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1. Introduction Experimental results are presented on chaotic vibrations of a stepped beam
constrained by an axial elastic spring. The rectangular cross section of the beam changes to H
shaped at the mid span of the beam. One end of the beam is clamped and the other is
simply-supported. The beam is compressed to the post-buckled state by the spring in the axial
direction. The post-buckled beam is excited laterally under periodic acceleration. The dynamic
responses of the beam are measured under the effect of axial compression. In typical frequency
ranges, chaotic responses are observed. The responses are inspected with the Fourier spectra, the
Poincaré maps, the maximum Lyapunov exponents and the Karhunen-Loéve transformation.

2. Test beam and Test Procedure Fig.l shows the stepped beam and its fixture -at both ends. A
thin phosphor bronze beam with thickness #=0.30 mm, breadth 5=40 mm and length L=140 mm is
clamped at one end and simply-supported at the other end. Four thin phosphor bronze beam
(thickness 0.31 mm, breadth 4.9 mm, length 34 mm) are attached to the mid span of the beam, then
the cross section is locally changed to H-shaped. At the simply-supported end, the beam is
connected to an elastic plate by the strips of adhesive films. The elastic plate is clamped by the slide
block and works as the axial spring. The beam is compressed by the axial spring, then the beam is
deformed to the post-buckled configuration. To find fundamental properties of the beam, the linear
natural frequencies and the restoring force are inspected. The post-buckled beam is excited laterally
with an electromagnetic exciter. The beam is subjected to gravitational acceleration and periodic
acceleration a,cos27f t, where f is the excitation frequency and a, is the peak amplitude of
acceleration. The dynamic responses of the beam are measured under three magnitudes of axial
compression. In typical frequency ranges, chaotic responses are observed. The responses are
inspected with the frequency response curves, the Fourier spectra, the Poincaré projections and the
maximum Lyapunov exponents. The contribution of vibration mode to the chaos is discussed with
the Karhunen-Loéve transformation.

3. Results and Discussion The experimental results are arranged with the following
non-dimensional notations.

E=x/L, w=W/h, [p.p]=Ig.apAL'/ Elr, q =QL /Elr, n =N_L/EIl,
n=nl/n,o=2nf/2, t=Qt, r=NI/A4, Q =L"\EI/pA )]

where r represents the radius of gyration of cross section of the beam, €2 is the coefficient
corresponding to lateral vibration of the beam. In Eq. (1), § is the non-dimensional coordinate, w is
the lateral displacement normalized by the beam thickness 4. Notation n, is the non-dimensional
axial force where N, represents the axial force on the cross section. The symbol n, is the
non-dimensional axial force, normalized by the non-dimensional buckling resultant n, = -18.4.
Notations p, and p, are the non-dimensional load intensities related to the accelerations of gravity g
and of the periodic peak amplitude a, , respectively, which are chosen as p,=0.42x10° and p;=
0.86x10°. When the characteristics of restoring force of the beam is examined, static lateral
deflection by the concentrated static force Q, is measured. Notation g, is the non-dimensional static
force. Notations @ and 7 are the non-dimensional exciting frequency and the time, respectively.

Figure 2 shows the linear natural frequencies @@, of the beam under the axial compressive
force -n, by the spring. Increasing the compressive force from n,= 0, the lowest linear natural
frequency decreases gradually. Increasing the axial force from -m,= 18.4, the lowest natural
frequency increases steeply because of the post-buckled deformation of the beam, which has an



initial deflection. Fig. 3 shows the static lateral deflection w of the beam under the concentrated
force ¢, loaded on the center of the beam. The characteristics of restoring force of the beam show
the type of a softening-and-hardening spring including negative gradient. At the axial compression
ne =1.17, the beam has two static equilibrium points. The range of deflection, where the negative
gradient appears, decreases as the axial compression is decreased.

Figure 4 shows the nonlinear response curves of the post-buckled beam. The amplitude of
response at the position £= 0.65 is shown with the root-mean-square value. The resonance response
is denoted by the symbol (i: j) with the mode of vibration i and the type of resonance j. For example,
J=1and j= 1/2 represent the principal resonance and the sub-harmonic resonance of 1/2 order,
respectively. The chaotic response is represented by the symbol C. Natural frequencies of the
post-buckled beam are also indicated by the solid circles on the abscissa. In the figure, the nonlinear
response curve corresponds to the characteristics of restoring force with the type of a
softening-and-hardening spring. Under the axial compression n. = 1.17 and 1.15, the chaotic
responses are generated from the non-resonant response with the jump phenomenon, as the
excitation frequency is decreased. In contrast, under the axial compression n. = 1.10, the
sub-harmonic resonance of 1/2 order continuously transit to the chaotic responses by decreasing the
excitation frequency. Fig. 5 shows the chaotic response C1 of the post-buckled beam, under the
excitation frequency @,,=12.0, and the axial compression n. = 1.17. In Fig. 5(a), the time progress
of the response w is presented by the number of excitation period T. . The chaotic response is
dominated by dynamic snap-through. The Fourier spectrum in Fig. 5(b) shows broad-band spectrum.
Dominant peaks of the spectrum correspond to the ultra-sub harmonic resonance of 2/3 order with
the lowest mode of vibration. In Fig. 5(c), the Poincaré projection is shown in the space of
deflection and velocity. A fractal pattern is clearly constructed in this Poincaré projection. Fig. 6
shows the chaotic response C under @, =11.7 and n. = 1.15. Among the broad-band spectrum in
Fig. 6(b), dominant peaks of the spectrum correspond to the sub-harmonic resonance of 1/2 order
and the ultra-sub harmonic resonance of 3/4 order with the lowest mode of vibration. Figure 7
shows the chaotic response C under @,,=16.2 and »n. = 1.10. The Fourier spectrum shows fewer
dominant peaks in Fig. 7(b). The most dominant peak of the spectrum corresponds to the
sub-harmonic resonance of 1/2 order with the lowest mode of vibration. In Fig. 7(c), the point of the
Poincaré projection is widely distributed in two parts. In each part, clear fractal pattern can be
observed. Fig. 8 show the maximum Lyapunov exponents 4, related to the embedding dimension
e of the chaotic responses. Since the maximum Lyapunov exponents converge to positive values,
these responses are confirmed as chaos. As the axial compression n. is increased from n, = 1.10 to
ne = 1.17, the maximum Lyapunov exponent increases from A, = 0.5 to A, = 1.5. The
Karhunen-Loéve transformation enables one to estimate the contribution of vibration modes to the
chaotic response. The results are summarized in Table 1. Modal patterns and corresponding
contribution ratio are shown in the table. The lowest mode of vibration has the largest contribution
to the chaotic responses more than 99.8 %. As the axial compression is increased, the contribution
of the second mode of vibration increases.

4. Conclusion Experimental results are presented on chaotic vibrations of a stepped beam. As the
axial compression to the beam is increased, the maximum Lyapunov exponents converge to larger
value, and contribution of the second vibration modes to the chaotic response increases.
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Fig. 3 Characteristics of restoring force

5 r
£h1ak

M =120
i APE A L

T & 1 4 ¥ p 3 1 BT R T I TR I T
(-]

il L] 10y 120

2 J
e (@) % ®) e 8}
Fig. 7 Time history, Fourier spectrum and the Poincaré projection, n.=1.10
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