Applied 
Mathematics and Mechanics in 2001. In 2003 he wrote a fundamental monograph on multi-parameter 
stability problems (with A.A.Mailybaev) published by World Scientific, Singapore. In 2003 
A.P.Seyranian became a member of Editorial Board of International Journal Structural and 
Multidisciplinary Optimization. In 2007 A.P.Seyranian as a leader of Moscow group with the partners 
from Italy, France and Siberia got approval of the INTAS project “Advances of Stability Theory with 
Mechanical Applications” supported by European Union. In 2007 A.P.Seyranian became a member of 
Editorial board of the International Journal “Mathematical Methods in Engineering”. In 2008 he was 
elected a Correspondent Member of Russian Academy of Natural Sciences. In November 2008 he was 
elected a Member of Academy of Sciences of Armenia. 
      A.P.Seyranian is a reviewer of ASME Journal of Applied Mechanics, American Mathematical 
Society, Proc. Royal Society (UK), Journal of Sound and Vibration, International Journal of Non-
Linear Mechanics, European Journal of Mechanics, International Journal of Solids and Structures, 
Structural and Multidisciplinary Optimization, Journal of Applied Mathematics and Mechanics 
(Russia), Doklady of Academy of Sciences (Russia), Mechanics of Solids (Russia). He gave lectures 
and presented seminars in many Conferences and prominent Universities in Russia, Armenia, USA, 
Canada, UK, Germany, France, Japan, Austria, Brazil, Italy, Spain, Serbia, Ukraine, Bulgaria, China, 
Denmark, Netherlands, Korea, Poland, Sweden, Hungary, Slovakia, Turkey. His biography is included 
in the reference books ”Who is Who in the World”, Marquis, 1999 and 2001, and “Who is Who in 
Science and Engineering”, Marquis, 2007. 
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Anand V. Singh

I  was  born  on  July  05,  1948 in  a  village  Rahimpur  in  the  district  of  Monghyr,  Bihar,  India.   I
completed my elementary and secondary educations from Monghyr Zila School and was directly
admitted to the Bihar Institute of Technology in Sindri.  I graduated in 1968 with B.Sc.
Engineering (first class with distinction in Mechanical Engineering).  In September of 1969, I
joined the school of graduate studies at the University of Ottawa; began my research work with
the derivation of the constitutive equations from the first principles to study the free
axisymmetric vibration of sandwich spherical shell structures under the noble supervision of
Professor S. Mirza and subsequently received M. A. Sc. and Ph. D. degrees.  These equations
were developed in the spherical coordinate system and had solutions in Legendre functions of
complex order for which I had to develop many new programs.  During this study I also used
energy methods to deduce the equations of motion for the free vibration of isotropic and
sandwich plates and shells.

After graduation, I worked as a defence scientist at the Defence Research Establishment Suffield
(DRES) near Medicine Hat Alberta from January 1978 to April 1981.  Then, I accepted a design-
engineer position in the Civil Design Department of Ontario Hydro in Toronto and worked there
until December 1984, when I came to the University of Western Ontario to teach machine
component design and the finite element methods.  Professor Stuart Dickinson was the chair of
the Mechanical Engineering at that time and he is the one who hired me.  This year I shall be
completing 25 years of service to the university.  During these years I taught graphics and
engineering drawings, dynamics, kinematics and dynamics of machines, and the theory of
modern  control  systems in  addition  to  the  above  mentioned  two courses.   I  worked  with  some
remarkable students in the field of computational solid mechanics dealing with the linear and
nonlinear vibrations of plates and shells.

On the personal note, since March of 1968 I am married to Bimla with whom I have had more
than forty great years and have two adult children, the son Bidhi and daughter Shikha.  Both are
graduates of the University of Western Ontario.  Bimla and I attended all the ISVCs except the
very first one.  Also, we like to travel and have camped in the past while traveling with our
children; enjoy walking in the park and on the beaches (whenever possible); and wish to live our
lives to the fullest as long as there is the wellness.
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Fachbereich Maschinenbau 

Gottfried Spelsberg-Korspeter

Fachgebiet Dynamik 

Hochschulstr. 1 

64289 Darmstadt 

Telefon + 49 6151 16-2685 

Telefax + 49 6151 16-4125 

speko@dyn.tu-darmstadt.de 

Gottfried Spelsberg-Korspeter 

Technische Universität Darmstadt 

On August 13
th
 1978 I w as born in Dortmund Germany. 

I grew  up in Dortmund, Düsseldorf and Ludw igsburg w here I f inished high-school (Abitur) in 1998. 

After complet ion of the compulsory military service I started studying at TU Darmstadt in 1999. 

In 2001 I f inished my preliminary diploma in industrial engineering and in mechanical engineering 

and decided to pursue my mechanical interests in the applied mechanics department w ith main 

focus on dynamics. Taking part in an exchange program of the industrial engineering department I 

spend the fall semester 2002 and the spring semester 2003 at the University of Illinois at Urbana 

Champaign where I mainly w orked in the area of operat ions research. 

In 2004 I f inished my masters degree in applied mechanics w ith a thesis related to mechanical 

modelling of ultrasonic motors and w ent back to the University of Illinois to w rite my master thesis 

in industrial engineering in the area of operat ions research. After complet ion I joined the research 

group of Professor Hagedorn in January 2005. In 2007 I completed my Ph.D. work w ith a thesis on 

self  excited vibrat ions in gyroscopic systems. Since then I have been teaching classes on nonlinear 

vibrat ions, mult ibody dynamics and vibrat ions of continuous systems for master students and 

engineering mechanics for bachelor students.  

My hobbies are hiking, climbing and other sports. 
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Utz von Wagner Bio 

- born 1968 
- 1994 Diploma Mechanical Engineering Universitaet Karlsruhe 
- 1998 Doctoral degree (Dr.-Ing.) Universitaet Karlsruhe 
- 1999 Development engineer ADtranz Daimler Chrysler Rail Systems Nuremberg 
- 1999 - 2004 Lecturer at Technische Universitaet Darmstadt 
- 2003 Habilitation 
- since October 2004: Professor at Technische Universitaet Berlin, chair of Mechatronics 
and Machine Dynamics 
- 2007-2009 vice dean of School of Mechanical Engineering and Transport Systems at 
TU Berlin 
- since April 2009 dean of School of Mechanical Engineering and Transport Systems at 
TU Berlin 
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Biographical sketch 

Jörg Wauer 

I am a Professor of Technical Mechanics at the University of Karlsruhe, Germany, in the Department 
of Mechanical Engineering, holding this position since 1977. I apprenticed as a mechanic and studied 
mechanical engineering at the Engineering College of Kaiserslautern and the University of Karlsruhe. I 
received my Ing.-Grad. and Dipl.-Ing degree in 1964 from the Engineering College of Kaiserslautern 
and in 1969 from the University of Karlsruhe, respectively. At the University of Karlsruhe, I was 
promoted to Dr.-Ing. in 1972 and Docent habil. in 1976. My industrial experience includes positions as 
a mechanic specialist and design engineer. 

Structural dynamics and dynamics of machines are my principal research interests but during 
the last fifteen years, I extended this work to multi-field problems as dynamic fluid-structure interaction 
or vibrations of thermo-elastic and piezoelectric solids. I have authored or co-authored approximately 
150 scientific papers concerning the mentioned topics, and I am a co-author of a book on 
mathematical methods in engineering mechanics. Together with my colleague W. Seemann, in 2005 
we lectorated the translation of the 3-volume book “Engineering Mechanics” by Hibbeler into German 
with significant adaptations and enlargements. In 2009 I published a German-written monograph on 
“Vibrations of Continuous Systems” . 

Teaching is the other part of my activities at the university. I gave courses in all undergraduate 
mechanics topics, and I taught and I am still teaching many advanced mechanics courses for graduate 
students as structural dynamics, dynamics of machines, measurement of mechanical vibrations, 
mathematical methods in engineering vibrations, stability of elastic structural members, and presently, 
dynamics of mechatronic systems.  

As the principal adviser, I promoted sixteen students to their Dr.-Ing. degree and two of them 
also to his habilitation. I am a member of GAMM and EUROMECH, I am active in several committees 
and work as a reviewer for several mechanics journals. In 2004 I received an honorary doctor degree 
from the Technical University of Sofia, Bulgaria.  

Besides all these scientific activities, from 1994 until 2002, I held an important position in 
administration of my faculty at the University of Karlsruhe: I was the so-called Studiendekan 
responsible for all our actual reform work in the curriculum of the study of Mechanical Engineering at 
the University of Karlsruhe. In addition, from 1999 until 2001, I chaired one of the University councils in 
Karlsruhe. From 2000 until 2008, I was a member of a nationwide committee for accrediting of 
Bachelor’s and Master’s studies in Engineering Sciences. Since October 2007 I am retired. 

March 2009 
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A Short Biography
S. D. Yu 

Shudong Yu received his Bachelor’s degree in Mechanical Engineering from Jianxi University of 
Science and Technology (China) in 1982, Master’s degree in Theoretical Mechanics from 
Northeastern University (China) in 1984, and PhD degree in Mechanical Engineering from the 
University of Toronto (Canada) in 1995.

He worked as a research associate under Professor D. J. Gorman at the University of Ottawa during 
1988-89, and as a nuclear fuel design engineer/analyst at Atomic Energy of Canada Limited (AECL) 
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